u-boot-brain/drivers/ram/k3-j721e/lpddr4.c

2120 lines
61 KiB
C
Raw Normal View History

// SPDX-License-Identifier: BSD-3-Clause
/******************************************************************************
* Copyright (C) 2012-2018 Cadence Design Systems, Inc.
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
*
* lpddr4.c
*
*****************************************************************************
*/
#include "cps_drv_lpddr4.h"
#include "lpddr4_ctl_regs.h"
#include "lpddr4_if.h"
#include "lpddr4_private.h"
#include "lpddr4_sanity.h"
#include "lpddr4_structs_if.h"
#define LPDDR4_CUSTOM_TIMEOUT_DELAY 100000000U
/**
* Internal Function:Poll for status of interrupt received by the Controller.
* @param[in] pD Driver state info specific to this instance.
* @param[in] irqBit Interrupt status bit to be checked.
* @param[in] delay time delay.
* @return CDN_EOK on success (Interrupt status high).
* @return EIO on poll time out.
* @return EINVAL checking status was not successful.
*/
static uint32_t lpddr4_pollctlirq(const lpddr4_privatedata * pd,
lpddr4_ctlinterrupt irqbit, uint32_t delay)
{
uint32_t result = 0U;
uint32_t timeout = 0U;
bool irqstatus = false;
/* Loop until irqStatus found to be 1 or if value of 'result' !=CDN_EOK */
do {
if (++timeout == delay) {
result = EIO;
break;
}
/* cps_delayns(10000000U); */
result = lpddr4_checkctlinterrupt(pd, irqbit, &irqstatus);
} while ((irqstatus == false) && (result == (uint32_t) CDN_EOK));
return result;
}
/**
* Internal Function:Poll for status of interrupt received by the PHY Independent Module.
* @param[in] pD Driver state info specific to this instance.
* @param[in] irqBit Interrupt status bit to be checked.
* @param[in] delay time delay.
* @return CDN_EOK on success (Interrupt status high).
* @return EIO on poll time out.
* @return EINVAL checking status was not successful.
*/
static uint32_t lpddr4_pollphyindepirq(const lpddr4_privatedata * pd,
lpddr4_phyindepinterrupt irqbit,
uint32_t delay)
{
uint32_t result = 0U;
uint32_t timeout = 0U;
bool irqstatus = false;
/* Loop until irqStatus found to be 1 or if value of 'result' !=CDN_EOK */
do {
if (++timeout == delay) {
result = EIO;
break;
}
/* cps_delayns(10000000U); */
result = lpddr4_checkphyindepinterrupt(pd, irqbit, &irqstatus);
} while ((irqstatus == false) && (result == (uint32_t) CDN_EOK));
return result;
}
/**
* Internal Function:Trigger function to poll and Ack IRQs
* @param[in] pD Driver state info specific to this instance.
* @return CDN_EOK on success (Interrupt status high).
* @return EIO on poll time out.
* @return EINVAL checking status was not successful.
*/
static uint32_t lpddr4_pollandackirq(const lpddr4_privatedata * pd)
{
uint32_t result = 0U;
/* Wait for PhyIndependent module to finish up ctl init sequence */
result =
lpddr4_pollphyindepirq(pd, LPDDR4_PHY_INDEP_INIT_DONE_BIT,
LPDDR4_CUSTOM_TIMEOUT_DELAY);
/* Ack to clear the PhyIndependent interrupt bit */
if (result == (uint32_t) CDN_EOK) {
result =
lpddr4_ackphyindepinterrupt(pd,
LPDDR4_PHY_INDEP_INIT_DONE_BIT);
}
/* Wait for the CTL end of initialization */
if (result == (uint32_t) CDN_EOK) {
result =
lpddr4_pollctlirq(pd, LPDDR4_MC_INIT_DONE,
LPDDR4_CUSTOM_TIMEOUT_DELAY);
}
/* Ack to clear the Ctl interrupt bit */
if (result == (uint32_t) CDN_EOK) {
result = lpddr4_ackctlinterrupt(pd, LPDDR4_MC_INIT_DONE);
}
return result;
}
/**
* Internal Function: Controller start sequence.
* @param[in] pD Driver state info specific to this instance.
* @return CDN_EOK on success.
* @return EINVAL starting controller was not successful.
*/
static uint32_t lpddr4_startsequencecontroller(const lpddr4_privatedata * pd)
{
uint32_t result = 0U;
uint32_t regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
lpddr4_infotype infotype;
/* Set the PI_start to initiate leveling procedure */
regval =
CPS_FLD_SET(LPDDR4__PI_START__FLD,
CPS_REG_READ(&(ctlregbase->LPDDR4__PI_START__REG)));
CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_START__REG)), regval);
/* Set the Ctl_start */
regval =
CPS_FLD_SET(LPDDR4__START__FLD,
CPS_REG_READ(&(ctlregbase->LPDDR4__START__REG)));
CPS_REG_WRITE(&(ctlregbase->LPDDR4__START__REG), regval);
if (pd->infohandler != NULL) {
/* If a handler is registered, call it with the relevant information type */
infotype = LPDDR4_DRV_SOC_PLL_UPDATE;
pd->infohandler(pd, infotype);
}
result = lpddr4_pollandackirq(pd);
return result;
}
/**
* Internal Function: To add the offset to given address.
* @param[in] addr Address to which the offset has to be added.
* @param[in] regOffset The offset
* @return regAddr The address value after the summation.
*/
static volatile uint32_t *lpddr4_addoffset(volatile uint32_t * addr,
uint32_t regoffset)
{
volatile uint32_t *local_addr = addr;
/* Declaring as array to add the offset value. */
volatile uint32_t *regaddr = &local_addr[regoffset];
return regaddr;
}
/**
* Checks configuration object.
* @param[in] config Driver/hardware configuration required.
* @param[out] configSize Size of memory allocations required.
* @return CDN_EOK on success (requirements structure filled).
* @return ENOTSUP if configuration cannot be supported due to driver/hardware constraints.
*/
uint32_t lpddr4_probe(const lpddr4_config * config, uint16_t * configsize)
{
uint32_t result;
result = (uint32_t) (lpddr4_probesf(config, configsize));
if (result == (uint32_t) CDN_EOK) {
*configsize = (uint16_t) (sizeof(lpddr4_privatedata));
}
return result;
}
/**
* Init function to be called after LPDDR4_probe() to set up the driver configuration.
* Memory should be allocated for drv_data (using the size determined using LPDDR4_probe) before
* calling this API, init_settings should be initialized with base addresses for PHY Independent Module,
* Controller and PHY before calling this function.
* If callbacks are required for interrupt handling, these should also be configured in init_settings.
* @param[in] pD Driver state info specific to this instance.
* @param[in] cfg Specifies driver/hardware configuration.
* @return CDN_EOK on success
* @return EINVAL if illegal/inconsistent values in cfg.
* @return ENOTSUP if hardware has an inconsistent configuration or doesn't support feature(s)
* required by 'config' parameters.
*/
uint32_t lpddr4_init(lpddr4_privatedata * pd, const lpddr4_config * cfg)
{
uint32_t result = 0U;
uint16_t productid = 0U;
uint32_t version[2] = { 0, 0 };
result = lpddr4_initsf(pd, cfg);
if (result == (uint32_t) CDN_EOK) {
/* Validate Magic number */
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) cfg->ctlbase;
productid = (uint16_t) (CPS_FLD_READ(LPDDR4__CONTROLLER_ID__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__CONTROLLER_ID__REG))));
version[0] =
(uint32_t) (CPS_FLD_READ
(LPDDR4__CONTROLLER_VERSION_0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__CONTROLLER_VERSION_0__REG))));
version[1] =
(uint32_t) (CPS_FLD_READ
(LPDDR4__CONTROLLER_VERSION_1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__CONTROLLER_VERSION_1__REG))));
if ((productid == PRODUCT_ID) && (version[0] == VERSION_0)
&& (version[1] == VERSION_1)) {
/* Populating configuration data to pD */
pd->ctlbase = ctlregbase;
pd->infohandler =
(lpddr4_infocallback) cfg->infohandler;
pd->ctlinterrupthandler =
(lpddr4_ctlcallback) cfg->ctlinterrupthandler;
pd->phyindepinterrupthandler =
(lpddr4_phyindepcallback) cfg->
phyindepinterrupthandler;
} else {
/* Magic number validation failed - Driver doesn't support given IP version */
result = (uint32_t) EOPNOTSUPP;
}
}
return result;
}
/**
* Start the driver.
* @param[in] pD Driver state info specific to this instance.
*/
uint32_t lpddr4_start(const lpddr4_privatedata * pd)
{
uint32_t result = 0U;
uint32_t regval = 0U;
result = lpddr4_startsf(pd);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Enable PI as the initiator for DRAM */
regval =
CPS_FLD_SET(LPDDR4__PI_INIT_LVL_EN__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__PI_INIT_LVL_EN__REG)));
regval = CPS_FLD_SET(LPDDR4__PI_NORMAL_LVL_SEQ__FLD, regval);
CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)),
regval);
/* Start PI init sequence. */
result = lpddr4_startsequencecontroller(pd);
}
return result;
}
/**
* Read a register from the controller, PHY or PHY Independent Module
* @param[in] pD Driver state info specific to this instance.
* @param[in] cpp Indicates whether controller, PHY or PHY Independent Module register
* @param[in] regOffset Register offset
* @param[out] regValue Register value read
* @return CDN_EOK on success.
* @return EINVAL if regOffset if out of range or regValue is NULL
*/
uint32_t lpddr4_readreg(const lpddr4_privatedata * pd, lpddr4_regblock cpp,
uint32_t regoffset, uint32_t * regvalue)
{
uint32_t result = 0U;
result = lpddr4_readregsf(pd, cpp, regvalue);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
if (cpp == LPDDR4_CTL_REGS) {
if (regoffset >= LPDDR4_CTL_REG_COUNT) {
/* Return if user provider invalid register number */
result = EINVAL;
} else {
*regvalue =
CPS_REG_READ(lpddr4_addoffset
(&(ctlregbase->DENALI_CTL_0),
regoffset));
}
} else if (cpp == LPDDR4_PHY_REGS) {
if (regoffset >= LPDDR4_PHY_REG_COUNT) {
/* Return if user provider invalid register number */
result = EINVAL;
} else {
*regvalue =
CPS_REG_READ(lpddr4_addoffset
(&(ctlregbase->DENALI_PHY_0),
regoffset));
}
} else {
if (regoffset >= LPDDR4_PHY_INDEP_REG_COUNT) {
/* Return if user provider invalid register number */
result = EINVAL;
} else {
*regvalue =
CPS_REG_READ(lpddr4_addoffset
(&(ctlregbase->DENALI_PI_0),
regoffset));
}
}
}
return result;
}
uint32_t lpddr4_writereg(const lpddr4_privatedata * pd, lpddr4_regblock cpp,
uint32_t regoffset, uint32_t regvalue)
{
uint32_t result = 0U;
result = lpddr4_writeregsf(pd, cpp);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
if (cpp == LPDDR4_CTL_REGS) {
if (regoffset >= LPDDR4_CTL_REG_COUNT) {
/* Return if user provider invalid register number */
result = EINVAL;
} else {
CPS_REG_WRITE(lpddr4_addoffset
(&(ctlregbase->DENALI_CTL_0),
regoffset), regvalue);
}
} else if (cpp == LPDDR4_PHY_REGS) {
if (regoffset >= LPDDR4_PHY_REG_COUNT) {
/* Return if user provider invalid register number */
result = EINVAL;
} else {
CPS_REG_WRITE(lpddr4_addoffset
(&(ctlregbase->DENALI_PHY_0),
regoffset), regvalue);
}
} else {
if (regoffset >= LPDDR4_PHY_INDEP_REG_COUNT) {
/* Return if user provider invalid register number */
result = EINVAL;
} else {
CPS_REG_WRITE(lpddr4_addoffset
(&(ctlregbase->DENALI_PI_0),
regoffset), regvalue);
}
}
}
return result;
}
static uint32_t lpddr4_checkmmrreaderror(const lpddr4_privatedata * pd,
uint64_t * mmrvalue,
uint8_t * mrrstatus)
{
uint64_t lowerdata;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
uint32_t result = (uint32_t) CDN_EOK;
/* Check if mode register read error interrupt occurred */
if (lpddr4_pollctlirq(pd, LPDDR4_MRR_ERROR, 100) == 0U) {
/* Mode register read error interrupt, read MRR status register and return. */
*mrrstatus =
(uint8_t) CPS_FLD_READ(LPDDR4__MRR_ERROR_STATUS__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__MRR_ERROR_STATUS__REG)));
*mmrvalue = 0;
result = EIO;
} else {
*mrrstatus = 0;
/* Mode register read was successful, read DATA */
lowerdata =
CPS_REG_READ(&
(ctlregbase->
LPDDR4__PERIPHERAL_MRR_DATA_0__REG));
*mmrvalue =
CPS_REG_READ(&
(ctlregbase->
LPDDR4__PERIPHERAL_MRR_DATA_1__REG));
*mmrvalue = (uint64_t) ((*mmrvalue << WORD_SHIFT) | lowerdata);
/* Acknowledge MR_READ_DONE interrupt to clear it */
result = lpddr4_ackctlinterrupt(pd, LPDDR4_MR_READ_DONE);
}
return result;
}
uint32_t lpddr4_getmmrregister(const lpddr4_privatedata * pd,
uint32_t readmoderegval, uint64_t * mmrvalue,
uint8_t * mmrstatus)
{
uint32_t result = 0U;
uint32_t tdelay = 1000U;
uint32_t regval = 0U;
result = lpddr4_getmmrregistersf(pd, mmrvalue, mmrstatus);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Populate the calculated value to the register */
regval =
CPS_FLD_WRITE(LPDDR4__READ_MODEREG__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__READ_MODEREG__REG)),
readmoderegval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__READ_MODEREG__REG), regval);
/* Wait until the Read is done */
result = lpddr4_pollctlirq(pd, LPDDR4_MR_READ_DONE, tdelay);
}
if (result == (uint32_t) CDN_EOK) {
result = lpddr4_checkmmrreaderror(pd, mmrvalue, mmrstatus);
}
return result;
}
static uint32_t lpddr4_writemmrregister(const lpddr4_privatedata * pd,
uint32_t writemoderegval)
{
uint32_t result = (uint32_t) CDN_EOK;
uint32_t tdelay = 1000U;
uint32_t regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Populate the calculated value to the register */
regval =
CPS_FLD_WRITE(LPDDR4__WRITE_MODEREG__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__WRITE_MODEREG__REG)),
writemoderegval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__WRITE_MODEREG__REG), regval);
result = lpddr4_pollctlirq(pd, LPDDR4_MR_WRITE_DONE, tdelay);
return result;
}
uint32_t lpddr4_setmmrregister(const lpddr4_privatedata * pd,
uint32_t writemoderegval, uint8_t * mrwstatus)
{
uint32_t result = 0U;
result = lpddr4_setmmrregistersf(pd, mrwstatus);
if (result == (uint32_t) CDN_EOK) {
/* Function call to trigger Mode register write */
result = lpddr4_writemmrregister(pd, writemoderegval);
if (result == (uint32_t) CDN_EOK) {
result =
lpddr4_ackctlinterrupt(pd, LPDDR4_MR_WRITE_DONE);
}
/* Read the status of mode register write */
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase =
(lpddr4_ctlregs *) pd->ctlbase;
*mrwstatus =
(uint8_t) CPS_FLD_READ(LPDDR4__MRW_STATUS__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__MRW_STATUS__REG)));
if ((*mrwstatus) != 0U) {
result = EIO;
}
}
}
return result;
}
uint32_t lpddr4_writectlconfig(const lpddr4_privatedata * pd,
const lpddr4_reginitdata * regvalues)
{
uint32_t result;
uint32_t regnum;
result = lpddr4_writectlconfigsf(pd, regvalues);
if (result == (uint32_t) CDN_EOK) {
/* Iterate through CTL register numbers. */
for (regnum = 0; regnum < LPDDR4_CTL_REG_COUNT; regnum++) {
/* Check if the user has requested update */
if (regvalues->updatectlreg[regnum]) {
result =
lpddr4_writereg(pd, LPDDR4_CTL_REGS, regnum,
(uint32_t) (regvalues->
denalictlreg
[regnum]));
}
}
}
return result;
}
uint32_t lpddr4_writephyindepconfig(const lpddr4_privatedata * pd,
const lpddr4_reginitdata * regvalues)
{
uint32_t result;
uint32_t regnum;
result = lpddr4_writephyindepconfigsf(pd, regvalues);
if (result == (uint32_t) CDN_EOK) {
/* Iterate through PHY Independent module register numbers. */
for (regnum = 0; regnum < LPDDR4_PHY_INDEP_REG_COUNT; regnum++) {
/* Check if the user has requested update */
if (regvalues->updatephyindepreg[regnum]) {
result =
lpddr4_writereg(pd, LPDDR4_PHY_INDEP_REGS,
regnum,
(uint32_t) (regvalues->
denaliphyindepreg
[regnum]));
}
}
}
return result;
}
uint32_t lpddr4_writephyconfig(const lpddr4_privatedata * pd,
const lpddr4_reginitdata * regvalues)
{
uint32_t result;
uint32_t regnum;
result = lpddr4_writephyconfigsf(pd, regvalues);
if (result == (uint32_t) CDN_EOK) {
/* Iterate through PHY register numbers. */
for (regnum = 0; regnum < LPDDR4_PHY_REG_COUNT; regnum++) {
/* Check if the user has requested update */
if (regvalues->updatephyreg[regnum]) {
result =
lpddr4_writereg(pd, LPDDR4_PHY_REGS, regnum,
(uint32_t) (regvalues->
denaliphyreg
[regnum]));
}
}
}
return result;
}
uint32_t lpddr4_readctlconfig(const lpddr4_privatedata * pd,
lpddr4_reginitdata * regvalues)
{
uint32_t result;
uint32_t regnum;
result = lpddr4_readctlconfigsf(pd, regvalues);
if (result == (uint32_t) CDN_EOK) {
/* Iterate through CTL register numbers. */
for (regnum = 0; regnum < LPDDR4_CTL_REG_COUNT; regnum++) {
/* Check if the user has requested read (updateCtlReg=1) */
if (regvalues->updatectlreg[regnum]) {
result =
lpddr4_readreg(pd, LPDDR4_CTL_REGS, regnum,
(uint32_t *) (&regvalues->
denalictlreg
[regnum]));
}
}
}
return result;
}
uint32_t lpddr4_readphyindepconfig(const lpddr4_privatedata * pd,
lpddr4_reginitdata * regvalues)
{
uint32_t result;
uint32_t regnum;
result = lpddr4_readphyindepconfigsf(pd, regvalues);
if (result == (uint32_t) CDN_EOK) {
/* Iterate through PHY Independent module register numbers. */
for (regnum = 0; regnum < LPDDR4_PHY_INDEP_REG_COUNT; regnum++) {
/* Check if the user has requested read (updateCtlReg=1) */
if (regvalues->updatephyindepreg[regnum]) {
result =
lpddr4_readreg(pd, LPDDR4_PHY_INDEP_REGS,
regnum,
(uint32_t *) (&regvalues->
denaliphyindepreg
[regnum]));
}
}
}
return result;
}
uint32_t lpddr4_readphyconfig(const lpddr4_privatedata * pd,
lpddr4_reginitdata * regvalues)
{
uint32_t result;
uint32_t regnum;
result = lpddr4_readphyconfigsf(pd, regvalues);
if (result == (uint32_t) CDN_EOK) {
/* Iterate through PHY register numbers. */
for (regnum = 0; regnum < LPDDR4_PHY_REG_COUNT; regnum++) {
/* Check if the user has requested read (updateCtlReg=1) */
if (regvalues->updatephyreg[regnum]) {
result =
lpddr4_readreg(pd, LPDDR4_PHY_REGS, regnum,
(uint32_t *) (&regvalues->
denaliphyreg
[regnum]));
}
}
}
return result;
}
uint32_t lpddr4_getctlinterruptmask(const lpddr4_privatedata * pd,
uint64_t * mask)
{
uint32_t result = 0U;
uint64_t lowermask = 0U;
result = lpddr4_getctlinterruptmasksf(pd, mask);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Reading the lower mask register */
lowermask =
(uint64_t) (CPS_FLD_READ
(LPDDR4__INT_MASK_0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__INT_MASK_0__REG))));
/* Reading the upper mask register */
*mask =
(uint64_t) (CPS_FLD_READ
(LPDDR4__INT_MASK_1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__INT_MASK_1__REG))));
/* Concatenate both register informations */
*mask = (uint64_t) ((*mask << WORD_SHIFT) | lowermask);
}
return result;
}
uint32_t lpddr4_setctlinterruptmask(const lpddr4_privatedata * pd,
const uint64_t * mask)
{
uint32_t result;
uint32_t regval = 0;
const uint64_t ui64one = 1ULL;
const uint32_t ui32irqcount = (uint32_t) LPDDR4_LOR_BITS + 1U;
result = lpddr4_setctlinterruptmasksf(pd, mask);
if ((result == (uint32_t) CDN_EOK) && (ui32irqcount < 64U)) {
/* Return if the user given value is higher than the field width */
if (*mask >= (ui64one << ui32irqcount)) {
result = EINVAL;
}
}
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Extracting the lower 32 bits and writing to lower mask register */
regval = (uint32_t) (*mask & WORD_MASK);
regval =
CPS_FLD_WRITE(LPDDR4__INT_MASK_0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__INT_MASK_0__REG)),
regval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_0__REG), regval);
/* Extracting the upper 32 bits and writing to upper mask register */
regval = (uint32_t) ((*mask >> WORD_SHIFT) & WORD_MASK);
regval =
CPS_FLD_WRITE(LPDDR4__INT_MASK_1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__INT_MASK_1__REG)),
regval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_1__REG), regval);
}
return result;
}
uint32_t lpddr4_checkctlinterrupt(const lpddr4_privatedata * pd,
lpddr4_ctlinterrupt intr, bool * irqstatus)
{
uint32_t result;
uint32_t ctlirqstatus = 0;
uint32_t fieldshift = 0;
/* NOTE:This function assume irq status is mentioned in NOT more than 2 registers.
* Value of 'interrupt' should be less than 64 */
result = lpddr4_checkctlinterruptsf(pd, intr, irqstatus);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
if ((uint32_t) intr >= WORD_SHIFT) {
ctlirqstatus =
CPS_REG_READ(&
(ctlregbase->
LPDDR4__INT_STATUS_1__REG));
/* Reduce the shift value as we are considering upper register */
fieldshift = (uint32_t) intr - ((uint32_t) WORD_SHIFT);
} else {
ctlirqstatus =
CPS_REG_READ(&
(ctlregbase->
LPDDR4__INT_STATUS_0__REG));
/* The shift value remains same for lower interrupt register */
fieldshift = (uint32_t) intr;
}
/* MISRA compliance (Shifting operation) check */
if (fieldshift < WORD_SHIFT) {
if (((ctlirqstatus >> fieldshift) & BIT_MASK) > 0U) {
*irqstatus = true;
} else {
*irqstatus = false;
}
}
}
return result;
}
uint32_t lpddr4_ackctlinterrupt(const lpddr4_privatedata * pd,
lpddr4_ctlinterrupt intr)
{
uint32_t result = 0;
uint32_t regval = 0;
uint32_t localinterrupt = (uint32_t) intr;
/* NOTE:This function assume irq status is mentioned in NOT more than 2 registers.
* Value of 'interrupt' should be less than 64 */
result = lpddr4_ackctlinterruptsf(pd, intr);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Check if the requested bit is in upper register */
if (localinterrupt > WORD_SHIFT) {
localinterrupt =
(localinterrupt - (uint32_t) WORD_SHIFT);
regval = ((uint32_t) BIT_MASK << localinterrupt);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_1__REG),
regval);
} else {
regval = ((uint32_t) BIT_MASK << localinterrupt);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_0__REG),
regval);
}
}
return result;
}
uint32_t lpddr4_getphyindepinterruptmask(const lpddr4_privatedata * pd,
uint32_t * mask)
{
uint32_t result;
result = lpddr4_getphyindepinterruptmsf(pd, mask);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Reading mask register */
*mask =
CPS_FLD_READ(LPDDR4__PI_INT_MASK__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__PI_INT_MASK__REG)));
}
return result;
}
uint32_t lpddr4_setphyindepinterruptmask(const lpddr4_privatedata * pd,
const uint32_t * mask)
{
uint32_t result;
uint32_t regval = 0;
const uint32_t ui32irqcount =
(uint32_t) LPDDR4_PHY_INDEP_DLL_LOCK_STATE_CHANGE_BIT + 1U;
result = lpddr4_setphyindepinterruptmsf(pd, mask);
if ((result == (uint32_t) CDN_EOK) && (ui32irqcount < WORD_SHIFT)) {
/* Return if the user given value is higher than the field width */
if (*mask >= (1U << ui32irqcount)) {
result = EINVAL;
}
}
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Writing to the user requested interrupt mask */
regval =
CPS_FLD_WRITE(LPDDR4__PI_INT_MASK__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__PI_INT_MASK__REG)),
*mask);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_MASK__REG), regval);
}
return result;
}
uint32_t lpddr4_checkphyindepinterrupt(const lpddr4_privatedata * pd,
lpddr4_phyindepinterrupt intr,
bool * irqstatus)
{
uint32_t result = 0;
uint32_t phyindepirqstatus = 0;
result = lpddr4_checkphyindepinterrupsf(pd, intr, irqstatus);
/* Confirming that the value of interrupt is less than register width */
if ((result == (uint32_t) CDN_EOK) && ((uint32_t) intr < WORD_SHIFT)) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Reading the requested bit to check interrupt status */
phyindepirqstatus =
CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_STATUS__REG));
*irqstatus =
(((phyindepirqstatus >> (uint32_t) intr) & BIT_MASK) > 0U);
}
return result;
}
uint32_t lpddr4_ackphyindepinterrupt(const lpddr4_privatedata * pd,
lpddr4_phyindepinterrupt intr)
{
uint32_t result = 0U;
uint32_t regval = 0U;
uint32_t ui32shiftinterrupt = (uint32_t) intr;
result = lpddr4_ackphyindepinterruptsf(pd, intr);
/* Confirming that the value of interrupt is less than register width */
if ((result == (uint32_t) CDN_EOK) && (ui32shiftinterrupt < WORD_SHIFT)) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Write 1 to the requested bit to ACk the interrupt */
regval = ((uint32_t) BIT_MASK << ui32shiftinterrupt);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_ACK__REG), regval);
}
return result;
}
/* Check for caTrainingError */
static void lpddr4_checkcatrainingerror(lpddr4_ctlregs * ctlregbase,
lpddr4_debuginfo * debuginfo,
bool * errfoundptr)
{
uint32_t regval;
uint32_t errbitmask = 0U;
uint32_t snum;
volatile uint32_t *regaddress;
regaddress =
(volatile uint32_t
*)(&(ctlregbase->LPDDR4__PHY_ADR_CALVL_OBS1_0__REG));
errbitmask = (CA_TRAIN_RL) | (NIBBLE_MASK);
/* PHY_ADR_CALVL_OBS1[4] Right found
PHY_ADR_CALVL_OBS1[5] left found
both the above fields should be high and below field should be zero.
PHY_ADR_CALVL_OBS1[3:0] calvl_state
*/
for (snum = 0U; snum < ASLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != CA_TRAIN_RL) {
debuginfo->catraingerror = true;
*errfoundptr = true;
}
regaddress =
lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
}
}
/* Check for wrLvlError */
static void lpddr4_checkwrlvlerror(lpddr4_ctlregs * ctlregbase,
lpddr4_debuginfo * debuginfo,
bool * errfoundptr)
{
uint32_t regval;
uint32_t errbitmask = 0U;
uint32_t snum;
volatile uint32_t *regaddress;
regaddress =
(volatile uint32_t
*)(&(ctlregbase->LPDDR4__PHY_WRLVL_ERROR_OBS_0__REG));
/* PHY_WRLVL_ERROR_OBS_X[1:0] should be zero */
errbitmask = (BIT_MASK << 1) | (BIT_MASK);
for (snum = 0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->wrlvlerror = true;
*errfoundptr = true;
}
regaddress =
lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
}
}
/* Check for GateLvlError */
static void lpddr4_checkgatelvlerror(lpddr4_ctlregs * ctlregbase,
lpddr4_debuginfo * debuginfo,
bool * errfoundptr)
{
uint32_t regval;
uint32_t errbitmask = 0U;
uint32_t snum;
volatile uint32_t *regaddress;
regaddress =
(volatile uint32_t
*)(&(ctlregbase->LPDDR4__PHY_GTLVL_STATUS_OBS_0__REG));
/* PHY_GTLVL_STATUS_OBS[6] gate_level min error
* PHY_GTLVL_STATUS_OBS[7] gate_level max error
* All the above bit fields should be zero */
errbitmask = GATE_LVL_ERROR_FIELDS;
for (snum = 0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->gatelvlerror = true;
*errfoundptr = true;
}
regaddress =
lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
}
}
/* Check for ReadLvlError */
static void lpddr4_checkreadlvlerror(lpddr4_ctlregs * ctlregbase,
lpddr4_debuginfo * debuginfo,
bool * errfoundptr)
{
uint32_t regval;
uint32_t errbitmask = 0U;
uint32_t snum;
volatile uint32_t *regaddress;
regaddress =
(volatile uint32_t
*)(&(ctlregbase->LPDDR4__PHY_RDLVL_STATUS_OBS_0__REG));
/* PHY_RDLVL_STATUS_OBS[23:16] failed bits : should be zero.
PHY_RDLVL_STATUS_OBS[31:28] rdlvl_state : should be zero */
errbitmask = READ_LVL_ERROR_FIELDS;
for (snum = 0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->readlvlerror = true;
*errfoundptr = true;
}
regaddress =
lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
}
}
/* Check for DqTrainingError */
static void lpddr4_checkdqtrainingerror(lpddr4_ctlregs * ctlregbase,
lpddr4_debuginfo * debuginfo,
bool * errfoundptr)
{
uint32_t regval;
uint32_t errbitmask = 0U;
uint32_t snum;
volatile uint32_t *regaddress;
regaddress =
(volatile uint32_t
*)(&(ctlregbase->LPDDR4__PHY_WDQLVL_STATUS_OBS_0__REG));
/* PHY_WDQLVL_STATUS_OBS[26:18] should all be zero. */
errbitmask = DQ_LVL_STATUS;
for (snum = 0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->dqtrainingerror = true;
*errfoundptr = true;
}
regaddress =
lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
}
}
/**
* Internal Function:For checking errors in training/levelling sequence.
* @param[in] pD Driver state info specific to this instance.
* @param[in] debugInfo pointer to debug information.
* @param[out] errFoundPtr pointer to return if error found.
* @return CDN_EOK on success (Interrupt status high).
* @return EINVAL checking or unmasking was not successful.
*/
static bool lpddr4_checklvlerrors(const lpddr4_privatedata * pd,
lpddr4_debuginfo * debuginfo, bool errfound)
{
bool localerrfound = errfound;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
if (localerrfound == false) {
/* Check for ca training error */
lpddr4_checkcatrainingerror(ctlregbase, debuginfo,
&localerrfound);
}
if (localerrfound == false) {
/* Check for Write leveling error */
lpddr4_checkwrlvlerror(ctlregbase, debuginfo, &localerrfound);
}
if (localerrfound == false) {
/* Check for Gate leveling error */
lpddr4_checkgatelvlerror(ctlregbase, debuginfo, &localerrfound);
}
if (localerrfound == false) {
/* Check for Read leveling error */
lpddr4_checkreadlvlerror(ctlregbase, debuginfo, &localerrfound);
}
if (localerrfound == false) {
/* Check for DQ training error */
lpddr4_checkdqtrainingerror(ctlregbase, debuginfo,
&localerrfound);
}
return localerrfound;
}
static bool lpddr4_seterror(volatile uint32_t * reg, uint32_t errbitmask,
bool * errfoundptr, const uint32_t errorinfobits)
{
uint32_t regval = 0U;
/* Read the respective observation register */
regval = CPS_REG_READ(reg);
/* Compare the error bit values */
if ((regval & errbitmask) != errorinfobits) {
*errfoundptr = true;
}
return *errfoundptr;
}
static void lpddr4_seterrors(lpddr4_ctlregs * ctlregbase,
lpddr4_debuginfo * debuginfo, bool * errfoundptr)
{
uint32_t errbitmask = (BIT_MASK << 0x1U) | (BIT_MASK);
/* Check PLL observation registers for PLL lock errors */
debuginfo->pllerror =
lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_0__REG),
errbitmask, errfoundptr, PLL_READY);
if (*errfoundptr == false) {
debuginfo->pllerror =
lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_1__REG),
errbitmask, errfoundptr, PLL_READY);
}
/* Check for IO Calibration errors */
if (*errfoundptr == false) {
debuginfo->iocaliberror =
lpddr4_seterror(&
(ctlregbase->
LPDDR4__PHY_CAL_RESULT_OBS_0__REG),
IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE);
}
if (*errfoundptr == false) {
debuginfo->iocaliberror =
lpddr4_seterror(&
(ctlregbase->
LPDDR4__PHY_CAL_RESULT2_OBS_0__REG),
IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE);
}
if (*errfoundptr == false) {
debuginfo->iocaliberror =
lpddr4_seterror(&
(ctlregbase->
LPDDR4__PHY_CAL_RESULT3_OBS_0__REG),
IO_CALIB_FIELD, errfoundptr,
IO_CALIB_STATE);
}
}
static void lpddr4_setphysnapsettings(lpddr4_ctlregs * ctlregbase,
const bool errorfound)
{
uint32_t snum = 0U;
volatile uint32_t *regaddress;
uint32_t regval = 0U;
/* Setting SC_PHY_SNAP_OBS_REGS_x to get a snapshot */
if (errorfound == false) {
regaddress =
(volatile uint32_t
*)(&(ctlregbase->LPDDR4__SC_PHY_SNAP_OBS_REGS_0__REG));
/* Iterate through each PHY Data Slice */
for (snum = 0U; snum < DSLICE_NUM; snum++) {
regval =
CPS_FLD_SET(LPDDR4__SC_PHY_SNAP_OBS_REGS_0__FLD,
CPS_REG_READ(regaddress));
CPS_REG_WRITE(regaddress, regval);
regaddress =
lpddr4_addoffset(regaddress,
(uint32_t) SLICE_WIDTH);
}
}
}
static void lpddr4_setphyadrsnapsettings(lpddr4_ctlregs * ctlregbase,
const bool errorfound)
{
uint32_t snum = 0U;
volatile uint32_t *regaddress;
uint32_t regval = 0U;
/* Setting SC_PHY ADR_SNAP_OBS_REGS_x to get a snapshot */
if (errorfound == false) {
regaddress =
(volatile uint32_t
*)(&(ctlregbase->LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__REG));
/* Iterate through each PHY Address Slice */
for (snum = 0U; snum < ASLICE_NUM; snum++) {
regval =
CPS_FLD_SET(LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__FLD,
CPS_REG_READ(regaddress));
CPS_REG_WRITE(regaddress, regval);
regaddress =
lpddr4_addoffset(regaddress,
(uint32_t) SLICE_WIDTH);
}
}
}
static void lpddr4_setsettings(lpddr4_ctlregs * ctlregbase,
const bool errorfound)
{
/* Calling functions to enable snap shots of OBS registers */
lpddr4_setphysnapsettings(ctlregbase, errorfound);
lpddr4_setphyadrsnapsettings(ctlregbase, errorfound);
}
static void lpddr4_setrxoffseterror(lpddr4_ctlregs * ctlregbase,
lpddr4_debuginfo * debuginfo,
bool * errorfound)
{
volatile uint32_t *regaddress;
uint32_t snum = 0U;
uint32_t errbitmask = 0U;
uint32_t regval = 0U;
/* Check for rxOffsetError */
if (*errorfound == false) {
regaddress =
(volatile uint32_t
*)(&(ctlregbase->LPDDR4__PHY_RX_CAL_LOCK_OBS_0__REG));
errbitmask = (RX_CAL_DONE) | (NIBBLE_MASK);
/* PHY_RX_CAL_LOCK_OBS_x[4] RX_CAL_DONE : should be high
phy_rx_cal_lock_obs_x[3:0] RX_CAL_STATE : should be zero. */
for (snum = 0U; snum < DSLICE_NUM; snum++) {
regval =
CPS_FLD_READ(LPDDR4__PHY_RX_CAL_LOCK_OBS_0__FLD,
CPS_REG_READ(regaddress));
if ((regval & errbitmask) != RX_CAL_DONE) {
debuginfo->rxoffseterror = true;
*errorfound = true;
}
regaddress =
lpddr4_addoffset(regaddress,
(uint32_t) SLICE_WIDTH);
}
}
}
uint32_t lpddr4_getdebuginitinfo(const lpddr4_privatedata * pd,
lpddr4_debuginfo * debuginfo)
{
uint32_t result = 0U;
bool errorfound = false;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_getdebuginitinfosf(pd, debuginfo);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
lpddr4_seterrors(ctlregbase, debuginfo, &errorfound);
/* Function to setup Snap for OBS registers */
lpddr4_setsettings(ctlregbase, errorfound);
/* Function to check for Rx offset error */
lpddr4_setrxoffseterror(ctlregbase, debuginfo, &errorfound);
/* Function Check various levelling errors */
errorfound = lpddr4_checklvlerrors(pd, debuginfo, errorfound);
}
if (errorfound == true) {
result = (uint32_t) EPROTO;
}
return result;
}
static void readpdwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
{
/* Read the appropriate register, based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_PD_WAKEUP_F0__REG)));
} else if (*fspnum == LPDDR4_FSP_1) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_PD_WAKEUP_F1__REG)));
} else {
/* Default register (sanity function already confirmed the variable value) */
*cycles =
CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_PD_WAKEUP_F2__REG)));
}
}
static void readsrshortwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
{
/* Read the appropriate register, based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG)));
} else if (*fspnum == LPDDR4_FSP_1) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG)));
} else {
/* Default register (sanity function already confirmed the variable value) */
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG)));
}
}
static void readsrlongwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
{
/* Read the appropriate register, based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG)));
} else if (*fspnum == LPDDR4_FSP_1) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG)));
} else {
/* Default register (sanity function already confirmed the variable value) */
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG)));
}
}
static void readsrlonggatewakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
{
/* Read the appropriate register, based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG)));
} else if (*fspnum == LPDDR4_FSP_1) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG)));
} else {
/* Default register (sanity function already confirmed the variable value) */
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG)));
}
}
static void readsrdpshortwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
{
/* Read the appropriate register, based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG)));
} else if (*fspnum == LPDDR4_FSP_1) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG)));
} else {
/* Default register (sanity function already confirmed the variable value) */
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG)));
}
}
static void readsrdplongwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
{
/* Read the appropriate register, based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG)));
} else if (*fspnum == LPDDR4_FSP_1) {
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG)));
} else {
/* Default register (sanity function already confirmed the variable value) */
*cycles =
CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG)));
}
}
static void readsrdplonggatewakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase,
uint32_t * cycles)
{
/* Read the appropriate register, based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
*cycles =
CPS_FLD_READ
(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG)));
} else if (*fspnum == LPDDR4_FSP_1) {
*cycles =
CPS_FLD_READ
(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG)));
} else {
/* Default register (sanity function already confirmed the variable value) */
*cycles =
CPS_FLD_READ
(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG)));
}
}
static void lpddr4_readlpiwakeuptime(lpddr4_ctlregs * ctlregbase,
const lpddr4_lpiwakeupparam *
lpiwakeupparam,
const lpddr4_ctlfspnum * fspnum,
uint32_t * cycles)
{
/* Iterate through each of the Wake up parameter type */
if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) {
/* Calling appropriate function for register read */
readpdwakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) {
readsrshortwakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) {
readsrlongwakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) {
readsrlonggatewakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) {
readsrdpshortwakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) {
readsrdplongwakeup(fspnum, ctlregbase, cycles);
} else {
/* Default function (sanity function already confirmed the variable value) */
readsrdplonggatewakeup(fspnum, ctlregbase, cycles);
}
}
uint32_t lpddr4_getlpiwakeuptime(const lpddr4_privatedata * pd,
const lpddr4_lpiwakeupparam * lpiwakeupparam,
const lpddr4_ctlfspnum * fspnum,
uint32_t * cycles)
{
uint32_t result = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_getlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
lpddr4_readlpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum,
cycles);
}
return result;
}
static void writepdwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase, const uint32_t * cycles)
{
uint32_t regval = 0U;
/* Write to appropriate register ,based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_PD_WAKEUP_F0__REG)),
*cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG),
regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_PD_WAKEUP_F1__REG)),
*cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG),
regval);
} else {
/* Default register (sanity function already confirmed the variable value) */
regval =
CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_PD_WAKEUP_F2__REG)),
*cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG),
regval);
}
}
static void writesrshortwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase,
const uint32_t * cycles)
{
uint32_t regval = 0U;
/* Write to appropriate register ,based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG),
regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG),
regval);
} else {
/* Default register (sanity function already confirmed the variable value) */
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG),
regval);
}
}
static void writesrlongwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase,
const uint32_t * cycles)
{
uint32_t regval = 0U;
/* Write to appropriate register ,based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG)),
*cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG),
regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG)),
*cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG),
regval);
} else {
/* Default register (sanity function already confirmed the variable value) */
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG)),
*cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG),
regval);
}
}
static void writesrlonggatewakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase,
const uint32_t * cycles)
{
uint32_t regval = 0U;
/* Write to appropriate register ,based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG),
regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG),
regval);
} else {
/* Default register (sanity function already confirmed the variable value) */
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG),
regval);
}
}
static void writesrdpshortwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase,
const uint32_t * cycles)
{
uint32_t regval = 0U;
/* Write to appropriate register ,based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG), regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG), regval);
} else {
/* Default register (sanity function already confirmed the variable value) */
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG), regval);
}
}
static void writesrdplongwakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase,
const uint32_t * cycles)
{
uint32_t regval = 0U;
/* Write to appropriate register ,based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG), regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG), regval);
} else {
/* Default register (sanity function already confirmed the variable value) */
regval =
CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG), regval);
}
}
static void writesrdplonggatewakeup(const lpddr4_ctlfspnum * fspnum,
lpddr4_ctlregs * ctlregbase,
const uint32_t * cycles)
{
uint32_t regval = 0U;
/* Write to appropriate register ,based on user given frequency. */
if (*fspnum == LPDDR4_FSP_0) {
regval =
CPS_FLD_WRITE
(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG),
regval);
} else if (*fspnum == LPDDR4_FSP_1) {
regval =
CPS_FLD_WRITE
(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG),
regval);
} else {
/* Default register (sanity function already confirmed the variable value) */
regval =
CPS_FLD_WRITE
(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG)),
*cycles);
CPS_REG_WRITE(&
(ctlregbase->
LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG),
regval);
}
}
static void lpddr4_writelpiwakeuptime(lpddr4_ctlregs * ctlregbase,
const lpddr4_lpiwakeupparam *
lpiwakeupparam,
const lpddr4_ctlfspnum * fspnum,
const uint32_t * cycles)
{
/* Iterate through each of the Wake up parameter type */
if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) {
/* Calling appropriate function for register write */
writepdwakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) {
writesrshortwakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) {
writesrlongwakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) {
writesrlonggatewakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) {
writesrdpshortwakeup(fspnum, ctlregbase, cycles);
} else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) {
writesrdplongwakeup(fspnum, ctlregbase, cycles);
} else {
/* Default function (sanity function already confirmed the variable value) */
writesrdplonggatewakeup(fspnum, ctlregbase, cycles);
}
}
uint32_t lpddr4_setlpiwakeuptime(const lpddr4_privatedata * pd,
const lpddr4_lpiwakeupparam * lpiwakeupparam,
const lpddr4_ctlfspnum * fspnum,
const uint32_t * cycles)
{
uint32_t result = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_setlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles);
if (result == (uint32_t) CDN_EOK) {
/* Return if the user given value is higher than the field width */
if (*cycles > NIBBLE_MASK) {
result = EINVAL;
}
}
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
lpddr4_writelpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum,
cycles);
}
return result;
}
uint32_t lpddr4_geteccenable(const lpddr4_privatedata * pd,
lpddr4_eccenable * eccparam)
{
uint32_t result = 0U;
uint32_t fldval = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_geteccenablesf(pd, eccparam);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Reading the ECC_Enable field from the register. */
fldval =
CPS_FLD_READ(LPDDR4__ECC_ENABLE__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__ECC_ENABLE__REG)));
switch (fldval) {
case 3:
*eccparam = LPDDR4_ECC_ERR_DETECT_CORRECT;
break;
case 2:
*eccparam = LPDDR4_ECC_ERR_DETECT;
break;
case 1:
*eccparam = LPDDR4_ECC_ENABLED;
break;
default:
/* Default ECC (Sanity function already confirmed the value to be in expected range.) */
*eccparam = LPDDR4_ECC_DISABLED;
break;
}
}
return result;
}
uint32_t lpddr4_seteccenable(const lpddr4_privatedata * pd,
const lpddr4_eccenable * eccparam)
{
uint32_t result = 0U;
uint32_t regval = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_seteccenablesf(pd, eccparam);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Updating the ECC_Enable field based on the user given value. */
regval =
CPS_FLD_WRITE(LPDDR4__ECC_ENABLE__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__ECC_ENABLE__REG)),
*eccparam);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__ECC_ENABLE__REG), regval);
}
return result;
}
uint32_t lpddr4_getreducmode(const lpddr4_privatedata * pd,
lpddr4_reducmode * mode)
{
uint32_t result = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_getreducmodesf(pd, mode);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Read the value of reduc parameter. */
if (CPS_FLD_READ
(LPDDR4__REDUC__FLD,
CPS_REG_READ(&(ctlregbase->LPDDR4__REDUC__REG))) == 0U) {
*mode = LPDDR4_REDUC_ON;
} else {
*mode = LPDDR4_REDUC_OFF;
}
}
return result;
}
uint32_t lpddr4_setreducmode(const lpddr4_privatedata * pd,
const lpddr4_reducmode * mode)
{
uint32_t result = 0U;
uint32_t regval = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_setreducmodesf(pd, mode);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Setting to enable Half data path. */
regval =
CPS_FLD_WRITE(LPDDR4__REDUC__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__REDUC__REG)), *mode);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__REDUC__REG), regval);
}
return result;
}
uint32_t lpddr4_getdbireadmode(const lpddr4_privatedata * pd, bool * on_off)
{
uint32_t result = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_getdbireadmodesf(pd, on_off);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Reading the field value from the register. */
if (CPS_FLD_READ
(LPDDR4__RD_DBI_EN__FLD,
CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG))) ==
0U) {
*on_off = false;
} else {
*on_off = true;
}
}
return result;
}
uint32_t lpddr4_getdbiwritemode(const lpddr4_privatedata * pd, bool * on_off)
{
uint32_t result = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_getdbireadmodesf(pd, on_off);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Reading the field value from the register. */
if (CPS_FLD_READ
(LPDDR4__WR_DBI_EN__FLD,
CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG))) ==
0U) {
*on_off = false;
} else {
*on_off = true;
}
}
return result;
}
uint32_t lpddr4_setdbimode(const lpddr4_privatedata * pd,
const lpddr4_dbimode * mode)
{
uint32_t result = 0U;
uint32_t regval = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_setdbimodesf(pd, mode);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Updating the appropriate field value based on the user given mode */
if (*mode == LPDDR4_DBI_RD_ON) {
regval =
CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__RD_DBI_EN__REG)),
1U);
} else if (*mode == LPDDR4_DBI_RD_OFF) {
regval =
CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__RD_DBI_EN__REG)),
0U);
} else if (*mode == LPDDR4_DBI_WR_ON) {
regval =
CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__WR_DBI_EN__REG)),
1U);
} else {
/* Default field (Sanity function already confirmed the value to be in expected range.) */
regval =
CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__WR_DBI_EN__REG)),
0U);
}
CPS_REG_WRITE(&(ctlregbase->LPDDR4__RD_DBI_EN__REG), regval);
}
return result;
}
uint32_t lpddr4_getrefreshrate(const lpddr4_privatedata * pd,
const lpddr4_ctlfspnum * fspnum,
uint32_t * cycles)
{
uint32_t result = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_getrefreshratesf(pd, fspnum, cycles);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Selecting the appropriate register for the user requested Frequency */
switch (*fspnum) {
case LPDDR4_FSP_2:
*cycles =
CPS_FLD_READ(LPDDR4__TREF_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__TREF_F2__REG)));
break;
case LPDDR4_FSP_1:
*cycles =
CPS_FLD_READ(LPDDR4__TREF_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__TREF_F1__REG)));
break;
default:
/* FSP_0 is considered as the default (sanity check already confirmed it as valid FSP) */
*cycles =
CPS_FLD_READ(LPDDR4__TREF_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__TREF_F0__REG)));
break;
}
}
return result;
}
uint32_t lpddr4_setrefreshrate(const lpddr4_privatedata * pd,
const lpddr4_ctlfspnum * fspnum,
const uint32_t * cycles)
{
uint32_t result = 0U;
uint32_t regval = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_setrefreshratesf(pd, fspnum, cycles);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Selecting the appropriate register for the user requested Frequency */
switch (*fspnum) {
case LPDDR4_FSP_2:
regval =
CPS_FLD_WRITE(LPDDR4__TREF_F2__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__TREF_F2__REG)),
*cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F2__REG),
regval);
break;
case LPDDR4_FSP_1:
regval =
CPS_FLD_WRITE(LPDDR4__TREF_F1__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__TREF_F1__REG)),
*cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F1__REG),
regval);
break;
default:
/* FSP_0 is considered as the default (sanity check already confirmed it as valid FSP) */
regval =
CPS_FLD_WRITE(LPDDR4__TREF_F0__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__TREF_F0__REG)),
*cycles);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F0__REG),
regval);
break;
}
}
return result;
}
uint32_t lpddr4_refreshperchipselect(const lpddr4_privatedata * pd,
const uint32_t trefinterval)
{
uint32_t result = 0U;
uint32_t regval = 0U;
/* Calling Sanity Function to verify the input variables */
result = lpddr4_refreshperchipselectsf(pd);
if (result == (uint32_t) CDN_EOK) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
/* Setting tref_interval parameter to enable/disable Refresh per chip select. */
regval =
CPS_FLD_WRITE(LPDDR4__TREF_INTERVAL__FLD,
CPS_REG_READ(&
(ctlregbase->
LPDDR4__TREF_INTERVAL__REG)),
trefinterval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_INTERVAL__REG),
regval);
}
return result;
}