u-boot-brain/drivers/ddr/marvell/a38x/ddr3_training.c
Pali Rohár 107c3391b9 ddr: marvell: a38x: Sync code with Marvell mv-ddr-marvell repository
This syncs drivers/ddr/marvell/a38x/ with the master branch of repository
https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git up to the
commit 7c351731d196 ("Merge pull request #29 from pali/sync-a38x-uboot").

This patch was created by following steps:

1. Replace all a38x files in U-Boot tree by files from upstream github
   Marvell mv-ddr-marvell repository.

2. Run following command to omit portions not relevant for a38x and ddr3:

    files=drivers/ddr/marvell/a38x/*
    sed 's/#if defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_39X)/#ifdef TRUE/' -i $files
    unifdef -m -UMV_DDR -UMV_DDR_ATF -UCONFIG_DDR4 -UCONFIG_APN806 \
        -UCONFIG_MC_STATIC -UCONFIG_MC_STATIC_PRINT -UCONFIG_PHY_STATIC \
        -UCONFIG_PHY_STATIC_PRINT -UCONFIG_CUSTOMER_BOARD_SUPPORT \
        -UCONFIG_A3700 -UA3900 -UA80X0 -UA70X0 -DTRUE $files

3. Manually omit SPDX-License-Identifier changes from this patch as
   upstream license in  upstream github repository contains long license
   texts and U-Boot is using just SPDX-License-Identifier.

After applying this patch, a38x ddr3 code in upstream Marvell github
repository and in U-Boot would be fully identical. So in future applying
above steps could be used to sync code again.

The only change in this patch is removal of dead code and some fixes with
include files.

Signed-off-by: Pali Rohár <pali@kernel.org>
Tested-by: Chris Packham <judge.packham@gmail.com>
Reviewed-by: Stefan Roese <sr@denx.de>
2021-03-12 07:42:37 +01:00

2899 lines
87 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#include "ddr3_init.h"
#include "mv_ddr_common.h"
#include "mv_ddr_training_db.h"
#include "mv_ddr_regs.h"
#define GET_CS_FROM_MASK(mask) (cs_mask2_num[mask])
#define CS_CBE_VALUE(cs_num) (cs_cbe_reg[cs_num])
u32 window_mem_addr = 0;
u32 phy_reg0_val = 0;
u32 phy_reg1_val = 8;
u32 phy_reg2_val = 0;
u32 phy_reg3_val = PARAM_UNDEFINED;
enum mv_ddr_freq low_freq = MV_DDR_FREQ_LOW_FREQ;
enum mv_ddr_freq medium_freq;
u32 debug_dunit = 0;
u32 odt_additional = 1;
u32 *dq_map_table = NULL;
/* in case of ddr4 do not run ddr3_tip_write_additional_odt_setting function - mc odt always 'on'
* in ddr4 case the terminations are rttWR and rttPARK and the odt must be always 'on' 0x1498 = 0xf
*/
u32 odt_config = 1;
u32 nominal_avs;
u32 extension_avs;
u32 is_pll_before_init = 0, is_adll_calib_before_init = 1, is_dfs_in_init = 0;
u32 dfs_low_freq;
u32 g_rtt_nom_cs0, g_rtt_nom_cs1;
u8 calibration_update_control; /* 2 external only, 1 is internal only */
enum hws_result training_result[MAX_STAGE_LIMIT][MAX_INTERFACE_NUM];
enum auto_tune_stage training_stage = INIT_CONTROLLER;
u32 finger_test = 0, p_finger_start = 11, p_finger_end = 64,
n_finger_start = 11, n_finger_end = 64,
p_finger_step = 3, n_finger_step = 3;
u32 clamp_tbl[] = { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 };
/* Initiate to 0xff, this variable is define by user in debug mode */
u32 mode_2t = 0xff;
u32 xsb_validate_type = 0;
u32 xsb_validation_base_address = 0xf000;
u32 first_active_if = 0;
u32 dfs_low_phy1 = 0x1f;
u32 multicast_id = 0;
int use_broadcast = 0;
struct hws_tip_freq_config_info *freq_info_table = NULL;
u8 is_cbe_required = 0;
u32 debug_mode = 0;
u32 delay_enable = 0;
int rl_mid_freq_wa = 0;
u32 effective_cs = 0;
u32 vref_init_val = 0x4;
u32 ck_delay = PARAM_UNDEFINED;
/* Design guidelines parameters */
u32 g_zpri_data = PARAM_UNDEFINED; /* controller data - P drive strength */
u32 g_znri_data = PARAM_UNDEFINED; /* controller data - N drive strength */
u32 g_zpri_ctrl = PARAM_UNDEFINED; /* controller C/A - P drive strength */
u32 g_znri_ctrl = PARAM_UNDEFINED; /* controller C/A - N drive strength */
u32 g_zpodt_data = PARAM_UNDEFINED; /* controller data - P ODT */
u32 g_znodt_data = PARAM_UNDEFINED; /* controller data - N ODT */
u32 g_zpodt_ctrl = PARAM_UNDEFINED; /* controller data - P ODT */
u32 g_znodt_ctrl = PARAM_UNDEFINED; /* controller data - N ODT */
u32 g_odt_config = PARAM_UNDEFINED;
u32 g_rtt_nom = PARAM_UNDEFINED;
u32 g_rtt_wr = PARAM_UNDEFINED;
u32 g_dic = PARAM_UNDEFINED;
u32 g_rtt_park = PARAM_UNDEFINED;
u32 mask_tune_func = (SET_MEDIUM_FREQ_MASK_BIT |
WRITE_LEVELING_MASK_BIT |
LOAD_PATTERN_2_MASK_BIT |
READ_LEVELING_MASK_BIT |
SET_TARGET_FREQ_MASK_BIT |
WRITE_LEVELING_TF_MASK_BIT |
READ_LEVELING_TF_MASK_BIT |
CENTRALIZATION_RX_MASK_BIT |
CENTRALIZATION_TX_MASK_BIT);
static int ddr3_tip_ddr3_training_main_flow(u32 dev_num);
static int ddr3_tip_write_odt(u32 dev_num, enum hws_access_type access_type,
u32 if_id, u32 cl_value, u32 cwl_value);
static int ddr3_tip_ddr3_auto_tune(u32 dev_num);
#ifdef ODT_TEST_SUPPORT
static int odt_test(u32 dev_num, enum hws_algo_type algo_type);
#endif
int adll_calibration(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum mv_ddr_freq frequency);
static int ddr3_tip_set_timing(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum mv_ddr_freq frequency);
static u8 mem_size_config[MV_DDR_DIE_CAP_LAST] = {
0x2, /* 512Mbit */
0x3, /* 1Gbit */
0x0, /* 2Gbit */
0x4, /* 4Gbit */
0x5, /* 8Gbit */
0x0, /* TODO: placeholder for 16-Mbit die capacity */
0x0, /* TODO: placeholder for 32-Mbit die capacity */
0x0, /* TODO: placeholder for 12-Mbit die capacity */
0x0 /* TODO: placeholder for 24-Mbit die capacity */
};
static u8 cs_mask2_num[] = { 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
static struct reg_data odpg_default_value[] = {
{0x1034, 0x38000, MASK_ALL_BITS},
{0x1038, 0x0, MASK_ALL_BITS},
{0x10b0, 0x0, MASK_ALL_BITS},
{0x10b8, 0x0, MASK_ALL_BITS},
{0x10c0, 0x0, MASK_ALL_BITS},
{0x10f0, 0x0, MASK_ALL_BITS},
{0x10f4, 0x0, MASK_ALL_BITS},
{0x10f8, 0xff, MASK_ALL_BITS},
{0x10fc, 0xffff, MASK_ALL_BITS},
{0x1130, 0x0, MASK_ALL_BITS},
{0x1830, 0x2000000, MASK_ALL_BITS},
{0x14d0, 0x0, MASK_ALL_BITS},
{0x14d4, 0x0, MASK_ALL_BITS},
{0x14d8, 0x0, MASK_ALL_BITS},
{0x14dc, 0x0, MASK_ALL_BITS},
{0x1454, 0x0, MASK_ALL_BITS},
{0x1594, 0x0, MASK_ALL_BITS},
{0x1598, 0x0, MASK_ALL_BITS},
{0x159c, 0x0, MASK_ALL_BITS},
{0x15a0, 0x0, MASK_ALL_BITS},
{0x15a4, 0x0, MASK_ALL_BITS},
{0x15a8, 0x0, MASK_ALL_BITS},
{0x15ac, 0x0, MASK_ALL_BITS},
{0x1600, 0x0, MASK_ALL_BITS},
{0x1604, 0x0, MASK_ALL_BITS},
{0x1608, 0x0, MASK_ALL_BITS},
{0x160c, 0x0, MASK_ALL_BITS},
{0x1610, 0x0, MASK_ALL_BITS},
{0x1614, 0x0, MASK_ALL_BITS},
{0x1618, 0x0, MASK_ALL_BITS},
{0x1624, 0x0, MASK_ALL_BITS},
{0x1690, 0x0, MASK_ALL_BITS},
{0x1694, 0x0, MASK_ALL_BITS},
{0x1698, 0x0, MASK_ALL_BITS},
{0x169c, 0x0, MASK_ALL_BITS},
{0x14b8, 0x6f67, MASK_ALL_BITS},
{0x1630, 0x0, MASK_ALL_BITS},
{0x1634, 0x0, MASK_ALL_BITS},
{0x1638, 0x0, MASK_ALL_BITS},
{0x163c, 0x0, MASK_ALL_BITS},
{0x16b0, 0x0, MASK_ALL_BITS},
{0x16b4, 0x0, MASK_ALL_BITS},
{0x16b8, 0x0, MASK_ALL_BITS},
{0x16bc, 0x0, MASK_ALL_BITS},
{0x16c0, 0x0, MASK_ALL_BITS},
{0x16c4, 0x0, MASK_ALL_BITS},
{0x16c8, 0x0, MASK_ALL_BITS},
{0x16cc, 0x1, MASK_ALL_BITS},
{0x16f0, 0x1, MASK_ALL_BITS},
{0x16f4, 0x0, MASK_ALL_BITS},
{0x16f8, 0x0, MASK_ALL_BITS},
{0x16fc, 0x0, MASK_ALL_BITS}
};
/* MR cmd and addr definitions */
struct mv_ddr_mr_data mr_data[] = {
{MRS0_CMD, MR0_REG},
{MRS1_CMD, MR1_REG},
{MRS2_CMD, MR2_REG},
{MRS3_CMD, MR3_REG}
};
/* inverse pads */
static int ddr3_tip_pad_inv(void)
{
u32 sphy, data;
u32 sphy_max = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
u32 ck_swap_ctrl_sphy;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (sphy = 0; sphy < sphy_max; sphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, sphy);
if (tm->interface_params[0].
as_bus_params[sphy].is_dqs_swap == 1) {
data = (INVERT_PAD << INV_PAD4_OFFS |
INVERT_PAD << INV_PAD5_OFFS);
/* dqs swap */
ddr3_tip_bus_read_modify_write(0, ACCESS_TYPE_UNICAST,
0, sphy,
DDR_PHY_DATA,
PHY_CTRL_PHY_REG,
data, data);
}
if (tm->interface_params[0].as_bus_params[sphy].
is_ck_swap == 1 && sphy == 0) {
/* TODO: move this code to per platform one */
/* clock swap for both cs0 and cs1 */
data = (INVERT_PAD << INV_PAD2_OFFS |
INVERT_PAD << INV_PAD6_OFFS |
INVERT_PAD << INV_PAD4_OFFS |
INVERT_PAD << INV_PAD5_OFFS);
ck_swap_ctrl_sphy = CK_SWAP_CTRL_PHY_NUM;
ddr3_tip_bus_read_modify_write(0, ACCESS_TYPE_UNICAST,
0, ck_swap_ctrl_sphy,
DDR_PHY_CONTROL,
PHY_CTRL_PHY_REG,
data, data);
}
}
return MV_OK;
}
static int ddr3_tip_rank_control(u32 dev_num, u32 if_id);
/*
* Update global training parameters by data from user
*/
int ddr3_tip_tune_training_params(u32 dev_num,
struct tune_train_params *params)
{
if (params->ck_delay != PARAM_UNDEFINED)
ck_delay = params->ck_delay;
if (params->phy_reg3_val != PARAM_UNDEFINED)
phy_reg3_val = params->phy_reg3_val;
if (params->g_rtt_nom != PARAM_UNDEFINED)
g_rtt_nom = params->g_rtt_nom;
if (params->g_rtt_wr != PARAM_UNDEFINED)
g_rtt_wr = params->g_rtt_wr;
if (params->g_dic != PARAM_UNDEFINED)
g_dic = params->g_dic;
if (params->g_odt_config != PARAM_UNDEFINED)
g_odt_config = params->g_odt_config;
if (params->g_zpri_data != PARAM_UNDEFINED)
g_zpri_data = params->g_zpri_data;
if (params->g_znri_data != PARAM_UNDEFINED)
g_znri_data = params->g_znri_data;
if (params->g_zpri_ctrl != PARAM_UNDEFINED)
g_zpri_ctrl = params->g_zpri_ctrl;
if (params->g_znri_ctrl != PARAM_UNDEFINED)
g_znri_ctrl = params->g_znri_ctrl;
if (params->g_zpodt_data != PARAM_UNDEFINED)
g_zpodt_data = params->g_zpodt_data;
if (params->g_znodt_data != PARAM_UNDEFINED)
g_znodt_data = params->g_znodt_data;
if (params->g_zpodt_ctrl != PARAM_UNDEFINED)
g_zpodt_ctrl = params->g_zpodt_ctrl;
if (params->g_znodt_ctrl != PARAM_UNDEFINED)
g_znodt_ctrl = params->g_znodt_ctrl;
if (params->g_rtt_park != PARAM_UNDEFINED)
g_rtt_park = params->g_rtt_park;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("DGL parameters: 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n",
g_zpri_data, g_znri_data, g_zpri_ctrl, g_znri_ctrl, g_zpodt_data, g_znodt_data,
g_zpodt_ctrl, g_znodt_ctrl, g_rtt_nom, g_dic, g_odt_config, g_rtt_wr));
return MV_OK;
}
/*
* Configure CS
*/
int ddr3_tip_configure_cs(u32 dev_num, u32 if_id, u32 cs_num, u32 enable)
{
u32 data, addr_hi, data_high;
u32 mem_index;
u32 clk_enable;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (tm->clk_enable & (1 << cs_num))
clk_enable = 1;
else
clk_enable = enable;
if (enable == 1) {
data = (tm->interface_params[if_id].bus_width ==
MV_DDR_DEV_WIDTH_8BIT) ? 0 : 1;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_ADDR_CTRL_REG, (data << (cs_num * 4)),
0x3 << (cs_num * 4)));
mem_index = tm->interface_params[if_id].memory_size;
addr_hi = mem_size_config[mem_index] & 0x3;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_ADDR_CTRL_REG,
(addr_hi << (2 + cs_num * 4)),
0x3 << (2 + cs_num * 4)));
data_high = (mem_size_config[mem_index] & 0x4) >> 2;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_ADDR_CTRL_REG,
data_high << (20 + cs_num), 1 << (20 + cs_num)));
/* Enable Address Select Mode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_ADDR_CTRL_REG, 1 << (16 + cs_num),
1 << (16 + cs_num)));
}
switch (cs_num) {
case 0:
case 1:
case 2:
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUNIT_CTRL_LOW_REG, (clk_enable << (cs_num + 11)),
1 << (cs_num + 11)));
break;
case 3:
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
DUNIT_CTRL_LOW_REG, (clk_enable << 15), 1 << 15));
break;
}
return MV_OK;
}
/*
* Init Controller Flow
*/
int hws_ddr3_tip_init_controller(u32 dev_num, struct init_cntr_param *init_cntr_prm)
{
u32 if_id;
u32 cs_num;
u32 t_ckclk = 0, t_wr = 0, t2t = 0;
u32 data_value = 0, cs_cnt = 0,
mem_mask = 0, bus_index = 0;
enum mv_ddr_speed_bin speed_bin_index = SPEED_BIN_DDR_2133N;
u32 cs_mask = 0;
u32 cl_value = 0, cwl_val = 0;
u32 bus_cnt = 0, adll_tap = 0;
enum hws_access_type access_type = ACCESS_TYPE_UNICAST;
u32 data_read[MAX_INTERFACE_NUM];
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
enum mv_ddr_timing timing;
enum mv_ddr_freq freq = tm->interface_params[0].memory_freq;
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("Init_controller, do_mrs_phy=%d, is_ctrl64_bit=%d\n",
init_cntr_prm->do_mrs_phy,
init_cntr_prm->is_ctrl64_bit));
if (init_cntr_prm->init_phy == 1) {
CHECK_STATUS(ddr3_tip_configure_phy(dev_num));
}
if (generic_init_controller == 1) {
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("active IF %d\n", if_id));
mem_mask = 0;
for (bus_index = 0;
bus_index < octets_per_if_num;
bus_index++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_index);
mem_mask |=
tm->interface_params[if_id].
as_bus_params[bus_index].mirror_enable_bitmask;
}
if (mem_mask != 0) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST,
if_id, DUAL_DUNIT_CFG_REG, 0,
0x8));
}
speed_bin_index =
tm->interface_params[if_id].
speed_bin_index;
/* t_ckclk is external clock */
t_ckclk = (MEGA / mv_ddr_freq_get(freq));
if (MV_DDR_IS_HALF_BUS_DRAM_MODE(tm->bus_act_mask, octets_per_if_num))
data_value = (0x4000 | 0 | 0x1000000) & ~(1 << 26);
else
data_value = (0x4000 | 0x8000 | 0x1000000) & ~(1 << 26);
/* Interface Bus Width */
/* SRMode */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, data_value,
0x100c000));
/* Interleave first command pre-charge enable (TBD) */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_OPEN_PAGES_CTRL_REG, (1 << 10),
(1 << 10)));
/* Reset divider_b assert -> de-assert */
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_CFG_REG,
0x0 << PUP_RST_DIVIDER_OFFS,
PUP_RST_DIVIDER_MASK << PUP_RST_DIVIDER_OFFS));
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_CFG_REG,
0x1 << PUP_RST_DIVIDER_OFFS,
PUP_RST_DIVIDER_MASK << PUP_RST_DIVIDER_OFFS));
/* PHY configuration */
/*
* Postamble Length = 1.5cc, Addresscntl to clk skew
* \BD, Preamble length normal, parralal ADLL enable
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, 0x28, 0x3e));
if (init_cntr_prm->is_ctrl64_bit) {
/* positive edge */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, 0x0,
0xff80));
}
/* calibration block disable */
/* Xbar Read buffer select (for Internal access) */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG, 0x1200c,
0x7dffe01c));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG,
calibration_update_control << 3, 0x3 << 3));
/* Pad calibration control - enable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG, 0x1, 0x1));
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) < MV_TIP_REV_3) {
/* DDR3 rank ctrl \96 part of the generic code */
/* CS1 mirroring enable + w/a for JIRA DUNIT-14581 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DDR3_RANK_CTRL_REG, 0x27, MASK_ALL_BITS));
}
cs_mask = 0;
data_value = 0x7;
/*
* Address ctrl \96 Part of the Generic code
* The next configuration is done:
* 1) Memory Size
* 2) Bus_width
* 3) CS#
* 4) Page Number
* Per Dunit get from the Map_topology the parameters:
* Bus_width
*/
data_value =
(tm->interface_params[if_id].
bus_width == MV_DDR_DEV_WIDTH_8BIT) ? 0 : 1;
/* create merge cs mask for all cs available in dunit */
for (bus_cnt = 0;
bus_cnt < octets_per_if_num;
bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
cs_mask |=
tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask;
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("Init_controller IF %d cs_mask %d\n",
if_id, cs_mask));
/*
* Configure the next upon the Map Topology \96 If the
* Dunit is CS0 Configure CS0 if it is multi CS
* configure them both: The Bust_width it\92s the
* Memory Bus width \96 x8 or x16
*/
for (cs_cnt = 0; cs_cnt < MAX_CS_NUM; cs_cnt++) {
ddr3_tip_configure_cs(dev_num, if_id, cs_cnt,
((cs_mask & (1 << cs_cnt)) ? 1
: 0));
}
if (init_cntr_prm->do_mrs_phy) {
/*
* MR0 \96 Part of the Generic code
* The next configuration is done:
* 1) Burst Length
* 2) CAS Latency
* get for each dunit what is it Speed_bin &
* Target Frequency. From those both parameters
* get the appropriate Cas_l from the CL table
*/
cl_value =
tm->interface_params[if_id].
cas_l;
cwl_val =
tm->interface_params[if_id].
cas_wl;
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("cl_value 0x%x cwl_val 0x%x\n",
cl_value, cwl_val));
t_wr = time_to_nclk(mv_ddr_speed_bin_timing_get
(speed_bin_index,
SPEED_BIN_TWR), t_ckclk);
data_value =
((cl_mask_table[cl_value] & 0x1) << 2) |
((cl_mask_table[cl_value] & 0xe) << 3);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MR0_REG, data_value,
(0x7 << 4) | (1 << 2)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MR0_REG, twr_mask_table[t_wr] << 9,
0x7 << 9));
/*
* MR1: Set RTT and DIC Design GL values
* configured by user
*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, MR1_REG,
g_dic | g_rtt_nom, 0x266));
/* MR2 - Part of the Generic code */
/*
* The next configuration is done:
* 1) SRT
* 2) CAS Write Latency
*/
data_value = (cwl_mask_table[cwl_val] << 3);
data_value |=
((tm->interface_params[if_id].
interface_temp ==
MV_DDR_TEMP_HIGH) ? (1 << 7) : 0);
data_value |= g_rtt_wr;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MR2_REG, data_value,
(0x7 << 3) | (0x1 << 7) | (0x3 <<
9)));
}
ddr3_tip_write_odt(dev_num, access_type, if_id,
cl_value, cwl_val);
ddr3_tip_set_timing(dev_num, access_type, if_id, freq);
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) < MV_TIP_REV_3) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_HIGH_REG, 0x1000119,
0x100017F));
} else {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_HIGH_REG, 0x600177 |
(init_cntr_prm->is_ctrl64_bit ?
CPU_INTERJECTION_ENA_SPLIT_ENA << CPU_INTERJECTION_ENA_OFFS :
CPU_INTERJECTION_ENA_SPLIT_DIS << CPU_INTERJECTION_ENA_OFFS),
0x1600177 | CPU_INTERJECTION_ENA_MASK <<
CPU_INTERJECTION_ENA_OFFS));
}
/* reset bit 7 */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_HIGH_REG,
(init_cntr_prm->msys_init << 7), (1 << 7)));
timing = tm->interface_params[if_id].timing;
if (mode_2t != 0xff) {
t2t = mode_2t;
} else if (timing != MV_DDR_TIM_DEFAULT) {
t2t = (timing == MV_DDR_TIM_2T) ? 1 : 0;
} else {
/* calculate number of CS (per interface) */
cs_num = mv_ddr_cs_num_get();
t2t = (cs_num == 1) ? 0 : 1;
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_LOW_REG, t2t << 3,
0x3 << 3));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DDR_TIMING_REG, 0x28 << 9, 0x3f << 9));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DDR_TIMING_REG, 0xa << 21, 0xff << 21));
/* move the block to ddr3_tip_set_timing - end */
/* AUTO_ZQC_TIMING */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
ZQC_CFG_REG, (AUTO_ZQC_TIMING | (2 << 20)),
0x3fffff));
CHECK_STATUS(ddr3_tip_if_read
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, data_read, 0x30));
data_value =
(data_read[if_id] == 0) ? (1 << 11) : 0;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_CTRL_HIGH_REG, data_value,
(1 << 11)));
/* Set Active control for ODT write transactions */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, 0x1494, g_odt_config,
MASK_ALL_BITS));
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) == MV_TIP_REV_3) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x14a8, 0x900, 0x900));
/* wa: controls control sub-phy outputs floating during self-refresh */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x16d0, 0, 0x8000));
}
}
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_rank_control(dev_num, if_id));
if (init_cntr_prm->do_mrs_phy)
ddr3_tip_pad_inv();
/* Pad calibration control - disable */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG, 0x0, 0x1));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
MAIN_PADS_CAL_MACH_CTRL_REG,
calibration_update_control << 3, 0x3 << 3));
}
if (delay_enable != 0) {
adll_tap = MEGA / (mv_ddr_freq_get(freq) * 64);
ddr3_tip_cmd_addr_init_delay(dev_num, adll_tap);
}
return MV_OK;
}
/*
* Rank Control Flow
*/
static int ddr3_tip_rev2_rank_control(u32 dev_num, u32 if_id)
{
u32 data_value = 0, bus_cnt = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
data_value |= tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask;
if (tm->interface_params[if_id].as_bus_params[bus_cnt].
mirror_enable_bitmask == 1) {
/*
* Check mirror_enable_bitmask
* If it is enabled, CS + 4 bit in a word to be '1'
*/
if ((tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask & 0x1) != 0) {
data_value |= tm->interface_params[if_id].
as_bus_params[bus_cnt].
mirror_enable_bitmask << 4;
}
if ((tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask & 0x2) != 0) {
data_value |= tm->interface_params[if_id].
as_bus_params[bus_cnt].
mirror_enable_bitmask << 5;
}
if ((tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask & 0x4) != 0) {
data_value |= tm->interface_params[if_id].
as_bus_params[bus_cnt].
mirror_enable_bitmask << 6;
}
if ((tm->interface_params[if_id].as_bus_params[bus_cnt].
cs_bitmask & 0x8) != 0) {
data_value |= tm->interface_params[if_id].
as_bus_params[bus_cnt].
mirror_enable_bitmask << 7;
}
}
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, DDR3_RANK_CTRL_REG,
data_value, 0xff));
return MV_OK;
}
static int ddr3_tip_rev3_rank_control(u32 dev_num, u32 if_id)
{
u32 data_value = 0, bus_cnt;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (bus_cnt = 1; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
if ((tm->interface_params[if_id].
as_bus_params[0].cs_bitmask !=
tm->interface_params[if_id].
as_bus_params[bus_cnt].cs_bitmask) ||
(tm->interface_params[if_id].
as_bus_params[0].mirror_enable_bitmask !=
tm->interface_params[if_id].
as_bus_params[bus_cnt].mirror_enable_bitmask))
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("WARNING:Wrong configuration for pup #%d CS mask and CS mirroring for all pups should be the same\n",
bus_cnt));
}
data_value |= tm->interface_params[if_id].
as_bus_params[0].cs_bitmask;
data_value |= tm->interface_params[if_id].
as_bus_params[0].mirror_enable_bitmask << 4;
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, DDR3_RANK_CTRL_REG,
data_value, 0xff));
return MV_OK;
}
static int ddr3_tip_rank_control(u32 dev_num, u32 if_id)
{
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_TIP_REV) == MV_TIP_REV_2)
return ddr3_tip_rev2_rank_control(dev_num, if_id);
else
return ddr3_tip_rev3_rank_control(dev_num, if_id);
}
/*
* Algorithm Parameters Validation
*/
int ddr3_tip_validate_algo_var(u32 value, u32 fail_value, char *var_name)
{
if (value == fail_value) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Error: %s is not initialized (Algo Components Validation)\n",
var_name));
return 0;
}
return 1;
}
int ddr3_tip_validate_algo_ptr(void *ptr, void *fail_value, char *ptr_name)
{
if (ptr == fail_value) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Error: %s is not initialized (Algo Components Validation)\n",
ptr_name));
return 0;
}
return 1;
}
int ddr3_tip_validate_algo_components(u8 dev_num)
{
int status = 1;
/* Check DGL parameters*/
status &= ddr3_tip_validate_algo_var(ck_delay, PARAM_UNDEFINED, "ck_delay");
status &= ddr3_tip_validate_algo_var(phy_reg3_val, PARAM_UNDEFINED, "phy_reg3_val");
status &= ddr3_tip_validate_algo_var(g_rtt_nom, PARAM_UNDEFINED, "g_rtt_nom");
status &= ddr3_tip_validate_algo_var(g_dic, PARAM_UNDEFINED, "g_dic");
status &= ddr3_tip_validate_algo_var(odt_config, PARAM_UNDEFINED, "odt_config");
status &= ddr3_tip_validate_algo_var(g_zpri_data, PARAM_UNDEFINED, "g_zpri_data");
status &= ddr3_tip_validate_algo_var(g_znri_data, PARAM_UNDEFINED, "g_znri_data");
status &= ddr3_tip_validate_algo_var(g_zpri_ctrl, PARAM_UNDEFINED, "g_zpri_ctrl");
status &= ddr3_tip_validate_algo_var(g_znri_ctrl, PARAM_UNDEFINED, "g_znri_ctrl");
status &= ddr3_tip_validate_algo_var(g_zpodt_data, PARAM_UNDEFINED, "g_zpodt_data");
status &= ddr3_tip_validate_algo_var(g_znodt_data, PARAM_UNDEFINED, "g_znodt_data");
status &= ddr3_tip_validate_algo_var(g_zpodt_ctrl, PARAM_UNDEFINED, "g_zpodt_ctrl");
status &= ddr3_tip_validate_algo_var(g_znodt_ctrl, PARAM_UNDEFINED, "g_znodt_ctrl");
/* Check functions pointers */
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].tip_dunit_mux_select_func,
NULL, "tip_dunit_mux_select_func");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].mv_ddr_dunit_write,
NULL, "mv_ddr_dunit_write");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].mv_ddr_dunit_read,
NULL, "mv_ddr_dunit_read");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].mv_ddr_phy_write,
NULL, "mv_ddr_phy_write");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].mv_ddr_phy_read,
NULL, "mv_ddr_phy_read");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].tip_get_freq_config_info_func,
NULL, "tip_get_freq_config_info_func");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].tip_set_freq_divider_func,
NULL, "tip_set_freq_divider_func");
status &= ddr3_tip_validate_algo_ptr(config_func_info[dev_num].tip_get_clock_ratio,
NULL, "tip_get_clock_ratio");
status &= ddr3_tip_validate_algo_ptr(dq_map_table, NULL, "dq_map_table");
status &= ddr3_tip_validate_algo_var(dfs_low_freq, 0, "dfs_low_freq");
return (status == 1) ? MV_OK : MV_NOT_INITIALIZED;
}
int ddr3_pre_algo_config(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* Set Bus3 ECC training mode */
if (DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask)) {
/* Set Bus3 ECC MUX */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
DRAM_PINS_MUX_REG, 0x100, 0x100));
}
/* Set regular ECC training mode (bus4 and bus 3) */
if ((DDR3_IS_ECC_PUP4_MODE(tm->bus_act_mask)) ||
(DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask)) ||
(DDR3_IS_ECC_PUP8_MODE(tm->bus_act_mask))) {
/* Enable ECC Write MUX */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x100, 0x100));
/* General ECC enable */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
SDRAM_CFG_REG, 0x40000, 0x40000));
/* Disable Read Data ECC MUX */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x0, 0x2));
}
return MV_OK;
}
int ddr3_post_algo_config(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
int status;
status = ddr3_post_run_alg();
if (MV_OK != status) {
printf("DDR3 Post Run Alg - FAILED 0x%x\n", status);
return status;
}
/* Un_set ECC training mode */
if ((DDR3_IS_ECC_PUP4_MODE(tm->bus_act_mask)) ||
(DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask)) ||
(DDR3_IS_ECC_PUP8_MODE(tm->bus_act_mask))) {
/* Disable ECC Write MUX */
CHECK_STATUS(ddr3_tip_if_write
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
TRAINING_SW_2_REG, 0x0, 0x100));
/* General ECC and Bus3 ECC MUX remains enabled */
}
return MV_OK;
}
/*
* Run Training Flow
*/
int hws_ddr3_tip_run_alg(u32 dev_num, enum hws_algo_type algo_type)
{
int status = MV_OK;
status = ddr3_pre_algo_config();
if (MV_OK != status) {
printf("DDR3 Pre Algo Config - FAILED 0x%x\n", status);
return status;
}
#ifdef ODT_TEST_SUPPORT
if (finger_test == 1)
return odt_test(dev_num, algo_type);
#endif
if (algo_type == ALGO_TYPE_DYNAMIC) {
status = ddr3_tip_ddr3_auto_tune(dev_num);
}
if (status != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("******** DRAM initialization Failed (res 0x%x) ********\n",
status));
return status;
}
status = ddr3_post_algo_config();
if (MV_OK != status) {
printf("DDR3 Post Algo Config - FAILED 0x%x\n", status);
return status;
}
return status;
}
#ifdef ODT_TEST_SUPPORT
/*
* ODT Test
*/
static int odt_test(u32 dev_num, enum hws_algo_type algo_type)
{
int ret = MV_OK, ret_tune = MV_OK;
int pfinger_val = 0, nfinger_val;
for (pfinger_val = p_finger_start; pfinger_val <= p_finger_end;
pfinger_val += p_finger_step) {
for (nfinger_val = n_finger_start; nfinger_val <= n_finger_end;
nfinger_val += n_finger_step) {
if (finger_test != 0) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("pfinger_val %d nfinger_val %d\n",
pfinger_val, nfinger_val));
/*
* TODO: need to check the correctness
* of the following two lines.
*/
g_zpodt_data = pfinger_val;
g_znodt_data = nfinger_val;
}
if (algo_type == ALGO_TYPE_DYNAMIC) {
ret = ddr3_tip_ddr3_auto_tune(dev_num);
}
}
}
if (ret_tune != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Run_alg: tuning failed %d\n", ret_tune));
ret = (ret == MV_OK) ? ret_tune : ret;
}
return ret;
}
#endif
/*
* Select Controller
*/
int hws_ddr3_tip_select_ddr_controller(u32 dev_num, int enable)
{
return config_func_info[dev_num].
tip_dunit_mux_select_func((u8)dev_num, enable);
}
/*
* Dunit Register Write
*/
int ddr3_tip_if_write(u32 dev_num, enum hws_access_type interface_access,
u32 if_id, u32 reg_addr, u32 data_value, u32 mask)
{
config_func_info[dev_num].mv_ddr_dunit_write(reg_addr, mask, data_value);
return MV_OK;
}
/*
* Dunit Register Read
*/
int ddr3_tip_if_read(u32 dev_num, enum hws_access_type interface_access,
u32 if_id, u32 reg_addr, u32 *data, u32 mask)
{
config_func_info[dev_num].mv_ddr_dunit_read(reg_addr, mask, data);
return MV_OK;
}
/*
* Dunit Register Polling
*/
int ddr3_tip_if_polling(u32 dev_num, enum hws_access_type access_type,
u32 if_id, u32 exp_value, u32 mask, u32 offset,
u32 poll_tries)
{
u32 poll_cnt = 0, interface_num = 0, start_if, end_if;
u32 read_data[MAX_INTERFACE_NUM];
int ret;
int is_fail = 0, is_if_fail;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (access_type == ACCESS_TYPE_MULTICAST) {
start_if = 0;
end_if = MAX_INTERFACE_NUM - 1;
} else {
start_if = if_id;
end_if = if_id;
}
for (interface_num = start_if; interface_num <= end_if; interface_num++) {
/* polling bit 3 for n times */
VALIDATE_IF_ACTIVE(tm->if_act_mask, interface_num);
is_if_fail = 0;
for (poll_cnt = 0; poll_cnt < poll_tries; poll_cnt++) {
ret =
ddr3_tip_if_read(dev_num, ACCESS_TYPE_UNICAST,
interface_num, offset, read_data,
mask);
if (ret != MV_OK)
return ret;
if (read_data[interface_num] == exp_value)
break;
}
if (poll_cnt >= poll_tries) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("max poll IF #%d\n", interface_num));
is_fail = 1;
is_if_fail = 1;
}
training_result[training_stage][interface_num] =
(is_if_fail == 1) ? TEST_FAILED : TEST_SUCCESS;
}
return (is_fail == 0) ? MV_OK : MV_FAIL;
}
/*
* Bus read access
*/
int ddr3_tip_bus_read(u32 dev_num, u32 if_id,
enum hws_access_type phy_access, u32 phy_id,
enum hws_ddr_phy phy_type, u32 reg_addr, u32 *data)
{
return config_func_info[dev_num].
mv_ddr_phy_read(phy_access, phy_id, phy_type, reg_addr, data);
}
/*
* Bus write access
*/
int ddr3_tip_bus_write(u32 dev_num, enum hws_access_type interface_access,
u32 if_id, enum hws_access_type phy_access,
u32 phy_id, enum hws_ddr_phy phy_type, u32 reg_addr,
u32 data_value)
{
return config_func_info[dev_num].
mv_ddr_phy_write(phy_access, phy_id, phy_type, reg_addr, data_value, OPERATION_WRITE);
}
/*
* Phy read-modify-write
*/
int ddr3_tip_bus_read_modify_write(u32 dev_num, enum hws_access_type access_type,
u32 interface_id, u32 phy_id,
enum hws_ddr_phy phy_type, u32 reg_addr,
u32 data_value, u32 reg_mask)
{
u32 data_val = 0, if_id, start_if, end_if;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (access_type == ACCESS_TYPE_MULTICAST) {
start_if = 0;
end_if = MAX_INTERFACE_NUM - 1;
} else {
start_if = interface_id;
end_if = interface_id;
}
for (if_id = start_if; if_id <= end_if; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST, phy_id,
phy_type, reg_addr, &data_val));
data_value = (data_val & (~reg_mask)) | (data_value & reg_mask);
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, phy_type, reg_addr,
data_value));
}
return MV_OK;
}
/*
* ADLL Calibration
*/
int adll_calibration(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum mv_ddr_freq frequency)
{
struct hws_tip_freq_config_info freq_config_info;
u32 bus_cnt = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* Reset Diver_b assert -> de-assert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, SDRAM_CFG_REG,
0, 0x10000000));
mdelay(10);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, SDRAM_CFG_REG,
0x10000000, 0x10000000));
CHECK_STATUS(config_func_info[dev_num].
tip_get_freq_config_info_func((u8)dev_num, frequency,
&freq_config_info));
for (bus_cnt = 0; bus_cnt < octets_per_if_num; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, access_type, if_id, bus_cnt,
DDR_PHY_DATA, ADLL_CFG0_PHY_REG,
freq_config_info.bw_per_freq << 8, 0x700));
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, access_type, if_id, bus_cnt,
DDR_PHY_DATA, ADLL_CFG2_PHY_REG,
freq_config_info.rate_per_freq, 0x7));
}
for (bus_cnt = 0; bus_cnt < DDR_IF_CTRL_SUBPHYS_NUM; bus_cnt++) {
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, bus_cnt,
DDR_PHY_CONTROL, ADLL_CFG0_PHY_REG,
freq_config_info.bw_per_freq << 8, 0x700));
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id, bus_cnt,
DDR_PHY_CONTROL, ADLL_CFG2_PHY_REG,
freq_config_info.rate_per_freq, 0x7));
}
/* DUnit to Phy drive post edge, ADLL reset assert de-assert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DRAM_PHY_CFG_REG,
0, (0x80000000 | 0x40000000)));
mdelay(100 / (mv_ddr_freq_get(frequency)) / mv_ddr_freq_get(MV_DDR_FREQ_LOW_FREQ));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DRAM_PHY_CFG_REG,
(0x80000000 | 0x40000000), (0x80000000 | 0x40000000)));
/* polling for ADLL Done */
if (ddr3_tip_if_polling(dev_num, access_type, if_id,
0x3ff03ff, 0x3ff03ff, PHY_LOCK_STATUS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed(1)"));
}
/* pup data_pup reset assert-> deassert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, SDRAM_CFG_REG,
0, 0x60000000));
mdelay(10);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, SDRAM_CFG_REG,
0x60000000, 0x60000000));
return MV_OK;
}
int ddr3_tip_freq_set(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum mv_ddr_freq frequency)
{
u32 cl_value = 0, cwl_value = 0, mem_mask = 0, val = 0,
bus_cnt = 0, t_wr = 0, t_ckclk = 0,
cnt_id;
u32 end_if, start_if;
u32 bus_index = 0;
int is_dll_off = 0;
enum mv_ddr_speed_bin speed_bin_index = 0;
struct hws_tip_freq_config_info freq_config_info;
enum hws_result *flow_result = training_result[training_stage];
u32 adll_tap = 0;
u32 cs_num;
u32 t2t;
u32 cs_mask[MAX_INTERFACE_NUM];
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
unsigned int tclk;
enum mv_ddr_timing timing = tm->interface_params[if_id].timing;
u32 freq = mv_ddr_freq_get(frequency);
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("dev %d access %d IF %d freq %d\n", dev_num,
access_type, if_id, frequency));
if (frequency == MV_DDR_FREQ_LOW_FREQ)
is_dll_off = 1;
if (access_type == ACCESS_TYPE_MULTICAST) {
start_if = 0;
end_if = MAX_INTERFACE_NUM - 1;
} else {
start_if = if_id;
end_if = if_id;
}
/* calculate interface cs mask - Oferb 4/11 */
/* speed bin can be different for each interface */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
/* cs enable is active low */
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
cs_mask[if_id] = CS_BIT_MASK;
training_result[training_stage][if_id] = TEST_SUCCESS;
ddr3_tip_calc_cs_mask(dev_num, if_id, effective_cs,
&cs_mask[if_id]);
}
/* speed bin can be different for each interface */
/*
* moti b - need to remove the loop for multicas access functions
* and loop the unicast access functions
*/
for (if_id = start_if; if_id <= end_if; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
flow_result[if_id] = TEST_SUCCESS;
speed_bin_index =
tm->interface_params[if_id].speed_bin_index;
if (tm->interface_params[if_id].memory_freq ==
frequency) {
cl_value =
tm->interface_params[if_id].cas_l;
cwl_value =
tm->interface_params[if_id].cas_wl;
} else if (tm->cfg_src == MV_DDR_CFG_SPD) {
tclk = 1000000 / freq;
cl_value = mv_ddr_cl_calc(tm->timing_data[MV_DDR_TAA_MIN], tclk);
if (cl_value == 0) {
printf("mv_ddr: unsupported cas latency value found\n");
return MV_FAIL;
}
cwl_value = mv_ddr_cwl_calc(tclk);
if (cwl_value == 0) {
printf("mv_ddr: unsupported cas write latency value found\n");
return MV_FAIL;
}
} else {
cl_value = mv_ddr_cl_val_get(speed_bin_index, frequency);
cwl_value = mv_ddr_cwl_val_get(speed_bin_index, frequency);
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("Freq_set dev 0x%x access 0x%x if 0x%x freq 0x%x speed %d:\n\t",
dev_num, access_type, if_id,
frequency, speed_bin_index));
for (cnt_id = 0; cnt_id < MV_DDR_FREQ_LAST; cnt_id++) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
("%d ", mv_ddr_cl_val_get(speed_bin_index, cnt_id)));
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE, ("\n"));
mem_mask = 0;
for (bus_index = 0; bus_index < octets_per_if_num;
bus_index++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_index);
mem_mask |=
tm->interface_params[if_id].
as_bus_params[bus_index].mirror_enable_bitmask;
}
if (mem_mask != 0) {
/* motib redundent in KW28 */
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id,
DUAL_DUNIT_CFG_REG, 0, 0x8));
}
/* dll state after exiting SR */
if (is_dll_off == 1) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DFS_REG, 0x1, 0x1));
} else {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DFS_REG, 0, 0x1));
}
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DUNIT_MMASK_REG, 0, 0x1));
/* DFS - block transactions */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DFS_REG, 0x2, 0x2));
/* disable ODT in case of dll off */
if (is_dll_off == 1) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x1874, 0, 0x244));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x1884, 0, 0x244));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x1894, 0, 0x244));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
0x18a4, 0, 0x244));
}
/* DFS - Enter Self-Refresh */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG, 0x4,
0x4));
/* polling on self refresh entry */
if (ddr3_tip_if_polling(dev_num, ACCESS_TYPE_UNICAST,
if_id, 0x8, 0x8, DFS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed on SR entry\n"));
}
/* Calculate 2T mode */
if (mode_2t != 0xff) {
t2t = mode_2t;
} else if (timing != MV_DDR_TIM_DEFAULT) {
t2t = (timing == MV_DDR_TIM_2T) ? 1 : 0;
} else {
/* Calculate number of CS per interface */
cs_num = mv_ddr_cs_num_get();
t2t = (cs_num == 1) ? 0 : 1;
}
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_INTERLEAVE_WA) == 1) {
/* Use 1T mode if 1:1 ratio configured */
if (config_func_info[dev_num].tip_get_clock_ratio(frequency) == 1) {
/* Low freq*/
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_OPEN_PAGES_CTRL_REG, 0x0, 0x3C0));
t2t = 0;
} else {
/* Middle or target freq */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_OPEN_PAGES_CTRL_REG, 0x3C0, 0x3C0));
}
}
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
DUNIT_CTRL_LOW_REG, t2t << 3, 0x3 << 3));
/* PLL configuration */
config_func_info[dev_num].tip_set_freq_divider_func(dev_num, if_id,
frequency);
/* DFS - CL/CWL/WR parameters after exiting SR */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG,
(cl_mask_table[cl_value] << 8), 0xf00));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG,
(cwl_mask_table[cwl_value] << 12), 0x7000));
t_ckclk = (MEGA / freq);
t_wr = time_to_nclk(mv_ddr_speed_bin_timing_get
(speed_bin_index,
SPEED_BIN_TWR), t_ckclk);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG,
(twr_mask_table[t_wr] << 16), 0x70000));
/* Restore original RTT values if returning from DLL OFF mode */
if (is_dll_off == 1) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, 0x1874,
g_dic | g_rtt_nom, 0x266));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, 0x1884,
g_dic | g_rtt_nom, 0x266));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, 0x1894,
g_dic | g_rtt_nom, 0x266));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, 0x18a4,
g_dic | g_rtt_nom, 0x266));
}
/* Reset divider_b assert -> de-assert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, 0, 0x10000000));
mdelay(10);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, 0x10000000, 0x10000000));
/* ADLL configuration function of process and frequency */
CHECK_STATUS(config_func_info[dev_num].
tip_get_freq_config_info_func(dev_num, frequency,
&freq_config_info));
/* TBD check milo5 using device ID ? */
for (bus_cnt = 0; bus_cnt < octets_per_if_num;
bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, bus_cnt, DDR_PHY_DATA,
0x92,
freq_config_info.
bw_per_freq << 8
/*freq_mask[dev_num][frequency] << 8 */
, 0x700));
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
bus_cnt, DDR_PHY_DATA, 0x94,
freq_config_info.rate_per_freq, 0x7));
}
/* Dunit to PHY drive post edge, ADLL reset assert -> de-assert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, 0,
(0x80000000 | 0x40000000)));
mdelay(100 / (freq / mv_ddr_freq_get(MV_DDR_FREQ_LOW_FREQ)));
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
DRAM_PHY_CFG_REG, (0x80000000 | 0x40000000),
(0x80000000 | 0x40000000)));
/* polling for ADLL Done */
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0x3ff03ff,
0x3ff03ff, PHY_LOCK_STATUS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed(1)\n"));
}
/* pup data_pup reset assert-> deassert */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, 0, 0x60000000));
mdelay(10);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_CFG_REG, 0x60000000, 0x60000000));
/* Set proper timing params before existing Self-Refresh */
ddr3_tip_set_timing(dev_num, access_type, if_id, frequency);
if (delay_enable != 0) {
adll_tap = (is_dll_off == 1) ? 1000 : (MEGA / (freq * 64));
ddr3_tip_cmd_addr_init_delay(dev_num, adll_tap);
}
/* Exit SR */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG, 0,
0x4));
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x8, DFS_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed(2)"));
}
/* Refresh Command */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id,
SDRAM_OP_REG, 0x2, 0xf1f));
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1f,
SDRAM_OP_REG, MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Freq_set: DDR3 poll failed(3)"));
}
/* Release DFS Block */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DFS_REG, 0,
0x2));
/* Controller to MBUS Retry - normal */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, DUNIT_MMASK_REG,
0x1, 0x1));
/* MRO: Burst Length 8, CL , Auto_precharge 0x16cc */
val =
((cl_mask_table[cl_value] & 0x1) << 2) |
((cl_mask_table[cl_value] & 0xe) << 3);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, access_type, if_id, MR0_REG,
val, (0x7 << 4) | (1 << 2)));
/* MR2: CWL = 10 , Auto Self-Refresh - disable */
val = (cwl_mask_table[cwl_value] << 3) | g_rtt_wr;
/*
* nklein 24.10.13 - should not be here - leave value as set in
* the init configuration val |= (1 << 9);
* val |= ((tm->interface_params[if_id].
* interface_temp == MV_DDR_TEMP_HIGH) ? (1 << 7) : 0);
*/
/* nklein 24.10.13 - see above comment */
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id, MR2_REG,
val, (0x7 << 3) | (0x3 << 9)));
/* ODT TIMING */
val = ((cl_value - cwl_value + 1) << 4) |
((cl_value - cwl_value + 6) << 8) |
((cl_value - 1) << 12) | ((cl_value + 6) << 16);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id, DDR_ODT_TIMING_LOW_REG,
val, 0xffff0));
val = 0x91 | ((cwl_value - 1) << 8) | ((cwl_value + 5) << 12);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id, DDR_ODT_TIMING_HIGH_REG,
val, 0xffff));
/* in case of ddr4 need to set the receiver to odt always 'on' (odt_config = '0')
* in case of ddr3 configure the odt through the timing
*/
if (odt_config != 0) {
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, DUNIT_ODT_CTRL_REG, 0xf, 0xf));
}
else {
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, DUNIT_ODT_CTRL_REG,
0x30f, 0x30f));
}
/* re-write CL */
val = ((cl_mask_table[cl_value] & 0x1) << 2) |
((cl_mask_table[cl_value] & 0xe) << 3);
cs_mask[0] = 0xc;
CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask, MR_CMD0,
val, (0x7 << 4) | (0x1 << 2)));
/* re-write CWL */
val = (cwl_mask_table[cwl_value] << 3) | g_rtt_wr;
CHECK_STATUS(ddr3_tip_write_mrs_cmd(dev_num, cs_mask, MR_CMD2,
val, (0x7 << 3) | (0x3 << 9)));
if (mem_mask != 0) {
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id,
DUAL_DUNIT_CFG_REG,
1 << 3, 0x8));
}
}
return MV_OK;
}
/*
* Set ODT values
*/
static int ddr3_tip_write_odt(u32 dev_num, enum hws_access_type access_type,
u32 if_id, u32 cl_value, u32 cwl_value)
{
/* ODT TIMING */
u32 val = (cl_value - cwl_value + 6);
val = ((cl_value - cwl_value + 1) << 4) | ((val & 0xf) << 8) |
(((cl_value - 1) & 0xf) << 12) |
(((cl_value + 6) & 0xf) << 16) | (((val & 0x10) >> 4) << 21);
val |= (((cl_value - 1) >> 4) << 22) | (((cl_value + 6) >> 4) << 23);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
DDR_ODT_TIMING_LOW_REG, val, 0xffff0));
val = 0x91 | ((cwl_value - 1) << 8) | ((cwl_value + 5) << 12);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
DDR_ODT_TIMING_HIGH_REG, val, 0xffff));
if (odt_additional == 1) {
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type,
if_id,
SDRAM_ODT_CTRL_HIGH_REG,
0xf, 0xf));
}
/* ODT Active */
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
DUNIT_ODT_CTRL_REG, 0xf, 0xf));
return MV_OK;
}
/*
* Set Timing values for training
*/
static int ddr3_tip_set_timing(u32 dev_num, enum hws_access_type access_type,
u32 if_id, enum mv_ddr_freq frequency)
{
u32 t_ckclk = 0, t_ras = 0;
u32 t_rcd = 0, t_rp = 0, t_wr = 0, t_wtr = 0, t_rrd = 0, t_rtp = 0,
t_rfc = 0, t_mod = 0, t_r2r = 0x3, t_r2r_high = 0,
t_r2w_w2r = 0x3, t_r2w_w2r_high = 0x1, t_w2w = 0x3;
u32 refresh_interval_cnt, t_hclk, t_refi, t_faw, t_pd, t_xpdll;
u32 val = 0, page_size = 0, mask = 0;
enum mv_ddr_speed_bin speed_bin_index;
enum mv_ddr_die_capacity memory_size = MV_DDR_DIE_CAP_2GBIT;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
u32 freq = mv_ddr_freq_get(frequency);
speed_bin_index = tm->interface_params[if_id].speed_bin_index;
memory_size = tm->interface_params[if_id].memory_size;
page_size = mv_ddr_page_size_get(tm->interface_params[if_id].bus_width, memory_size);
t_ckclk = (MEGA / freq);
/* HCLK in[ps] */
t_hclk = MEGA / (freq / config_func_info[dev_num].tip_get_clock_ratio(frequency));
t_refi = (tm->interface_params[if_id].interface_temp == MV_DDR_TEMP_HIGH) ? TREFI_HIGH : TREFI_LOW;
t_refi *= 1000; /* psec */
refresh_interval_cnt = t_refi / t_hclk; /* no units */
if (page_size == 1) {
t_faw = mv_ddr_speed_bin_timing_get(speed_bin_index, SPEED_BIN_TFAW1K);
t_faw = time_to_nclk(t_faw, t_ckclk);
t_faw = GET_MAX_VALUE(20, t_faw);
} else { /* page size =2, we do not support page size 0.5k */
t_faw = mv_ddr_speed_bin_timing_get(speed_bin_index, SPEED_BIN_TFAW2K);
t_faw = time_to_nclk(t_faw, t_ckclk);
t_faw = GET_MAX_VALUE(28, t_faw);
}
t_pd = GET_MAX_VALUE(t_ckclk * 3, mv_ddr_speed_bin_timing_get(speed_bin_index, SPEED_BIN_TPD));
t_pd = time_to_nclk(t_pd, t_ckclk);
t_xpdll = GET_MAX_VALUE(t_ckclk * 10, mv_ddr_speed_bin_timing_get(speed_bin_index, SPEED_BIN_TXPDLL));
t_xpdll = time_to_nclk(t_xpdll, t_ckclk);
t_rrd = (page_size == 1) ? mv_ddr_speed_bin_timing_get(speed_bin_index,
SPEED_BIN_TRRD1K) :
mv_ddr_speed_bin_timing_get(speed_bin_index, SPEED_BIN_TRRD2K);
t_rrd = GET_MAX_VALUE(t_ckclk * 4, t_rrd);
t_rtp = GET_MAX_VALUE(t_ckclk * 4, mv_ddr_speed_bin_timing_get(speed_bin_index,
SPEED_BIN_TRTP));
t_mod = GET_MAX_VALUE(t_ckclk * 12, 15000);
t_wtr = GET_MAX_VALUE(t_ckclk * 4, mv_ddr_speed_bin_timing_get(speed_bin_index,
SPEED_BIN_TWTR));
t_ras = time_to_nclk(mv_ddr_speed_bin_timing_get(speed_bin_index,
SPEED_BIN_TRAS),
t_ckclk);
t_rcd = time_to_nclk(mv_ddr_speed_bin_timing_get(speed_bin_index,
SPEED_BIN_TRCD),
t_ckclk);
t_rp = time_to_nclk(mv_ddr_speed_bin_timing_get(speed_bin_index,
SPEED_BIN_TRP),
t_ckclk);
t_wr = time_to_nclk(mv_ddr_speed_bin_timing_get(speed_bin_index,
SPEED_BIN_TWR),
t_ckclk);
t_wtr = time_to_nclk(t_wtr, t_ckclk);
t_rrd = time_to_nclk(t_rrd, t_ckclk);
t_rtp = time_to_nclk(t_rtp, t_ckclk);
t_rfc = time_to_nclk(mv_ddr_rfc_get(memory_size) * 1000, t_ckclk);
t_mod = time_to_nclk(t_mod, t_ckclk);
/* SDRAM Timing Low */
val = (((t_ras - 1) & SDRAM_TIMING_LOW_TRAS_MASK) << SDRAM_TIMING_LOW_TRAS_OFFS) |
(((t_rcd - 1) & SDRAM_TIMING_LOW_TRCD_MASK) << SDRAM_TIMING_LOW_TRCD_OFFS) |
(((t_rcd - 1) >> SDRAM_TIMING_LOW_TRCD_OFFS & SDRAM_TIMING_HIGH_TRCD_MASK)
<< SDRAM_TIMING_HIGH_TRCD_OFFS) |
(((t_rp - 1) & SDRAM_TIMING_LOW_TRP_MASK) << SDRAM_TIMING_LOW_TRP_OFFS) |
(((t_rp - 1) >> SDRAM_TIMING_LOW_TRP_MASK & SDRAM_TIMING_HIGH_TRP_MASK)
<< SDRAM_TIMING_HIGH_TRP_OFFS) |
(((t_wr - 1) & SDRAM_TIMING_LOW_TWR_MASK) << SDRAM_TIMING_LOW_TWR_OFFS) |
(((t_wtr - 1) & SDRAM_TIMING_LOW_TWTR_MASK) << SDRAM_TIMING_LOW_TWTR_OFFS) |
((((t_ras - 1) >> 4) & SDRAM_TIMING_LOW_TRAS_HIGH_MASK) << SDRAM_TIMING_LOW_TRAS_HIGH_OFFS) |
(((t_rrd - 1) & SDRAM_TIMING_LOW_TRRD_MASK) << SDRAM_TIMING_LOW_TRRD_OFFS) |
(((t_rtp - 1) & SDRAM_TIMING_LOW_TRTP_MASK) << SDRAM_TIMING_LOW_TRTP_OFFS);
mask = (SDRAM_TIMING_LOW_TRAS_MASK << SDRAM_TIMING_LOW_TRAS_OFFS) |
(SDRAM_TIMING_LOW_TRCD_MASK << SDRAM_TIMING_LOW_TRCD_OFFS) |
(SDRAM_TIMING_HIGH_TRCD_MASK << SDRAM_TIMING_HIGH_TRCD_OFFS) |
(SDRAM_TIMING_LOW_TRP_MASK << SDRAM_TIMING_LOW_TRP_OFFS) |
(SDRAM_TIMING_HIGH_TRP_MASK << SDRAM_TIMING_HIGH_TRP_OFFS) |
(SDRAM_TIMING_LOW_TWR_MASK << SDRAM_TIMING_LOW_TWR_OFFS) |
(SDRAM_TIMING_LOW_TWTR_MASK << SDRAM_TIMING_LOW_TWTR_OFFS) |
(SDRAM_TIMING_LOW_TRAS_HIGH_MASK << SDRAM_TIMING_LOW_TRAS_HIGH_OFFS) |
(SDRAM_TIMING_LOW_TRRD_MASK << SDRAM_TIMING_LOW_TRRD_OFFS) |
(SDRAM_TIMING_LOW_TRTP_MASK << SDRAM_TIMING_LOW_TRTP_OFFS);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_TIMING_LOW_REG, val, mask));
/* SDRAM Timing High */
val = 0;
mask = 0;
val = (((t_rfc - 1) & SDRAM_TIMING_HIGH_TRFC_MASK) << SDRAM_TIMING_HIGH_TRFC_OFFS) |
((t_r2r & SDRAM_TIMING_HIGH_TR2R_MASK) << SDRAM_TIMING_HIGH_TR2R_OFFS) |
((t_r2w_w2r & SDRAM_TIMING_HIGH_TR2W_W2R_MASK) << SDRAM_TIMING_HIGH_TR2W_W2R_OFFS) |
((t_w2w & SDRAM_TIMING_HIGH_TW2W_MASK) << SDRAM_TIMING_HIGH_TW2W_OFFS) |
((((t_rfc - 1) >> 7) & SDRAM_TIMING_HIGH_TRFC_HIGH_MASK) << SDRAM_TIMING_HIGH_TRFC_HIGH_OFFS) |
((t_r2r_high & SDRAM_TIMING_HIGH_TR2R_HIGH_MASK) << SDRAM_TIMING_HIGH_TR2R_HIGH_OFFS) |
((t_r2w_w2r_high & SDRAM_TIMING_HIGH_TR2W_W2R_HIGH_MASK) << SDRAM_TIMING_HIGH_TR2W_W2R_HIGH_OFFS) |
(((t_mod - 1) & SDRAM_TIMING_HIGH_TMOD_MASK) << SDRAM_TIMING_HIGH_TMOD_OFFS) |
((((t_mod - 1) >> 4) & SDRAM_TIMING_HIGH_TMOD_HIGH_MASK) << SDRAM_TIMING_HIGH_TMOD_HIGH_OFFS);
mask = (SDRAM_TIMING_HIGH_TRFC_MASK << SDRAM_TIMING_HIGH_TRFC_OFFS) |
(SDRAM_TIMING_HIGH_TR2R_MASK << SDRAM_TIMING_HIGH_TR2R_OFFS) |
(SDRAM_TIMING_HIGH_TR2W_W2R_MASK << SDRAM_TIMING_HIGH_TR2W_W2R_OFFS) |
(SDRAM_TIMING_HIGH_TW2W_MASK << SDRAM_TIMING_HIGH_TW2W_OFFS) |
(SDRAM_TIMING_HIGH_TRFC_HIGH_MASK << SDRAM_TIMING_HIGH_TRFC_HIGH_OFFS) |
(SDRAM_TIMING_HIGH_TR2R_HIGH_MASK << SDRAM_TIMING_HIGH_TR2R_HIGH_OFFS) |
(SDRAM_TIMING_HIGH_TR2W_W2R_HIGH_MASK << SDRAM_TIMING_HIGH_TR2W_W2R_HIGH_OFFS) |
(SDRAM_TIMING_HIGH_TMOD_MASK << SDRAM_TIMING_HIGH_TMOD_OFFS) |
(SDRAM_TIMING_HIGH_TMOD_HIGH_MASK << SDRAM_TIMING_HIGH_TMOD_HIGH_OFFS);
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_TIMING_HIGH_REG, val, mask));
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_CFG_REG,
refresh_interval_cnt << REFRESH_OFFS,
REFRESH_MASK << REFRESH_OFFS));
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id,
SDRAM_ADDR_CTRL_REG, (t_faw - 1) << T_FAW_OFFS,
T_FAW_MASK << T_FAW_OFFS));
CHECK_STATUS(ddr3_tip_if_write(dev_num, access_type, if_id, DDR_TIMING_REG,
(t_pd - 1) << DDR_TIMING_TPD_OFFS |
(t_xpdll - 1) << DDR_TIMING_TXPDLL_OFFS,
DDR_TIMING_TPD_MASK << DDR_TIMING_TPD_OFFS |
DDR_TIMING_TXPDLL_MASK << DDR_TIMING_TXPDLL_OFFS));
return MV_OK;
}
/*
* Write CS Result
*/
int ddr3_tip_write_cs_result(u32 dev_num, u32 offset)
{
u32 if_id, bus_num, cs_bitmask, data_val, cs_num;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (bus_num = 0; bus_num < octets_per_if_num;
bus_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_num);
cs_bitmask =
tm->interface_params[if_id].
as_bus_params[bus_num].cs_bitmask;
if (cs_bitmask != effective_cs) {
cs_num = GET_CS_FROM_MASK(cs_bitmask);
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_num,
DDR_PHY_DATA,
offset +
(effective_cs * 0x4),
&data_val);
ddr3_tip_bus_write(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_num, DDR_PHY_DATA,
offset +
(cs_num * 0x4),
data_val);
}
}
}
return MV_OK;
}
/*
* Write MRS
*/
int ddr3_tip_write_mrs_cmd(u32 dev_num, u32 *cs_mask_arr, enum mr_number mr_num, u32 data, u32 mask)
{
u32 if_id;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, mr_data[mr_num].reg_addr, data, mask));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
SDRAM_OP_REG,
(cs_mask_arr[if_id] << 8) | mr_data[mr_num].cmd, 0xf1f));
}
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (ddr3_tip_if_polling(dev_num, ACCESS_TYPE_UNICAST, if_id, 0,
0x1f, SDRAM_OP_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("write_mrs_cmd: Poll cmd fail"));
}
}
return MV_OK;
}
/*
* Reset XSB Read FIFO
*/
int ddr3_tip_reset_fifo_ptr(u32 dev_num)
{
u32 if_id = 0;
/* Configure PHY reset value to 0 in order to "clean" the FIFO */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x15c8, 0, 0xff000000));
/*
* Move PHY to RL mode (only in RL mode the PHY overrides FIFO values
* during FIFO reset)
*/
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, TRAINING_SW_2_REG,
0x1, 0x9));
/* In order that above configuration will influence the PHY */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x15b0,
0x80000000, 0x80000000));
/* Reset read fifo assertion */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x1400, 0, 0x40000000));
/* Reset read fifo deassertion */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x1400,
0x40000000, 0x40000000));
/* Move PHY back to functional mode */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, TRAINING_SW_2_REG,
0x8, 0x9));
/* Stop training machine */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
if_id, 0x15b4, 0x10000, 0x10000));
return MV_OK;
}
/*
* Reset Phy registers
*/
int ddr3_tip_ddr3_reset_phy_regs(u32 dev_num)
{
u32 if_id, phy_id, cs;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (phy_id = 0; phy_id < octets_per_if_num;
phy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, ACCESS_TYPE_UNICAST,
phy_id, DDR_PHY_DATA,
WL_PHY_REG(effective_cs),
phy_reg0_val));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
RL_PHY_REG(effective_cs),
phy_reg2_val));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
CRX_PHY_REG(effective_cs), phy_reg3_val));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs), phy_reg1_val));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_TX_BCAST_PHY_REG(effective_cs), 0x0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_RX_BCAST_PHY_REG(effective_cs), 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_TX_PHY_REG(effective_cs, DQSP_PAD), 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_RX_PHY_REG(effective_cs, DQSP_PAD), 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_TX_PHY_REG(effective_cs, DQSN_PAD), 0));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_RX_PHY_REG(effective_cs, DQSN_PAD), 0));
}
}
/* Set Receiver Calibration value */
for (cs = 0; cs < MAX_CS_NUM; cs++) {
/* PHY register 0xdb bits[5:0] - configure to 63 */
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
DDR_PHY_DATA, VREF_BCAST_PHY_REG(cs), 63));
}
return MV_OK;
}
/*
* Restore Dunit registers
*/
int ddr3_tip_restore_dunit_regs(u32 dev_num)
{
u32 index_cnt;
mv_ddr_set_calib_controller();
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, MAIN_PADS_CAL_MACH_CTRL_REG,
0x1, 0x1));
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, MAIN_PADS_CAL_MACH_CTRL_REG,
calibration_update_control << 3,
0x3 << 3));
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE,
ODPG_WR_RD_MODE_ENA_REG,
0xffff, MASK_ALL_BITS));
for (index_cnt = 0; index_cnt < ARRAY_SIZE(odpg_default_value);
index_cnt++) {
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
odpg_default_value[index_cnt].reg_addr,
odpg_default_value[index_cnt].reg_data,
odpg_default_value[index_cnt].reg_mask));
}
return MV_OK;
}
int ddr3_tip_adll_regs_bypass(u32 dev_num, u32 reg_val1, u32 reg_val2)
{
u32 if_id, phy_id;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (phy_id = 0; phy_id < octets_per_if_num; phy_id++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs), reg_val1));
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, phy_id, DDR_PHY_DATA,
PBS_TX_BCAST_PHY_REG(effective_cs), reg_val2));
}
}
return MV_OK;
}
/*
* Auto tune main flow
*/
static int ddr3_tip_ddr3_training_main_flow(u32 dev_num)
{
/* TODO: enable this functionality for other platforms */
struct init_cntr_param init_cntr_prm;
int ret = MV_OK;
int adll_bypass_flag = 0;
u32 if_id;
unsigned int max_cs = mv_ddr_cs_num_get();
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
enum mv_ddr_freq freq = tm->interface_params[0].memory_freq;
unsigned int *freq_tbl = mv_ddr_freq_tbl_get();
#ifdef DDR_VIEWER_TOOL
if (debug_training == DEBUG_LEVEL_TRACE) {
CHECK_STATUS(print_device_info((u8)dev_num));
}
#endif
ddr3_tip_validate_algo_components(dev_num);
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
CHECK_STATUS(ddr3_tip_ddr3_reset_phy_regs(dev_num));
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
freq_tbl[MV_DDR_FREQ_LOW_FREQ] = dfs_low_freq;
if (is_pll_before_init != 0) {
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
config_func_info[dev_num].tip_set_freq_divider_func(
(u8)dev_num, if_id, freq);
}
}
/* TODO: enable this functionality for other platforms */
if (is_adll_calib_before_init != 0) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("with adll calib before init\n"));
adll_calibration(dev_num, ACCESS_TYPE_MULTICAST, 0, freq);
}
if (is_reg_dump != 0) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("Dump before init controller\n"));
ddr3_tip_reg_dump(dev_num);
}
if (mask_tune_func & INIT_CONTROLLER_MASK_BIT) {
training_stage = INIT_CONTROLLER;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("INIT_CONTROLLER_MASK_BIT\n"));
init_cntr_prm.do_mrs_phy = 1;
init_cntr_prm.is_ctrl64_bit = 0;
init_cntr_prm.init_phy = 1;
init_cntr_prm.msys_init = 0;
ret = hws_ddr3_tip_init_controller(dev_num, &init_cntr_prm);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("hws_ddr3_tip_init_controller failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
ret = adll_calibration(dev_num, ACCESS_TYPE_MULTICAST, 0, freq);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("adll_calibration failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
if (mask_tune_func & SET_LOW_FREQ_MASK_BIT) {
training_stage = SET_LOW_FREQ;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
ddr3_tip_adll_regs_bypass(dev_num, 0, 0x1f);
adll_bypass_flag = 1;
}
effective_cs = 0;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("SET_LOW_FREQ_MASK_BIT %d\n",
freq_tbl[low_freq]));
ret = ddr3_tip_freq_set(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, low_freq);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_freq_set failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & WRITE_LEVELING_LF_MASK_BIT) {
training_stage = WRITE_LEVELING_LF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_LF_MASK_BIT\n"));
ret = ddr3_tip_dynamic_write_leveling(dev_num, 1);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling LF failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & LOAD_PATTERN_MASK_BIT) {
training_stage = LOAD_PATTERN;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("LOAD_PATTERN_MASK_BIT #%d\n",
effective_cs));
ret = ddr3_tip_load_all_pattern_to_mem(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_load_all_pattern_to_mem failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
if (adll_bypass_flag == 1) {
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
ddr3_tip_adll_regs_bypass(dev_num, phy_reg1_val, 0);
adll_bypass_flag = 0;
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
if (mask_tune_func & SET_MEDIUM_FREQ_MASK_BIT) {
training_stage = SET_MEDIUM_FREQ;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("SET_MEDIUM_FREQ_MASK_BIT %d\n",
freq_tbl[medium_freq]));
ret =
ddr3_tip_freq_set(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, medium_freq);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_freq_set failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & WRITE_LEVELING_MASK_BIT) {
training_stage = WRITE_LEVELING;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_MASK_BIT\n"));
if ((rl_mid_freq_wa == 0) || (freq_tbl[medium_freq] == 533)) {
ret = ddr3_tip_dynamic_write_leveling(dev_num, 0);
} else {
/* Use old WL */
ret = ddr3_tip_legacy_dynamic_write_leveling(dev_num);
}
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & LOAD_PATTERN_2_MASK_BIT) {
training_stage = LOAD_PATTERN_2;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("LOAD_PATTERN_2_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_load_all_pattern_to_mem(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_load_all_pattern_to_mem failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
if (mask_tune_func & READ_LEVELING_MASK_BIT) {
training_stage = READ_LEVELING;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("READ_LEVELING_MASK_BIT\n"));
if ((rl_mid_freq_wa == 0) || (freq_tbl[medium_freq] == 533)) {
ret = ddr3_tip_dynamic_read_leveling(dev_num, medium_freq);
} else {
/* Use old RL */
ret = ddr3_tip_legacy_dynamic_read_leveling(dev_num);
}
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_read_leveling failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & WRITE_LEVELING_SUPP_MASK_BIT) {
training_stage = WRITE_LEVELING_SUPP;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_SUPP_MASK_BIT\n"));
ret = ddr3_tip_dynamic_write_leveling_supp(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling_supp failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & PBS_RX_MASK_BIT) {
training_stage = PBS_RX;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("PBS_RX_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_pbs_rx(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_pbs_rx failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & PBS_TX_MASK_BIT) {
training_stage = PBS_TX;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("PBS_TX_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_pbs_tx(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_pbs_tx failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
if (mask_tune_func & SET_TARGET_FREQ_MASK_BIT) {
training_stage = SET_TARGET_FREQ;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("SET_TARGET_FREQ_MASK_BIT %d\n",
freq_tbl[tm->
interface_params[first_active_if].
memory_freq]));
ret = ddr3_tip_freq_set(dev_num, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE,
tm->interface_params[first_active_if].
memory_freq);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_freq_set failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & WRITE_LEVELING_TF_MASK_BIT) {
training_stage = WRITE_LEVELING_TF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_TF_MASK_BIT\n"));
ret = ddr3_tip_dynamic_write_leveling(dev_num, 0);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling TF failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & LOAD_PATTERN_HIGH_MASK_BIT) {
training_stage = LOAD_PATTERN_HIGH;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("LOAD_PATTERN_HIGH\n"));
ret = ddr3_tip_load_all_pattern_to_mem(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_load_all_pattern_to_mem failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & READ_LEVELING_TF_MASK_BIT) {
training_stage = READ_LEVELING_TF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("READ_LEVELING_TF_MASK_BIT\n"));
ret = ddr3_tip_dynamic_read_leveling(dev_num, tm->
interface_params[first_active_if].
memory_freq);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_read_leveling TF failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & RL_DQS_BURST_MASK_BIT) {
training_stage = READ_LEVELING_TF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("RL_DQS_BURST_MASK_BIT\n"));
ret = mv_ddr_rl_dqs_burst(0, 0, tm->interface_params[0].memory_freq);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("mv_ddr_rl_dqs_burst TF failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
if (mask_tune_func & DM_PBS_TX_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("DM_PBS_TX_MASK_BIT\n"));
}
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & VREF_CALIBRATION_MASK_BIT) {
training_stage = VREF_CALIBRATION;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("VREF\n"));
ret = ddr3_tip_vref(dev_num);
if (is_reg_dump != 0) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("VREF Dump\n"));
ddr3_tip_reg_dump(dev_num);
}
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_vref failure\n"));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & CENTRALIZATION_RX_MASK_BIT) {
training_stage = CENTRALIZATION_RX;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("CENTRALIZATION_RX_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_centralization_rx(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_centralization_rx failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & WRITE_LEVELING_SUPP_TF_MASK_BIT) {
training_stage = WRITE_LEVELING_SUPP_TF;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("WRITE_LEVELING_SUPP_TF_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_dynamic_write_leveling_supp(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_dynamic_write_leveling_supp TF failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
for (effective_cs = 0; effective_cs < max_cs; effective_cs++) {
if (mask_tune_func & CENTRALIZATION_TX_MASK_BIT) {
training_stage = CENTRALIZATION_TX;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("CENTRALIZATION_TX_MASK_BIT CS #%d\n",
effective_cs));
ret = ddr3_tip_centralization_tx(dev_num);
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
if (ret != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("ddr3_tip_centralization_tx failure CS #%d\n",
effective_cs));
if (debug_mode == 0)
return MV_FAIL;
}
}
}
/* Set to 0 after each loop to avoid illegal value may be used */
effective_cs = 0;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("restore registers to default\n"));
/* restore register values */
CHECK_STATUS(ddr3_tip_restore_dunit_regs(dev_num));
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
return MV_OK;
}
/*
* DDR3 Dynamic training flow
*/
static int ddr3_tip_ddr3_auto_tune(u32 dev_num)
{
int status;
u32 if_id, stage;
int is_if_fail = 0, is_auto_tune_fail = 0;
training_stage = INIT_CONTROLLER;
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
for (stage = 0; stage < MAX_STAGE_LIMIT; stage++)
training_result[stage][if_id] = NO_TEST_DONE;
}
status = ddr3_tip_ddr3_training_main_flow(dev_num);
/* activate XSB test */
if (xsb_validate_type != 0) {
run_xsb_test(dev_num, xsb_validation_base_address, 1, 1,
0x1024);
}
if (is_reg_dump != 0)
ddr3_tip_reg_dump(dev_num);
/* print log */
CHECK_STATUS(ddr3_tip_print_log(dev_num, window_mem_addr));
#ifndef EXCLUDE_DEBUG_PRINTS
if (status != MV_OK) {
CHECK_STATUS(ddr3_tip_print_stability_log(dev_num));
}
#endif /* EXCLUDE_DEBUG_PRINTS */
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
is_if_fail = 0;
for (stage = 0; stage < MAX_STAGE_LIMIT; stage++) {
if (training_result[stage][if_id] == TEST_FAILED)
is_if_fail = 1;
}
if (is_if_fail == 1) {
is_auto_tune_fail = 1;
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("Auto Tune failed for IF %d\n",
if_id));
}
}
if (((status == MV_FAIL) && (is_auto_tune_fail == 0)) ||
((status == MV_OK) && (is_auto_tune_fail == 1))) {
/*
* If MainFlow result and trainingResult DB not in sync,
* issue warning (caused by no update of trainingResult DB
* when failed)
*/
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("Warning: Algorithm return value and Result DB"
"are not synced (status 0x%x result DB %d)\n",
status, is_auto_tune_fail));
}
if ((status != MV_OK) || (is_auto_tune_fail == 1))
return MV_FAIL;
else
return MV_OK;
}
/*
* Enable init sequence
*/
int ddr3_tip_enable_init_sequence(u32 dev_num)
{
int is_fail = 0;
u32 if_id = 0, mem_mask = 0, bus_index = 0;
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/* Enable init sequence */
CHECK_STATUS(ddr3_tip_if_write(dev_num, ACCESS_TYPE_MULTICAST, 0,
SDRAM_INIT_CTRL_REG, 0x1, 0x1));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
if (ddr3_tip_if_polling
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0, 0x1,
SDRAM_INIT_CTRL_REG,
MAX_POLLING_ITERATIONS) != MV_OK) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("polling failed IF %d\n",
if_id));
is_fail = 1;
continue;
}
mem_mask = 0;
for (bus_index = 0; bus_index < octets_per_if_num;
bus_index++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_index);
mem_mask |=
tm->interface_params[if_id].
as_bus_params[bus_index].mirror_enable_bitmask;
}
if (mem_mask != 0) {
/* Disable Multi CS */
CHECK_STATUS(ddr3_tip_if_write
(dev_num, ACCESS_TYPE_MULTICAST,
if_id, DUAL_DUNIT_CFG_REG, 1 << 3,
1 << 3));
}
}
return (is_fail == 0) ? MV_OK : MV_FAIL;
}
int ddr3_tip_register_dq_table(u32 dev_num, u32 *table)
{
dq_map_table = table;
return MV_OK;
}
/*
* Check if pup search is locked
*/
int ddr3_tip_is_pup_lock(u32 *pup_buf, enum hws_training_result read_mode)
{
u32 bit_start = 0, bit_end = 0, bit_id;
if (read_mode == RESULT_PER_BIT) {
bit_start = 0;
bit_end = BUS_WIDTH_IN_BITS - 1;
} else {
bit_start = 0;
bit_end = 0;
}
for (bit_id = bit_start; bit_id <= bit_end; bit_id++) {
if (GET_LOCK_RESULT(pup_buf[bit_id]) == 0)
return 0;
}
return 1;
}
/*
* Get minimum buffer value
*/
u8 ddr3_tip_get_buf_min(u8 *buf_ptr)
{
u8 min_val = 0xff;
u8 cnt = 0;
for (cnt = 0; cnt < BUS_WIDTH_IN_BITS; cnt++) {
if (buf_ptr[cnt] < min_val)
min_val = buf_ptr[cnt];
}
return min_val;
}
/*
* Get maximum buffer value
*/
u8 ddr3_tip_get_buf_max(u8 *buf_ptr)
{
u8 max_val = 0;
u8 cnt = 0;
for (cnt = 0; cnt < BUS_WIDTH_IN_BITS; cnt++) {
if (buf_ptr[cnt] > max_val)
max_val = buf_ptr[cnt];
}
return max_val;
}
/*
* The following functions return memory parameters:
* bus and device width, device size
*/
u32 hws_ddr3_get_bus_width(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
return (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask) ==
1) ? 16 : 32;
}
u32 hws_ddr3_get_device_width(u32 if_id)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
return (tm->interface_params[if_id].bus_width ==
MV_DDR_DEV_WIDTH_8BIT) ? 8 : 16;
}
u32 hws_ddr3_get_device_size(u32 if_id)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
if (tm->interface_params[if_id].memory_size >=
MV_DDR_DIE_CAP_LAST) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Error: Wrong device size of Cs: %d",
tm->interface_params[if_id].memory_size));
return 0;
} else {
return 1 << tm->interface_params[if_id].memory_size;
}
}
int hws_ddr3_calc_mem_cs_size(u32 if_id, u32 cs, u32 *cs_size)
{
u32 cs_mem_size, dev_size;
dev_size = hws_ddr3_get_device_size(if_id);
if (dev_size != 0) {
cs_mem_size = ((hws_ddr3_get_bus_width() /
hws_ddr3_get_device_width(if_id)) * dev_size);
/* the calculated result in Gbytex16 to avoid float using */
if (cs_mem_size == 2) {
*cs_size = _128M;
} else if (cs_mem_size == 4) {
*cs_size = _256M;
} else if (cs_mem_size == 8) {
*cs_size = _512M;
} else if (cs_mem_size == 16) {
*cs_size = _1G;
} else if (cs_mem_size == 32) {
*cs_size = _2G;
} else {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Error: Wrong Memory size of Cs: %d", cs));
return MV_FAIL;
}
return MV_OK;
} else {
return MV_FAIL;
}
}
int hws_ddr3_cs_base_adr_calc(u32 if_id, u32 cs, u32 *cs_base_addr)
{
u32 cs_mem_size = 0;
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
u32 physical_mem_size;
u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
#endif
if (hws_ddr3_calc_mem_cs_size(if_id, cs, &cs_mem_size) != MV_OK)
return MV_FAIL;
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
/*
* if number of address pins doesn't allow to use max mem size that
* is defined in topology mem size is defined by
* DEVICE_MAX_DRAM_ADDRESS_SIZE
*/
physical_mem_size = mem_size[tm->interface_params[0].memory_size];
if (hws_ddr3_get_device_width(cs) == 16) {
/*
* 16bit mem device can be twice more - no need in less
* significant pin
*/
max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
}
if (physical_mem_size > max_mem_size) {
cs_mem_size = max_mem_size *
(hws_ddr3_get_bus_width() /
hws_ddr3_get_device_width(if_id));
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("Updated Physical Mem size is from 0x%x to %x\n",
physical_mem_size,
DEVICE_MAX_DRAM_ADDRESS_SIZE));
}
#endif
/* calculate CS base addr */
*cs_base_addr = ((cs_mem_size) * cs) & 0xffff0000;
return MV_OK;
}
/* TODO: consider to move to misl phy driver */
enum {
MISL_PHY_DRV_OHM_30 = 0xf,
MISL_PHY_DRV_OHM_48 = 0xa,
MISL_PHY_DRV_OHM_80 = 0x6,
MISL_PHY_DRV_OHM_120 = 0x4
};
enum {
MISL_PHY_ODT_OHM_60 = 0x8,
MISL_PHY_ODT_OHM_80 = 0x6,
MISL_PHY_ODT_OHM_120 = 0x4,
MISL_PHY_ODT_OHM_240 = 0x2
};
static unsigned int mv_ddr_misl_phy_drv_calc(unsigned int cfg)
{
unsigned int val;
switch (cfg) {
case MV_DDR_OHM_30:
val = MISL_PHY_DRV_OHM_30;
break;
case MV_DDR_OHM_48:
val = MISL_PHY_DRV_OHM_48;
break;
case MV_DDR_OHM_80:
val = MISL_PHY_DRV_OHM_80;
break;
case MV_DDR_OHM_120:
val = MISL_PHY_DRV_OHM_120;
break;
default:
val = PARAM_UNDEFINED;
}
return val;
}
static unsigned int mv_ddr_misl_phy_odt_calc(unsigned int cfg)
{
unsigned int val;
switch (cfg) {
case MV_DDR_OHM_60:
val = MISL_PHY_ODT_OHM_60;
break;
case MV_DDR_OHM_80:
val = MISL_PHY_ODT_OHM_80;
break;
case MV_DDR_OHM_120:
val = MISL_PHY_ODT_OHM_120;
break;
case MV_DDR_OHM_240:
val = MISL_PHY_ODT_OHM_240;
break;
default:
val = PARAM_UNDEFINED;
}
return val;
}
unsigned int mv_ddr_misl_phy_drv_data_p_get(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
unsigned int drv_data_p = mv_ddr_misl_phy_drv_calc(tm->edata.phy_edata.drv_data_p);
if (drv_data_p == PARAM_UNDEFINED)
printf("error: %s: unsupported drv_data_p parameter found\n", __func__);
return drv_data_p;
}
unsigned int mv_ddr_misl_phy_drv_data_n_get(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
unsigned int drv_data_n = mv_ddr_misl_phy_drv_calc(tm->edata.phy_edata.drv_data_n);
if (drv_data_n == PARAM_UNDEFINED)
printf("error: %s: unsupported drv_data_n parameter found\n", __func__);
return drv_data_n;
}
unsigned int mv_ddr_misl_phy_drv_ctrl_p_get(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
unsigned int drv_ctrl_p = mv_ddr_misl_phy_drv_calc(tm->edata.phy_edata.drv_ctrl_p);
if (drv_ctrl_p == PARAM_UNDEFINED)
printf("error: %s: unsupported drv_ctrl_p parameter found\n", __func__);
return drv_ctrl_p;
}
unsigned int mv_ddr_misl_phy_drv_ctrl_n_get(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
unsigned int drv_ctrl_n = mv_ddr_misl_phy_drv_calc(tm->edata.phy_edata.drv_ctrl_n);
if (drv_ctrl_n == PARAM_UNDEFINED)
printf("error: %s: unsupported drv_ctrl_n parameter found\n", __func__);
return drv_ctrl_n;
}
unsigned int mv_ddr_misl_phy_odt_p_get(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
unsigned int cs_num = mv_ddr_cs_num_get();
unsigned int odt_p = PARAM_UNDEFINED;
if (cs_num > 0 && cs_num <= MAX_CS_NUM)
odt_p = mv_ddr_misl_phy_odt_calc(tm->edata.phy_edata.odt_p[cs_num - 1]);
if (odt_p == PARAM_UNDEFINED)
printf("error: %s: unsupported odt_p parameter found\n", __func__);
return odt_p;
}
unsigned int mv_ddr_misl_phy_odt_n_get(void)
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
unsigned int cs_num = mv_ddr_cs_num_get();
unsigned int odt_n = PARAM_UNDEFINED;
if (cs_num > 0 && cs_num <= MAX_CS_NUM)
odt_n = mv_ddr_misl_phy_odt_calc(tm->edata.phy_edata.odt_n[cs_num - 1]);
if (odt_n == PARAM_UNDEFINED)
printf("error: %s: unsupported odt_n parameter found\n", __func__);
return odt_n;
}