Commit Graph

8604 Commits

Author SHA1 Message Date
Anand Jain fb4c7d2923 btrfs: fix lockdep warning while mounting sprout fs
[ Upstream commit c124706900c20dee70f921bb3a90492431561a0a ]

Following test case reproduces lockdep warning.

  Test case:

  $ mkfs.btrfs -f <dev1>
  $ btrfstune -S 1 <dev1>
  $ mount <dev1> <mnt>
  $ btrfs device add <dev2> <mnt> -f
  $ umount <mnt>
  $ mount <dev2> <mnt>
  $ umount <mnt>

The warning claims a possible ABBA deadlock between the threads
initiated by [#1] btrfs device add and [#0] the mount.

  [ 540.743122] WARNING: possible circular locking dependency detected
  [ 540.743129] 5.11.0-rc7+ #5 Not tainted
  [ 540.743135] ------------------------------------------------------
  [ 540.743142] mount/2515 is trying to acquire lock:
  [ 540.743149] ffffa0c5544c2ce0 (&fs_devs->device_list_mutex){+.+.}-{4:4}, at: clone_fs_devices+0x6d/0x210 [btrfs]
  [ 540.743458] but task is already holding lock:
  [ 540.743461] ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs]
  [ 540.743541] which lock already depends on the new lock.
  [ 540.743543] the existing dependency chain (in reverse order) is:

  [ 540.743546] -> #1 (btrfs-chunk-00){++++}-{4:4}:
  [ 540.743566] down_read_nested+0x48/0x2b0
  [ 540.743585] __btrfs_tree_read_lock+0x32/0x200 [btrfs]
  [ 540.743650] btrfs_read_lock_root_node+0x70/0x200 [btrfs]
  [ 540.743733] btrfs_search_slot+0x6c6/0xe00 [btrfs]
  [ 540.743785] btrfs_update_device+0x83/0x260 [btrfs]
  [ 540.743849] btrfs_finish_chunk_alloc+0x13f/0x660 [btrfs] <--- device_list_mutex
  [ 540.743911] btrfs_create_pending_block_groups+0x18d/0x3f0 [btrfs]
  [ 540.743982] btrfs_commit_transaction+0x86/0x1260 [btrfs]
  [ 540.744037] btrfs_init_new_device+0x1600/0x1dd0 [btrfs]
  [ 540.744101] btrfs_ioctl+0x1c77/0x24c0 [btrfs]
  [ 540.744166] __x64_sys_ioctl+0xe4/0x140
  [ 540.744170] do_syscall_64+0x4b/0x80
  [ 540.744174] entry_SYSCALL_64_after_hwframe+0x44/0xa9

  [ 540.744180] -> #0 (&fs_devs->device_list_mutex){+.+.}-{4:4}:
  [ 540.744184] __lock_acquire+0x155f/0x2360
  [ 540.744188] lock_acquire+0x10b/0x5c0
  [ 540.744190] __mutex_lock+0xb1/0xf80
  [ 540.744193] mutex_lock_nested+0x27/0x30
  [ 540.744196] clone_fs_devices+0x6d/0x210 [btrfs]
  [ 540.744270] btrfs_read_chunk_tree+0x3c7/0xbb0 [btrfs]
  [ 540.744336] open_ctree+0xf6e/0x2074 [btrfs]
  [ 540.744406] btrfs_mount_root.cold.72+0x16/0x127 [btrfs]
  [ 540.744472] legacy_get_tree+0x38/0x90
  [ 540.744475] vfs_get_tree+0x30/0x140
  [ 540.744478] fc_mount+0x16/0x60
  [ 540.744482] vfs_kern_mount+0x91/0x100
  [ 540.744484] btrfs_mount+0x1e6/0x670 [btrfs]
  [ 540.744536] legacy_get_tree+0x38/0x90
  [ 540.744537] vfs_get_tree+0x30/0x140
  [ 540.744539] path_mount+0x8d8/0x1070
  [ 540.744541] do_mount+0x8d/0xc0
  [ 540.744543] __x64_sys_mount+0x125/0x160
  [ 540.744545] do_syscall_64+0x4b/0x80
  [ 540.744547] entry_SYSCALL_64_after_hwframe+0x44/0xa9

  [ 540.744551] other info that might help us debug this:
  [ 540.744552] Possible unsafe locking scenario:

  [ 540.744553] CPU0 				CPU1
  [ 540.744554] ---- 				----
  [ 540.744555] lock(btrfs-chunk-00);
  [ 540.744557] 					lock(&fs_devs->device_list_mutex);
  [ 540.744560] 					lock(btrfs-chunk-00);
  [ 540.744562] lock(&fs_devs->device_list_mutex);
  [ 540.744564]
   *** DEADLOCK ***

  [ 540.744565] 3 locks held by mount/2515:
  [ 540.744567] #0: ffffa0c56bf7a0e0 (&type->s_umount_key#42/1){+.+.}-{4:4}, at: alloc_super.isra.16+0xdf/0x450
  [ 540.744574] #1: ffffffffc05a9628 (uuid_mutex){+.+.}-{4:4}, at: btrfs_read_chunk_tree+0x63/0xbb0 [btrfs]
  [ 540.744640] #2: ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs]
  [ 540.744708]
   stack backtrace:
  [ 540.744712] CPU: 2 PID: 2515 Comm: mount Not tainted 5.11.0-rc7+ #5

But the device_list_mutex in clone_fs_devices() is redundant, as
explained below.  Two threads [1]  and [2] (below) could lead to
clone_fs_device().

  [1]
  open_ctree <== mount sprout fs
   btrfs_read_chunk_tree()
    mutex_lock(&uuid_mutex) <== global lock
    read_one_dev()
     open_seed_devices()
      clone_fs_devices() <== seed fs_devices
       mutex_lock(&orig->device_list_mutex) <== seed fs_devices

  [2]
  btrfs_init_new_device() <== sprouting
   mutex_lock(&uuid_mutex); <== global lock
   btrfs_prepare_sprout()
     lockdep_assert_held(&uuid_mutex)
     clone_fs_devices(seed_fs_device) <== seed fs_devices

Both of these threads hold uuid_mutex which is sufficient to protect
getting the seed device(s) freed while we are trying to clone it for
sprouting [2] or mounting a sprout [1] (as above). A mounted seed device
can not free/write/replace because it is read-only. An unmounted seed
device can be freed by btrfs_free_stale_devices(), but it needs
uuid_mutex.  So this patch removes the unnecessary device_list_mutex in
clone_fs_devices().  And adds a lockdep_assert_held(&uuid_mutex) in
clone_fs_devices().

Reported-by: Su Yue <l@damenly.su>
Tested-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-26 14:07:12 +02:00
Anand Jain c7fab1f536 btrfs: fix upper limit for max_inline for page size 64K
commit 6f93e834fa7c5faa0372e46828b4b2a966ac61d7 upstream.

The mount option max_inline ranges from 0 to the sectorsize (which is
now equal to page size). But we parse the mount options too early and
before the actual sectorsize is read from the superblock. So the upper
limit of max_inline is unaware of the actual sectorsize and is limited
by the temporary sectorsize 4096, even on a system where the default
sectorsize is 64K.

Fix this by reading the superblock sectorsize before the mount option
parse.

Reported-by: Alexander Tsvetkov <alexander.tsvetkov@oracle.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-22 12:26:38 +02:00
Marcos Paulo de Souza 736f60bd48 btrfs: tree-log: check btrfs_lookup_data_extent return value
[ Upstream commit 3736127a3aa805602b7a2ad60ec9cfce68065fbb ]

Function btrfs_lookup_data_extent calls btrfs_search_slot to verify if
the EXTENT_ITEM exists in the extent tree. btrfs_search_slot can return
values bellow zero if an error happened.

Function replay_one_extent currently checks if the search found
something (0 returned) and increments the reference, and if not, it
seems to evaluate as 'not found'.

Fix the condition by checking if the value was bellow zero and return
early.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-22 12:26:34 +02:00
Desmond Cheong Zhi Xi cd7b39e7c4 btrfs: reset replace target device to allocation state on close
commit 0d977e0eba234e01a60bdde27314dc21374201b3 upstream.

This crash was observed with a failed assertion on device close:

  BTRFS: Transaction aborted (error -28)
  WARNING: CPU: 1 PID: 3902 at fs/btrfs/extent-tree.c:2150 btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
  Modules linked in: btrfs blake2b_generic libcrc32c crc32c_intel xor zstd_decompress zstd_compress xxhash lzo_compress lzo_decompress raid6_pq loop
  CPU: 1 PID: 3902 Comm: kworker/u8:4 Not tainted 5.14.0-rc5-default+ #1532
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
  Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
  RIP: 0010:btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
  RSP: 0018:ffffb7a5452d7d80 EFLAGS: 00010282
  RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000
  RDX: 0000000000000001 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
  RBP: ffff97834176a378 R08: 0000000000000001 R09: 0000000000000001
  R10: 0000000000000000 R11: 0000000000000001 R12: ffff97835195d388
  R13: 0000000005b08000 R14: ffff978385484000 R15: 000000000000016c
  FS:  0000000000000000(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 000056190d003fe8 CR3: 000000002a81e005 CR4: 0000000000170ea0
  Call Trace:
   flush_space+0x197/0x2f0 [btrfs]
   btrfs_async_reclaim_metadata_space+0x139/0x300 [btrfs]
   process_one_work+0x262/0x5e0
   worker_thread+0x4c/0x320
   ? process_one_work+0x5e0/0x5e0
   kthread+0x144/0x170
   ? set_kthread_struct+0x40/0x40
   ret_from_fork+0x1f/0x30
  irq event stamp: 19334989
  hardirqs last  enabled at (19334997): [<ffffffffab0e0c87>] console_unlock+0x2b7/0x400
  hardirqs last disabled at (19335006): [<ffffffffab0e0d0d>] console_unlock+0x33d/0x400
  softirqs last  enabled at (19334900): [<ffffffffaba0030d>] __do_softirq+0x30d/0x574
  softirqs last disabled at (19334893): [<ffffffffab0721ec>] irq_exit_rcu+0x12c/0x140
  ---[ end trace 45939e308e0dd3c7 ]---
  BTRFS: error (device vdd) in btrfs_run_delayed_refs:2150: errno=-28 No space left
  BTRFS info (device vdd): forced readonly
  BTRFS warning (device vdd): failed setting block group ro: -30
  BTRFS info (device vdd): suspending dev_replace for unmount
  assertion failed: !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state), in fs/btrfs/volumes.c:1150
  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.h:3431!
  invalid opcode: 0000 [#1] PREEMPT SMP
  CPU: 1 PID: 3982 Comm: umount Tainted: G        W         5.14.0-rc5-default+ #1532
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
  RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
  RSP: 0018:ffffb7a5454c7db8 EFLAGS: 00010246
  RAX: 0000000000000068 RBX: ffff978364b91c00 RCX: 0000000000000000
  RDX: 0000000000000000 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
  RBP: ffff9783523a4c00 R08: 0000000000000001 R09: 0000000000000001
  R10: 0000000000000000 R11: 0000000000000001 R12: ffff9783523a4d18
  R13: 0000000000000000 R14: 0000000000000004 R15: 0000000000000003
  FS:  00007f61c8f42800(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 000056190cffa810 CR3: 0000000030b96002 CR4: 0000000000170ea0
  Call Trace:
   btrfs_close_one_device.cold+0x11/0x55 [btrfs]
   close_fs_devices+0x44/0xb0 [btrfs]
   btrfs_close_devices+0x48/0x160 [btrfs]
   generic_shutdown_super+0x69/0x100
   kill_anon_super+0x14/0x30
   btrfs_kill_super+0x12/0x20 [btrfs]
   deactivate_locked_super+0x2c/0xa0
   cleanup_mnt+0x144/0x1b0
   task_work_run+0x59/0xa0
   exit_to_user_mode_loop+0xe7/0xf0
   exit_to_user_mode_prepare+0xaf/0xf0
   syscall_exit_to_user_mode+0x19/0x50
   do_syscall_64+0x4a/0x90
   entry_SYSCALL_64_after_hwframe+0x44/0xae

This happens when close_ctree is called while a dev_replace hasn't
completed. In close_ctree, we suspend the dev_replace, but keep the
replace target around so that we can resume the dev_replace procedure
when we mount the root again. This is the call trace:

  close_ctree():
    btrfs_dev_replace_suspend_for_unmount();
    btrfs_close_devices():
      btrfs_close_fs_devices():
        btrfs_close_one_device():
          ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
                 &device->dev_state));

However, since the replace target sticks around, there is a device
with BTRFS_DEV_STATE_REPLACE_TGT set on close, and we fail the
assertion in btrfs_close_one_device.

To fix this, if we come across the replace target device when
closing, we should properly reset it back to allocation state. This
fix also ensures that if a non-target device has a corrupted state and
has the BTRFS_DEV_STATE_REPLACE_TGT bit set, the assertion will still
catch the error.

Reported-by: David Sterba <dsterba@suse.com>
Fixes: b2a616676839 ("btrfs: fix rw device counting in __btrfs_free_extra_devids")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-22 12:26:19 +02:00
Josef Bacik 8554095328 btrfs: wake up async_delalloc_pages waiters after submit
commit ac98141d140444fe93e26471d3074c603b70e2ca upstream.

We use the async_delalloc_pages mechanism to make sure that we've
completed our async work before trying to continue our delalloc
flushing.  The reason for this is we need to see any ordered extents
that were created by our delalloc flushing.  However we're waking up
before we do the submit work, which is before we create the ordered
extents.  This is a pretty wide race window where we could potentially
think there are no ordered extents and thus exit shrink_delalloc
prematurely.  Fix this by waking us up after we've done the work to
create ordered extents.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-22 12:26:19 +02:00
Qu Wenruo c1ea74f642 Revert "btrfs: compression: don't try to compress if we don't have enough pages"
commit 4e9655763b82a91e4c341835bb504a2b1590f984 upstream.

This reverts commit f2165627319ffd33a6217275e5690b1ab5c45763.

[BUG]
It's no longer possible to create compressed inline extent after commit
f2165627319f ("btrfs: compression: don't try to compress if we don't
have enough pages").

[CAUSE]
For compression code, there are several possible reasons we have a range
that needs to be compressed while it's no more than one page.

- Compressed inline write
  The data is always smaller than one sector and the test lacks the
  condition to properly recognize a non-inline extent.

- Compressed subpage write
  For the incoming subpage compressed write support, we require page
  alignment of the delalloc range.
  And for 64K page size, we can compress just one page into smaller
  sectors.

For those reasons, the requirement for the data to be more than one page
is not correct, and is already causing regression for compressed inline
data writeback.  The idea of skipping one page to avoid wasting CPU time
could be revisited in the future.

[FIX]
Fix it by reverting the offending commit.

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/afa2742.c084f5d6.17b6b08dffc@tnonline.net
Fixes: f2165627319f ("btrfs: compression: don't try to compress if we don't have enough pages")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-12 08:56:41 +02:00
Qu Wenruo d7f7eca72e btrfs: fix NULL pointer dereference when deleting device by invalid id
commit e4571b8c5e9ffa1e85c0c671995bd4dcc5c75091 upstream.

[BUG]
It's easy to trigger NULL pointer dereference, just by removing a
non-existing device id:

 # mkfs.btrfs -f -m single -d single /dev/test/scratch1 \
				     /dev/test/scratch2
 # mount /dev/test/scratch1 /mnt/btrfs
 # btrfs device remove 3 /mnt/btrfs

Then we have the following kernel NULL pointer dereference:

 BUG: kernel NULL pointer dereference, address: 0000000000000000
 #PF: supervisor read access in kernel mode
 #PF: error_code(0x0000) - not-present page
 PGD 0 P4D 0
 Oops: 0000 [#1] PREEMPT SMP NOPTI
 CPU: 9 PID: 649 Comm: btrfs Not tainted 5.14.0-rc3-custom+ #35
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
 RIP: 0010:btrfs_rm_device+0x4de/0x6b0 [btrfs]
  btrfs_ioctl+0x18bb/0x3190 [btrfs]
  ? lock_is_held_type+0xa5/0x120
  ? find_held_lock.constprop.0+0x2b/0x80
  ? do_user_addr_fault+0x201/0x6a0
  ? lock_release+0xd2/0x2d0
  ? __x64_sys_ioctl+0x83/0xb0
  __x64_sys_ioctl+0x83/0xb0
  do_syscall_64+0x3b/0x90
  entry_SYSCALL_64_after_hwframe+0x44/0xae

[CAUSE]
Commit a27a94c2b0 ("btrfs: Make btrfs_find_device_by_devspec return
btrfs_device directly") moves the "missing" device path check into
btrfs_rm_device().

But btrfs_rm_device() itself can have case where it only receives
@devid, with NULL as @device_path.

In that case, calling strcmp() on NULL will trigger the NULL pointer
dereference.

Before that commit, we handle the "missing" case inside
btrfs_find_device_by_devspec(), which will not check @device_path at all
if @devid is provided, thus no way to trigger the bug.

[FIX]
Before calling strcmp(), also make sure @device_path is not NULL.

Fixes: a27a94c2b0 ("btrfs: Make btrfs_find_device_by_devspec return btrfs_device directly")
CC: stable@vger.kernel.org # 5.4+
Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03 10:08:16 +02:00
Filipe Manana 8a19e00450 btrfs: fix race between marking inode needs to be logged and log syncing
commit bc0939fcfab0d7efb2ed12896b1af3d819954a14 upstream.

We have a race between marking that an inode needs to be logged, either
at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between
btrfs_sync_log(). The following steps describe how the race happens.

1) We are at transaction N;

2) Inode I was previously fsynced in the current transaction so it has:

    inode->logged_trans set to N;

3) The inode's root currently has:

   root->log_transid set to 1
   root->last_log_commit set to 0

   Which means only one log transaction was committed to far, log
   transaction 0. When a log tree is created we set ->log_transid and
   ->last_log_commit of its parent root to 0 (at btrfs_add_log_tree());

4) One more range of pages is dirtied in inode I;

5) Some task A starts an fsync against some other inode J (same root), and
   so it joins log transaction 1.

   Before task A calls btrfs_sync_log()...

6) Task B starts an fsync against inode I, which currently has the full
   sync flag set, so it starts delalloc and waits for the ordered extent
   to complete before calling btrfs_inode_in_log() at btrfs_sync_file();

7) During ordered extent completion we have btrfs_update_inode() called
   against inode I, which in turn calls btrfs_set_inode_last_trans(),
   which does the following:

     spin_lock(&inode->lock);
     inode->last_trans = trans->transaction->transid;
     inode->last_sub_trans = inode->root->log_transid;
     inode->last_log_commit = inode->root->last_log_commit;
     spin_unlock(&inode->lock);

   So ->last_trans is set to N and ->last_sub_trans set to 1.
   But before setting ->last_log_commit...

8) Task A is at btrfs_sync_log():

   - it increments root->log_transid to 2
   - starts writeback for all log tree extent buffers
   - waits for the writeback to complete
   - writes the super blocks
   - updates root->last_log_commit to 1

   It's a lot of slow steps between updating root->log_transid and
   root->last_log_commit;

9) The task doing the ordered extent completion, currently at
   btrfs_set_inode_last_trans(), then finally runs:

     inode->last_log_commit = inode->root->last_log_commit;
     spin_unlock(&inode->lock);

   Which results in inode->last_log_commit being set to 1.
   The ordered extent completes;

10) Task B is resumed, and it calls btrfs_inode_in_log() which returns
    true because we have all the following conditions met:

    inode->logged_trans == N which matches fs_info->generation &&
    inode->last_subtrans (1) <= inode->last_log_commit (1) &&
    inode->last_subtrans (1) <= root->last_log_commit (1) &&
    list inode->extent_tree.modified_extents is empty

    And as a consequence we return without logging the inode, so the
    existing logged version of the inode does not point to the extent
    that was written after the previous fsync.

It should be impossible in practice for one task be able to do so much
progress in btrfs_sync_log() while another task is at
btrfs_set_inode_last_trans() right after it reads root->log_transid and
before it reads root->last_log_commit. Even if kernel preemption is enabled
we know the task at btrfs_set_inode_last_trans() can not be preempted
because it is holding the inode's spinlock.

However there is another place where we do the same without holding the
spinlock, which is in the memory mapped write path at:

  vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
  {
     (...)
     BTRFS_I(inode)->last_trans = fs_info->generation;
     BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
     BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
     (...)

So with preemption happening after setting ->last_sub_trans and before
setting ->last_log_commit, it is less of a stretch to have another task
do enough progress at btrfs_sync_log() such that the task doing the memory
mapped write ends up with ->last_sub_trans and ->last_log_commit set to
the same value. It is still a big stretch to get there, as the task doing
btrfs_sync_log() has to start writeback, wait for its completion and write
the super blocks.

So fix this in two different ways:

1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the
   value of ->last_sub_trans minus 1;

2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just
   like we do for buffered and direct writes at btrfs_file_write_iter(),
   which is all we need to make sure multiple writes and fsyncs to an
   inode in the same transaction never result in an fsync missing that
   the inode changed and needs to be logged. Turn this into a helper
   function and use it both at btrfs_page_mkwrite() and at
   btrfs_file_write_iter() - this also fixes the problem that at
   btrfs_page_mkwrite() we were setting those fields without the
   protection of the inode's spinlock.

This is an extremely unlikely race to happen in practice.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03 10:08:15 +02:00
NeilBrown 548b75f490 btrfs: prevent rename2 from exchanging a subvol with a directory from different parents
[ Upstream commit 3f79f6f6247c83f448c8026c3ee16d4636ef8d4f ]

Cross-rename lacks a check when that would prevent exchanging a
directory and subvolume from different parent subvolume. This causes
data inconsistencies and is caught before commit by tree-checker,
turning the filesystem to read-only.

Calling the renameat2 with RENAME_EXCHANGE flags like

  renameat2(AT_FDCWD, namesrc, AT_FDCWD, namedest, (1 << 1))

on two paths:

  namesrc = dir1/subvol1/dir2
 namedest = subvol2/subvol3

will cause key order problem with following write time tree-checker
report:

  [1194842.307890] BTRFS critical (device loop1): corrupt leaf: root=5 block=27574272 slot=10 ino=258, invalid previous key objectid, have 257 expect 258
  [1194842.322221] BTRFS info (device loop1): leaf 27574272 gen 8 total ptrs 11 free space 15444 owner 5
  [1194842.331562] BTRFS info (device loop1): refs 2 lock_owner 0 current 26561
  [1194842.338772]        item 0 key (256 1 0) itemoff 16123 itemsize 160
  [1194842.338793]                inode generation 3 size 16 mode 40755
  [1194842.338801]        item 1 key (256 12 256) itemoff 16111 itemsize 12
  [1194842.338809]        item 2 key (256 84 2248503653) itemoff 16077 itemsize 34
  [1194842.338817]                dir oid 258 type 2
  [1194842.338823]        item 3 key (256 84 2363071922) itemoff 16043 itemsize 34
  [1194842.338830]                dir oid 257 type 2
  [1194842.338836]        item 4 key (256 96 2) itemoff 16009 itemsize 34
  [1194842.338843]        item 5 key (256 96 3) itemoff 15975 itemsize 34
  [1194842.338852]        item 6 key (257 1 0) itemoff 15815 itemsize 160
  [1194842.338863]                inode generation 6 size 8 mode 40755
  [1194842.338869]        item 7 key (257 12 256) itemoff 15801 itemsize 14
  [1194842.338876]        item 8 key (257 84 2505409169) itemoff 15767 itemsize 34
  [1194842.338883]                dir oid 256 type 2
  [1194842.338888]        item 9 key (257 96 2) itemoff 15733 itemsize 34
  [1194842.338895]        item 10 key (258 12 256) itemoff 15719 itemsize 14
  [1194842.339163] BTRFS error (device loop1): block=27574272 write time tree block corruption detected
  [1194842.339245] ------------[ cut here ]------------
  [1194842.443422] WARNING: CPU: 6 PID: 26561 at fs/btrfs/disk-io.c:449 csum_one_extent_buffer+0xed/0x100 [btrfs]
  [1194842.511863] CPU: 6 PID: 26561 Comm: kworker/u17:2 Not tainted 5.14.0-rc3-git+ #793
  [1194842.511870] Hardware name: empty empty/S3993, BIOS PAQEX0-3 02/24/2008
  [1194842.511876] Workqueue: btrfs-worker-high btrfs_work_helper [btrfs]
  [1194842.511976] RIP: 0010:csum_one_extent_buffer+0xed/0x100 [btrfs]
  [1194842.512068] RSP: 0018:ffffa2c284d77da0 EFLAGS: 00010282
  [1194842.512074] RAX: 0000000000000000 RBX: 0000000000001000 RCX: ffff928867bd9978
  [1194842.512078] RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff928867bd9970
  [1194842.512081] RBP: ffff92876b958000 R08: 0000000000000001 R09: 00000000000c0003
  [1194842.512085] R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
  [1194842.512088] R13: ffff92875f989f98 R14: 0000000000000000 R15: 0000000000000000
  [1194842.512092] FS:  0000000000000000(0000) GS:ffff928867a00000(0000) knlGS:0000000000000000
  [1194842.512095] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [1194842.512099] CR2: 000055f5384da1f0 CR3: 0000000102fe4000 CR4: 00000000000006e0
  [1194842.512103] Call Trace:
  [1194842.512128]  ? run_one_async_free+0x10/0x10 [btrfs]
  [1194842.631729]  btree_csum_one_bio+0x1ac/0x1d0 [btrfs]
  [1194842.631837]  run_one_async_start+0x18/0x30 [btrfs]
  [1194842.631938]  btrfs_work_helper+0xd5/0x1d0 [btrfs]
  [1194842.647482]  process_one_work+0x262/0x5e0
  [1194842.647520]  worker_thread+0x4c/0x320
  [1194842.655935]  ? process_one_work+0x5e0/0x5e0
  [1194842.655946]  kthread+0x135/0x160
  [1194842.655953]  ? set_kthread_struct+0x40/0x40
  [1194842.655965]  ret_from_fork+0x1f/0x30
  [1194842.672465] irq event stamp: 1729
  [1194842.672469] hardirqs last  enabled at (1735): [<ffffffffbd1104f5>] console_trylock_spinning+0x185/0x1a0
  [1194842.672477] hardirqs last disabled at (1740): [<ffffffffbd1104cc>] console_trylock_spinning+0x15c/0x1a0
  [1194842.672482] softirqs last  enabled at (1666): [<ffffffffbdc002e1>] __do_softirq+0x2e1/0x50a
  [1194842.672491] softirqs last disabled at (1651): [<ffffffffbd08aab7>] __irq_exit_rcu+0xa7/0xd0

The corrupted data will not be written, and filesystem can be unmounted
and mounted again (all changes since the last commit will be lost).

Add the missing check for new_ino so that all non-subvolumes must reside
under the same parent subvolume. There's an exception allowing to
exchange two subvolumes from any parents as the directory representing a
subvolume is only a logical link and does not have any other structures
related to the parent subvolume, unlike files, directories etc, that
are always in the inode namespace of the parent subvolume.

Fixes: cdd1fedf82 ("btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT")
CC: stable@vger.kernel.org # 4.7+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-26 08:36:21 -04:00
Nikolay Borisov 983d6a6b7e btrfs: don't flush from btrfs_delayed_inode_reserve_metadata
commit 4d14c5cde5c268a2bc26addecf09489cb953ef64 upstream

Calling btrfs_qgroup_reserve_meta_prealloc from
btrfs_delayed_inode_reserve_metadata can result in flushing delalloc
while holding a transaction and delayed node locks. This is deadlock
prone. In the past multiple commits:

 * ae5e070eaca9 ("btrfs: qgroup: don't try to wait flushing if we're
already holding a transaction")

 * 6f23277a49e6 ("btrfs: qgroup: don't commit transaction when we already
 hold the handle")

Tried to solve various aspects of this but this was always a
whack-a-mole game. Unfortunately those 2 fixes don't solve a deadlock
scenario involving btrfs_delayed_node::mutex. Namely, one thread
can call btrfs_dirty_inode as a result of reading a file and modifying
its atime:

  PID: 6963   TASK: ffff8c7f3f94c000  CPU: 2   COMMAND: "test"
  #0  __schedule at ffffffffa529e07d
  #1  schedule at ffffffffa529e4ff
  #2  schedule_timeout at ffffffffa52a1bdd
  #3  wait_for_completion at ffffffffa529eeea             <-- sleeps with delayed node mutex held
  #4  start_delalloc_inodes at ffffffffc0380db5
  #5  btrfs_start_delalloc_snapshot at ffffffffc0393836
  #6  try_flush_qgroup at ffffffffc03f04b2
  #7  __btrfs_qgroup_reserve_meta at ffffffffc03f5bb6     <-- tries to reserve space and starts delalloc inodes.
  #8  btrfs_delayed_update_inode at ffffffffc03e31aa      <-- acquires delayed node mutex
  #9  btrfs_update_inode at ffffffffc0385ba8
 #10  btrfs_dirty_inode at ffffffffc038627b               <-- TRANSACTIION OPENED
 #11  touch_atime at ffffffffa4cf0000
 #12  generic_file_read_iter at ffffffffa4c1f123
 #13  new_sync_read at ffffffffa4ccdc8a
 #14  vfs_read at ffffffffa4cd0849
 #15  ksys_read at ffffffffa4cd0bd1
 #16  do_syscall_64 at ffffffffa4a052eb
 #17  entry_SYSCALL_64_after_hwframe at ffffffffa540008c

This will cause an asynchronous work to flush the delalloc inodes to
happen which can try to acquire the same delayed_node mutex:

  PID: 455    TASK: ffff8c8085fa4000  CPU: 5   COMMAND: "kworker/u16:30"
  #0  __schedule at ffffffffa529e07d
  #1  schedule at ffffffffa529e4ff
  #2  schedule_preempt_disabled at ffffffffa529e80a
  #3  __mutex_lock at ffffffffa529fdcb                    <-- goes to sleep, never wakes up.
  #4  btrfs_delayed_update_inode at ffffffffc03e3143      <-- tries to acquire the mutex
  #5  btrfs_update_inode at ffffffffc0385ba8              <-- this is the same inode that pid 6963 is holding
  #6  cow_file_range_inline.constprop.78 at ffffffffc0386be7
  #7  cow_file_range at ffffffffc03879c1
  #8  btrfs_run_delalloc_range at ffffffffc038894c
  #9  writepage_delalloc at ffffffffc03a3c8f
 #10  __extent_writepage at ffffffffc03a4c01
 #11  extent_write_cache_pages at ffffffffc03a500b
 #12  extent_writepages at ffffffffc03a6de2
 #13  do_writepages at ffffffffa4c277eb
 #14  __filemap_fdatawrite_range at ffffffffa4c1e5bb
 #15  btrfs_run_delalloc_work at ffffffffc0380987         <-- starts running delayed nodes
 #16  normal_work_helper at ffffffffc03b706c
 #17  process_one_work at ffffffffa4aba4e4
 #18  worker_thread at ffffffffa4aba6fd
 #19  kthread at ffffffffa4ac0a3d
 #20  ret_from_fork at ffffffffa54001ff

To fully address those cases the complete fix is to never issue any
flushing while holding the transaction or the delayed node lock. This
patch achieves it by calling qgroup_reserve_meta directly which will
either succeed without flushing or will fail and return -EDQUOT. In the
latter case that return value is going to be propagated to
btrfs_dirty_inode which will fallback to start a new transaction. That's
fine as the majority of time we expect the inode will have
BTRFS_DELAYED_NODE_INODE_DIRTY flag set which will result in directly
copying the in-memory state.

Fixes: c53e9653605d ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:06 +02:00
Nikolay Borisov ea13f678a3 btrfs: export and rename qgroup_reserve_meta
commit 80e9baed722c853056e0c5374f51524593cb1031 upstream

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:06 +02:00
Qu Wenruo 41a9b8f36d btrfs: qgroup: don't commit transaction when we already hold the handle
commit 6f23277a49e68f8a9355385c846939ad0b1261e7 upstream

[BUG]
When running the following script, btrfs will trigger an ASSERT():

  #/bin/bash
  mkfs.btrfs -f $dev
  mount $dev $mnt
  xfs_io -f -c "pwrite 0 1G" $mnt/file
  sync
  btrfs quota enable $mnt
  btrfs quota rescan -w $mnt

  # Manually set the limit below current usage
  btrfs qgroup limit 512M $mnt $mnt

  # Crash happens
  touch $mnt/file

The dmesg looks like this:

  assertion failed: refcount_read(&trans->use_count) == 1, in fs/btrfs/transaction.c:2022
  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.h:3230!
  invalid opcode: 0000 [#1] SMP PTI
  RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
   btrfs_commit_transaction.cold+0x11/0x5d [btrfs]
   try_flush_qgroup+0x67/0x100 [btrfs]
   __btrfs_qgroup_reserve_meta+0x3a/0x60 [btrfs]
   btrfs_delayed_update_inode+0xaa/0x350 [btrfs]
   btrfs_update_inode+0x9d/0x110 [btrfs]
   btrfs_dirty_inode+0x5d/0xd0 [btrfs]
   touch_atime+0xb5/0x100
   iterate_dir+0xf1/0x1b0
   __x64_sys_getdents64+0x78/0x110
   do_syscall_64+0x33/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7fb5afe588db

[CAUSE]
In try_flush_qgroup(), we assume we don't hold a transaction handle at
all.  This is true for data reservation and mostly true for metadata.
Since data space reservation always happens before we start a
transaction, and for most metadata operation we reserve space in
start_transaction().

But there is an exception, btrfs_delayed_inode_reserve_metadata().
It holds a transaction handle, while still trying to reserve extra
metadata space.

When we hit EDQUOT inside btrfs_delayed_inode_reserve_metadata(), we
will join current transaction and commit, while we still have
transaction handle from qgroup code.

[FIX]
Let's check current->journal before we join the transaction.

If current->journal is unset or BTRFS_SEND_TRANS_STUB, it means
we are not holding a transaction, thus are able to join and then commit
transaction.

If current->journal is a valid transaction handle, we avoid committing
transaction and just end it

This is less effective than committing current transaction, as it won't
free metadata reserved space, but we may still free some data space
before new data writes.

Bugzilla: https://bugzilla.suse.com/show_bug.cgi?id=1178634
Fixes: c53e9653605d ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:05 +02:00
Filipe Manana 654c19a7e8 btrfs: fix lockdep splat when enabling and disabling qgroups
commit a855fbe69229078cd8aecd8974fb996a5ca651e6 upstream

When running test case btrfs/017 from fstests, lockdep reported the
following splat:

  [ 1297.067385] ======================================================
  [ 1297.067708] WARNING: possible circular locking dependency detected
  [ 1297.068022] 5.10.0-rc4-btrfs-next-73 #1 Not tainted
  [ 1297.068322] ------------------------------------------------------
  [ 1297.068629] btrfs/189080 is trying to acquire lock:
  [ 1297.068929] ffff9f2725731690 (sb_internal#2){.+.+}-{0:0}, at: btrfs_quota_enable+0xaf/0xa70 [btrfs]
  [ 1297.069274]
		 but task is already holding lock:
  [ 1297.069868] ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs]
  [ 1297.070219]
		 which lock already depends on the new lock.

  [ 1297.071131]
		 the existing dependency chain (in reverse order) is:
  [ 1297.071721]
		 -> #1 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}:
  [ 1297.072375]        lock_acquire+0xd8/0x490
  [ 1297.072710]        __mutex_lock+0xa3/0xb30
  [ 1297.073061]        btrfs_qgroup_inherit+0x59/0x6a0 [btrfs]
  [ 1297.073421]        create_subvol+0x194/0x990 [btrfs]
  [ 1297.073780]        btrfs_mksubvol+0x3fb/0x4a0 [btrfs]
  [ 1297.074133]        __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs]
  [ 1297.074498]        btrfs_ioctl_snap_create+0x58/0x80 [btrfs]
  [ 1297.074872]        btrfs_ioctl+0x1a90/0x36f0 [btrfs]
  [ 1297.075245]        __x64_sys_ioctl+0x83/0xb0
  [ 1297.075617]        do_syscall_64+0x33/0x80
  [ 1297.075993]        entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [ 1297.076380]
		 -> #0 (sb_internal#2){.+.+}-{0:0}:
  [ 1297.077166]        check_prev_add+0x91/0xc60
  [ 1297.077572]        __lock_acquire+0x1740/0x3110
  [ 1297.077984]        lock_acquire+0xd8/0x490
  [ 1297.078411]        start_transaction+0x3c5/0x760 [btrfs]
  [ 1297.078853]        btrfs_quota_enable+0xaf/0xa70 [btrfs]
  [ 1297.079323]        btrfs_ioctl+0x2c60/0x36f0 [btrfs]
  [ 1297.079789]        __x64_sys_ioctl+0x83/0xb0
  [ 1297.080232]        do_syscall_64+0x33/0x80
  [ 1297.080680]        entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [ 1297.081139]
		 other info that might help us debug this:

  [ 1297.082536]  Possible unsafe locking scenario:

  [ 1297.083510]        CPU0                    CPU1
  [ 1297.084005]        ----                    ----
  [ 1297.084500]   lock(&fs_info->qgroup_ioctl_lock);
  [ 1297.084994]                                lock(sb_internal#2);
  [ 1297.085485]                                lock(&fs_info->qgroup_ioctl_lock);
  [ 1297.085974]   lock(sb_internal#2);
  [ 1297.086454]
		  *** DEADLOCK ***
  [ 1297.087880] 3 locks held by btrfs/189080:
  [ 1297.088324]  #0: ffff9f2725731470 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0xa73/0x36f0 [btrfs]
  [ 1297.088799]  #1: ffff9f2702b60cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1f4d/0x36f0 [btrfs]
  [ 1297.089284]  #2: ffff9f2702b61a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0xa70 [btrfs]
  [ 1297.089771]
		 stack backtrace:
  [ 1297.090662] CPU: 5 PID: 189080 Comm: btrfs Not tainted 5.10.0-rc4-btrfs-next-73 #1
  [ 1297.091132] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
  [ 1297.092123] Call Trace:
  [ 1297.092629]  dump_stack+0x8d/0xb5
  [ 1297.093115]  check_noncircular+0xff/0x110
  [ 1297.093596]  check_prev_add+0x91/0xc60
  [ 1297.094076]  ? kvm_clock_read+0x14/0x30
  [ 1297.094553]  ? kvm_sched_clock_read+0x5/0x10
  [ 1297.095029]  __lock_acquire+0x1740/0x3110
  [ 1297.095510]  lock_acquire+0xd8/0x490
  [ 1297.095993]  ? btrfs_quota_enable+0xaf/0xa70 [btrfs]
  [ 1297.096476]  start_transaction+0x3c5/0x760 [btrfs]
  [ 1297.096962]  ? btrfs_quota_enable+0xaf/0xa70 [btrfs]
  [ 1297.097451]  btrfs_quota_enable+0xaf/0xa70 [btrfs]
  [ 1297.097941]  ? btrfs_ioctl+0x1f4d/0x36f0 [btrfs]
  [ 1297.098429]  btrfs_ioctl+0x2c60/0x36f0 [btrfs]
  [ 1297.098904]  ? do_user_addr_fault+0x20c/0x430
  [ 1297.099382]  ? kvm_clock_read+0x14/0x30
  [ 1297.099854]  ? kvm_sched_clock_read+0x5/0x10
  [ 1297.100328]  ? sched_clock+0x5/0x10
  [ 1297.100801]  ? sched_clock_cpu+0x12/0x180
  [ 1297.101272]  ? __x64_sys_ioctl+0x83/0xb0
  [ 1297.101739]  __x64_sys_ioctl+0x83/0xb0
  [ 1297.102207]  do_syscall_64+0x33/0x80
  [ 1297.102673]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [ 1297.103148] RIP: 0033:0x7f773ff65d87

This is because during the quota enable ioctl we lock first the mutex
qgroup_ioctl_lock and then start a transaction, and starting a transaction
acquires a fs freeze semaphore (at the VFS level). However, every other
code path, except for the quota disable ioctl path, we do the opposite:
we start a transaction and then lock the mutex.

So fix this by making the quota enable and disable paths to start the
transaction without having the mutex locked, and then, after starting the
transaction, lock the mutex and check if some other task already enabled
or disabled the quotas, bailing with success if that was the case.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>

 Conflicts:
	fs/btrfs/qgroup.c
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:05 +02:00
Qu Wenruo c55442cdfd btrfs: qgroup: remove ASYNC_COMMIT mechanism in favor of reserve retry-after-EDQUOT
commit adca4d945c8dca28a85df45c5b117e6dac2e77f1 upstream

commit a514d63882 ("btrfs: qgroup: Commit transaction in advance to
reduce early EDQUOT") tries to reduce the early EDQUOT problems by
checking the qgroup free against threshold and tries to wake up commit
kthread to free some space.

The problem of that mechanism is, it can only free qgroup per-trans
metadata space, can't do anything to data, nor prealloc qgroup space.

Now since we have the ability to flush qgroup space, and implemented
retry-after-EDQUOT behavior, such mechanism can be completely replaced.

So this patch will cleanup such mechanism in favor of
retry-after-EDQUOT.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:05 +02:00
Qu Wenruo fdaf6a322f btrfs: transaction: Cleanup unused TRANS_STATE_BLOCKED
commit 3296bf562443a8ca35aaad959a76a49e9b412760 upstream

The state was introduced in commit 4a9d8bdee3 ("Btrfs: make the state
of the transaction more readable"), then in commit 302167c50b
("btrfs: don't end the transaction for delayed refs in throttle") the
state is completely removed.

So we can just clean up the state since it's only compared but never
set.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:05 +02:00
Qu Wenruo 36af2de520 btrfs: qgroup: try to flush qgroup space when we get -EDQUOT
commit c53e9653605dbf708f5be02902de51831be4b009 upstream

[PROBLEM]
There are known problem related to how btrfs handles qgroup reserved
space.  One of the most obvious case is the the test case btrfs/153,
which do fallocate, then write into the preallocated range.

#  btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad)
#      --- tests/btrfs/153.out     2019-10-22 15:18:14.068965341 +0800
#      +++ xfstests-dev/results//btrfs/153.out.bad      2020-07-01 20:24:40.730000089 +0800
#      @@ -1,2 +1,5 @@
#       QA output created by 153
#      +pwrite: Disk quota exceeded
#      +/mnt/scratch/testfile2: Disk quota exceeded
#      +/mnt/scratch/testfile2: Disk quota exceeded
#       Silence is golden
#      ...
#      (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad'  to see the entire diff)

[CAUSE]
Since commit c6887cd111 ("Btrfs: don't do nocow check unless we have to"),
we always reserve space no matter if it's COW or not.

Such behavior change is mostly for performance, and reverting it is not
a good idea anyway.

For preallcoated extent, we reserve qgroup data space for it already,
and since we also reserve data space for qgroup at buffered write time,
it needs twice the space for us to write into preallocated space.

This leads to the -EDQUOT in buffered write routine.

And we can't follow the same solution, unlike data/meta space check,
qgroup reserved space is shared between data/metadata.
The EDQUOT can happen at the metadata reservation, so doing NODATACOW
check after qgroup reservation failure is not a solution.

[FIX]
To solve the problem, we don't return -EDQUOT directly, but every time
we got a -EDQUOT, we try to flush qgroup space:

- Flush all inodes of the root
  NODATACOW writes will free the qgroup reserved at run_dealloc_range().
  However we don't have the infrastructure to only flush NODATACOW
  inodes, here we flush all inodes anyway.

- Wait for ordered extents
  This would convert the preallocated metadata space into per-trans
  metadata, which can be freed in later transaction commit.

- Commit transaction
  This will free all per-trans metadata space.

Also we don't want to trigger flush multiple times, so here we introduce
a per-root wait list and a new root status, to ensure only one thread
starts the flushing.

Fixes: c6887cd111 ("Btrfs: don't do nocow check unless we have to")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:05 +02:00
Qu Wenruo 5c79287c2b btrfs: qgroup: allow to unreserve range without releasing other ranges
commit 263da812e87bac4098a4778efaa32c54275641db upstream

[PROBLEM]
Before this patch, when btrfs_qgroup_reserve_data() fails, we free all
reserved space of the changeset.

For example:
	ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M);
	ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M);
	ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M);

If the last btrfs_qgroup_reserve_data() failed, it will release the
entire [0, 3M) range.

This behavior is kind of OK for now, as when we hit -EDQUOT, we normally
go error handling and need to release all reserved ranges anyway.

But this also means the following call is not possible:

	ret = btrfs_qgroup_reserve_data();
	if (ret == -EDQUOT) {
		/* Do something to free some qgroup space */
		ret = btrfs_qgroup_reserve_data();
	}

As if the first btrfs_qgroup_reserve_data() fails, it will free all
reserved qgroup space.

[CAUSE]
This is because we release all reserved ranges when
btrfs_qgroup_reserve_data() fails.

[FIX]
This patch will implement a new function, qgroup_unreserve_range(), to
iterate through the ulist nodes, to find any nodes in the failure range,
and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and
decrease the extent_changeset::bytes_changed, so that we can revert to
previous state.

This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT
happens.

Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:05 +02:00
Nikolay Borisov b7a722fd75 btrfs: make btrfs_qgroup_reserve_data take btrfs_inode
commit 7661a3e033ab782366e0e1f4b6aad0df3555fcbd upstream

There's only a single use of vfs_inode in a tracepoint so let's take
btrfs_inode directly.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:04 +02:00
Nikolay Borisov dfadea4061 btrfs: make qgroup_free_reserved_data take btrfs_inode
commit df2cfd131fd33dbef1ce33be8b332b1f3d645f35 upstream

It only uses btrfs_inode so can just as easily take it as an argument.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15 13:08:04 +02:00
Filipe Manana 86f2a3e9aa btrfs: fix lost inode on log replay after mix of fsync, rename and inode eviction
[ Upstream commit ecc64fab7d49c678e70bd4c35fe64d2ab3e3d212 ]

When checking if we need to log the new name of a renamed inode, we are
checking if the inode and its parent inode have been logged before, and if
not we don't log the new name. The check however is buggy, as it directly
compares the logged_trans field of the inodes versus the ID of the current
transaction. The problem is that logged_trans is a transient field, only
stored in memory and never persisted in the inode item, so if an inode
was logged before, evicted and reloaded, its logged_trans field is set to
a value of 0, meaning the check will return false and the new name of the
renamed inode is not logged. If the old parent directory was previously
fsynced and we deleted the logged directory entries corresponding to the
old name, we end up with a log that when replayed will delete the renamed
inode.

The following example triggers the problem:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt

  $ mkdir /mnt/A
  $ mkdir /mnt/B
  $ echo -n "hello world" > /mnt/A/foo

  $ sync

  # Add some new file to A and fsync directory A.
  $ touch /mnt/A/bar
  $ xfs_io -c "fsync" /mnt/A

  # Now trigger inode eviction. We are only interested in triggering
  # eviction for the inode of directory A.
  $ echo 2 > /proc/sys/vm/drop_caches

  # Move foo from directory A to directory B.
  # This deletes the directory entries for foo in A from the log, and
  # does not add the new name for foo in directory B to the log, because
  # logged_trans of A is 0, which is less than the current transaction ID.
  $ mv /mnt/A/foo /mnt/B/foo

  # Now make an fsync to anything except A, B or any file inside them,
  # like for example create a file at the root directory and fsync this
  # new file. This syncs the log that contains all the changes done by
  # previous rename operation.
  $ touch /mnt/baz
  $ xfs_io -c "fsync" /mnt/baz

  <power fail>

  # Mount the filesystem and replay the log.
  $ mount /dev/sdc /mnt

  # Check the filesystem content.
  $ ls -1R /mnt
  /mnt/:
  A
  B
  baz

  /mnt/A:
  bar

  /mnt/B:
  $

  # File foo is gone, it's neither in A/ nor in B/.

Fix this by using the inode_logged() helper at btrfs_log_new_name(), which
safely checks if an inode was logged before in the current transaction.

A test case for fstests will follow soon.

CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-08 09:04:07 +02:00
Filipe Manana b7f0fa2192 btrfs: fix race causing unnecessary inode logging during link and rename
[ Upstream commit de53d892e5c51dfa0a158e812575a75a6c991f39 ]

When we are doing a rename or a link operation for an inode that was logged
in the previous transaction and that transaction is still committing, we
have a time window where we incorrectly consider that the inode was logged
previously in the current transaction and therefore decide to log it to
update it in the log. The following steps give an example on how this
happens during a link operation:

1) Inode X is logged in transaction 1000, so its logged_trans field is set
   to 1000;

2) Task A starts to commit transaction 1000;

3) The state of transaction 1000 is changed to TRANS_STATE_UNBLOCKED;

4) Task B starts a link operation for inode X, and as a consequence it
   starts transaction 1001;

5) Task A is still committing transaction 1000, therefore the value stored
   at fs_info->last_trans_committed is still 999;

6) Task B calls btrfs_log_new_name(), it reads a value of 999 from
   fs_info->last_trans_committed and because the logged_trans field of
   inode X has a value of 1000, the function does not return immediately,
   instead it proceeds to logging the inode, which should not happen
   because the inode was logged in the previous transaction (1000) and
   not in the current one (1001).

This is not a functional problem, just wasted time and space logging an
inode that does not need to be logged, contributing to higher latency
for link and rename operations.

So fix this by comparing the inodes' logged_trans field with the
generation of the current transaction instead of comparing with the value
stored in fs_info->last_trans_committed.

This case is often hit when running dbench for a long enough duration, as
it does lots of rename operations.

This patch belongs to a patch set that is comprised of the following
patches:

  btrfs: fix race causing unnecessary inode logging during link and rename
  btrfs: fix race that results in logging old extents during a fast fsync
  btrfs: fix race that causes unnecessary logging of ancestor inodes
  btrfs: fix race that makes inode logging fallback to transaction commit
  btrfs: fix race leading to unnecessary transaction commit when logging inode
  btrfs: do not block inode logging for so long during transaction commit

Performance results are mentioned in the change log of the last patch.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-08 09:04:07 +02:00
Filipe Manana cb006da62a btrfs: do not commit logs and transactions during link and rename operations
[ Upstream commit 75b463d2b47aef96fe1dc3e0237629963034764b ]

Since commit d4682ba03e ("Btrfs: sync log after logging new name") we
started to commit logs, and fallback to transaction commits when we failed
to log the new names or commit the logs, after link and rename operations
when the target inodes (or their parents) were previously logged in the
current transaction. This was to avoid losing directories despite an
explicit fsync on them when they are ancestors of some inode that got a
new named logged, due to a link or rename operation. However that adds the
cost of starting IO and waiting for it to complete, which can cause higher
latencies for applications.

Instead of doing that, just make sure that when we log a new name for an
inode we don't mark any of its ancestors as logged, so that if any one
does an fsync against any of them, without doing any other change on them,
the fsync commits the log. This way we only pay the cost of a log commit
(or a transaction commit if something goes wrong or a new block group was
created) if the application explicitly asks to fsync any of the parent
directories.

Using dbench, which mixes several filesystems operations including renames,
revealed some significant latency gains. The following script that uses
dbench was used to test this:

  #!/bin/bash

  DEV=/dev/nvme0n1
  MNT=/mnt/btrfs
  MOUNT_OPTIONS="-o ssd -o space_cache=v2"
  MKFS_OPTIONS="-m single -d single"
  THREADS=16

  echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
  mkfs.btrfs -f $MKFS_OPTIONS $DEV
  mount $MOUNT_OPTIONS $DEV $MNT

  dbench -t 300 -D $MNT $THREADS

  umount $MNT

The test was run on bare metal, no virtualization, on a box with 12 cores
(Intel i7-8700), 64Gb of RAM and using a NVMe device, with a kernel
configuration that is the default of typical distributions (debian in this
case), without debug options enabled (kasan, kmemleak, slub debug, debug
of page allocations, lock debugging, etc).

Results before this patch:

 Operation      Count    AvgLat    MaxLat
 ----------------------------------------
 NTCreateX    10750455     0.011   155.088
 Close         7896674     0.001     0.243
 Rename         455222     2.158  1101.947
 Unlink        2171189     0.067   121.638
 Deltree           256     2.425     7.816
 Mkdir             128     0.002     0.003
 Qpathinfo     9744323     0.006    21.370
 Qfileinfo     1707092     0.001     0.146
 Qfsinfo       1786756     0.001    11.228
 Sfileinfo      875612     0.003    21.263
 Find          3767281     0.025     9.617
 WriteX        5356924     0.011   211.390
 ReadX        16852694     0.003     9.442
 LockX           35008     0.002     0.119
 UnlockX         35008     0.001     0.138
 Flush          753458     4.252  1102.249

Throughput 1128.35 MB/sec  16 clients  16 procs  max_latency=1102.255 ms

Results after this patch:

16 clients, after

 Operation      Count    AvgLat    MaxLat
 ----------------------------------------
 NTCreateX    11471098     0.012   448.281
 Close         8426396     0.001     0.925
 Rename         485746     0.123   267.183
 Unlink        2316477     0.080    63.433
 Deltree           288     2.830    11.144
 Mkdir             144     0.003     0.010
 Qpathinfo    10397420     0.006    10.288
 Qfileinfo     1822039     0.001     0.169
 Qfsinfo       1906497     0.002    14.039
 Sfileinfo      934433     0.004     2.438
 Find          4019879     0.026    10.200
 WriteX        5718932     0.011   200.985
 ReadX        17981671     0.003    10.036
 LockX           37352     0.002     0.076
 UnlockX         37352     0.001     0.109
 Flush          804018     5.015   778.033

Throughput 1201.98 MB/sec  16 clients  16 procs  max_latency=778.036 ms
(+6.5% throughput, -29.4% max latency, -75.8% rename latency)

Test case generic/498 from fstests tests the scenario that the previously
mentioned commit fixed.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-08 09:04:07 +02:00
Randy Dunlap 174c27d0f9 btrfs: delete duplicated words + other fixes in comments
[ Upstream commit 260db43cd2f556677f6ae818ba09f997eed81004 ]

Delete repeated words in fs/btrfs/.
{to, the, a, and old}
and change "into 2 part" to "into 2 parts".

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-08 09:04:07 +02:00
Goldwyn Rodrigues a8eec69797 btrfs: mark compressed range uptodate only if all bio succeed
commit 240246f6b913b0c23733cfd2def1d283f8cc9bbe upstream.

In compression write endio sequence, the range which the compressed_bio
writes is marked as uptodate if the last bio of the compressed (sub)bios
is completed successfully. There could be previous bio which may
have failed which is recorded in cb->errors.

Set the writeback range as uptodate only if cb->errors is zero, as opposed
to checking only the last bio's status.

Backporting notes: in all versions up to 4.4 the last argument is always
replaced by "!cb->errors".

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-04 12:27:37 +02:00
Desmond Cheong Zhi Xi 57429c1ec7 btrfs: fix rw device counting in __btrfs_free_extra_devids
commit b2a616676839e2a6b02c8e40be7f886f882ed194 upstream.

When removing a writeable device in __btrfs_free_extra_devids, the rw
device count should be decremented.

This error was caught by Syzbot which reported a warning in
close_fs_devices:

  WARNING: CPU: 1 PID: 9355 at fs/btrfs/volumes.c:1168 close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168
  Modules linked in:
  CPU: 0 PID: 9355 Comm: syz-executor552 Not tainted 5.13.0-rc1-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  RIP: 0010:close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168
  RSP: 0018:ffffc9000333f2f0 EFLAGS: 00010293
  RAX: ffffffff8365f5c3 RBX: 0000000000000001 RCX: ffff888029afd4c0
  RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000
  RBP: ffff88802846f508 R08: ffffffff8365f525 R09: ffffed100337d128
  R10: ffffed100337d128 R11: 0000000000000000 R12: dffffc0000000000
  R13: ffff888019be8868 R14: 1ffff1100337d10d R15: 1ffff1100337d10a
  FS:  00007f6f53828700(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 000000000047c410 CR3: 00000000302a6000 CR4: 00000000001506f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   btrfs_close_devices+0xc9/0x450 fs/btrfs/volumes.c:1180
   open_ctree+0x8e1/0x3968 fs/btrfs/disk-io.c:3693
   btrfs_fill_super fs/btrfs/super.c:1382 [inline]
   btrfs_mount_root+0xac5/0xc60 fs/btrfs/super.c:1749
   legacy_get_tree+0xea/0x180 fs/fs_context.c:592
   vfs_get_tree+0x86/0x270 fs/super.c:1498
   fc_mount fs/namespace.c:993 [inline]
   vfs_kern_mount+0xc9/0x160 fs/namespace.c:1023
   btrfs_mount+0x3d3/0xb50 fs/btrfs/super.c:1809
   legacy_get_tree+0xea/0x180 fs/fs_context.c:592
   vfs_get_tree+0x86/0x270 fs/super.c:1498
   do_new_mount fs/namespace.c:2905 [inline]
   path_mount+0x196f/0x2be0 fs/namespace.c:3235
   do_mount fs/namespace.c:3248 [inline]
   __do_sys_mount fs/namespace.c:3456 [inline]
   __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3433
   do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Because fs_devices->rw_devices was not 0 after
closing all devices. Here is the call trace that was observed:

  btrfs_mount_root():
    btrfs_scan_one_device():
      device_list_add();   <---------------- device added
    btrfs_open_devices():
      open_fs_devices():
        btrfs_open_one_device();   <-------- writable device opened,
	                                     rw device count ++
    btrfs_fill_super():
      open_ctree():
        btrfs_free_extra_devids():
	  __btrfs_free_extra_devids();  <--- writable device removed,
	                              rw device count not decremented
	  fail_tree_roots:
	    btrfs_close_devices():
	      close_fs_devices();   <------- rw device count off by 1

As a note, prior to commit cf89af146b7e ("btrfs: dev-replace: fail
mount if we don't have replace item with target device"), rw_devices
was decremented on removing a writable device in
__btrfs_free_extra_devids only if the BTRFS_DEV_STATE_REPLACE_TGT bit
was not set for the device. However, this check does not need to be
reinstated as it is now redundant and incorrect.

In __btrfs_free_extra_devids, we skip removing the device if it is the
target for replacement. This is done by checking whether device->devid
== BTRFS_DEV_REPLACE_DEVID. Since BTRFS_DEV_STATE_REPLACE_TGT is set
only on the device with devid BTRFS_DEV_REPLACE_DEVID, no devices
should have the BTRFS_DEV_STATE_REPLACE_TGT bit set after the check,
and so it's redundant to test for that bit.

Additionally, following commit 82372bc816 ("Btrfs: make
the logic of source device removing more clear"), rw_devices is
incremented whenever a writeable device is added to the alloc
list (including the target device in btrfs_dev_replace_finishing), so
all removals of writable devices from the alloc list should also be
accompanied by a decrement to rw_devices.

Reported-by: syzbot+a70e2ad0879f160b9217@syzkaller.appspotmail.com
Fixes: cf89af146b7e ("btrfs: dev-replace: fail mount if we don't have replace item with target device")
CC: stable@vger.kernel.org # 5.10+
Tested-by: syzbot+a70e2ad0879f160b9217@syzkaller.appspotmail.com
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-04 12:27:37 +02:00
David Sterba 11561d2f7b btrfs: compression: don't try to compress if we don't have enough pages
commit f2165627319ffd33a6217275e5690b1ab5c45763 upstream

The early check if we should attempt compression does not take into
account the number of input pages. It can happen that there's only one
page, eg. a tail page after some ranges of the BTRFS_MAX_UNCOMPRESSED
have been processed, or an isolated page that won't be converted to an
inline extent.

The single page would be compressed but a later check would drop it
again because the result size must be at least one block shorter than
the input. That can never work with just one page.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: David Sterba <dsterba@suse.com>
[sudip: adjust context]
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-28 13:31:02 +02:00
Anand Jain 77713fb336 btrfs: check for missing device in btrfs_trim_fs
commit 16a200f66ede3f9afa2e51d90ade017aaa18d213 upstream.

A fstrim on a degraded raid1 can trigger the following null pointer
dereference:

  BTRFS info (device loop0): allowing degraded mounts
  BTRFS info (device loop0): disk space caching is enabled
  BTRFS info (device loop0): has skinny extents
  BTRFS warning (device loop0): devid 2 uuid 97ac16f7-e14d-4db1-95bc-3d489b424adb is missing
  BTRFS warning (device loop0): devid 2 uuid 97ac16f7-e14d-4db1-95bc-3d489b424adb is missing
  BTRFS info (device loop0): enabling ssd optimizations
  BUG: kernel NULL pointer dereference, address: 0000000000000620
  PGD 0 P4D 0
  Oops: 0000 [#1] SMP NOPTI
  CPU: 0 PID: 4574 Comm: fstrim Not tainted 5.13.0-rc7+ #31
  Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
  RIP: 0010:btrfs_trim_fs+0x199/0x4a0 [btrfs]
  RSP: 0018:ffff959541797d28 EFLAGS: 00010293
  RAX: 0000000000000000 RBX: ffff946f84eca508 RCX: a7a67937adff8608
  RDX: ffff946e8122d000 RSI: 0000000000000000 RDI: ffffffffc02fdbf0
  RBP: ffff946ea4615000 R08: 0000000000000001 R09: 0000000000000000
  R10: 0000000000000000 R11: ffff946e8122d960 R12: 0000000000000000
  R13: ffff959541797db8 R14: ffff946e8122d000 R15: ffff959541797db8
  FS:  00007f55917a5080(0000) GS:ffff946f9bc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000620 CR3: 000000002d2c8001 CR4: 00000000000706f0
  Call Trace:
  btrfs_ioctl_fitrim+0x167/0x260 [btrfs]
  btrfs_ioctl+0x1c00/0x2fe0 [btrfs]
  ? selinux_file_ioctl+0x140/0x240
  ? syscall_trace_enter.constprop.0+0x188/0x240
  ? __x64_sys_ioctl+0x83/0xb0
  __x64_sys_ioctl+0x83/0xb0

Reproducer:

  $ mkfs.btrfs -fq -d raid1 -m raid1 /dev/loop0 /dev/loop1
  $ mount /dev/loop0 /btrfs
  $ umount /btrfs
  $ btrfs dev scan --forget
  $ mount -o degraded /dev/loop0 /btrfs

  $ fstrim /btrfs

The reason is we call btrfs_trim_free_extents() for the missing device,
which uses device->bdev (NULL for missing device) to find if the device
supports discard.

Fix is to check if the device is missing before calling
btrfs_trim_free_extents().

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-28 13:31:00 +02:00
David Sterba fa3f33b20b btrfs: clear log tree recovering status if starting transaction fails
[ Upstream commit 1aeb6b563aea18cd55c73cf666d1d3245a00f08c ]

When a log recovery is in progress, lots of operations have to take that
into account, so we keep this status per tree during the operation. Long
time ago error handling revamp patch 79787eaab4 ("btrfs: replace many
BUG_ONs with proper error handling") removed clearing of the status in
an error branch. Add it back as was intended in e02119d5a7 ("Btrfs:
Add a write ahead tree log to optimize synchronous operations").

There are probably no visible effects, log replay is done only during
mount and if it fails all structures are cleared so the stale status
won't be kept.

Fixes: 79787eaab4 ("btrfs: replace many BUG_ONs with proper error handling")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14 16:53:23 +02:00
Christophe Leroy 3ee80fc1f5 btrfs: disable build on platforms having page size 256K
[ Upstream commit b05fbcc36be1f8597a1febef4892053a0b2f3f60 ]

With a config having PAGE_SIZE set to 256K, BTRFS build fails
with the following message

  include/linux/compiler_types.h:326:38: error: call to
  '__compiletime_assert_791' declared with attribute error:
  BUILD_BUG_ON failed: (BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0

BTRFS_MAX_COMPRESSED being 128K, BTRFS cannot support platforms with
256K pages at the time being.

There are two platforms that can select 256K pages:
 - hexagon
 - powerpc

Disable BTRFS when 256K page size is selected. Supporting this would
require changes to the subpage mode that's currently being developed.
Given that 256K is many times larger than page sizes commonly used and
for what the algorithms and structures have been tuned, it's out of
scope and disabling build is a reasonable option.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14 16:53:14 +02:00
Josef Bacik af4b53f6d3 btrfs: abort transaction if we fail to update the delayed inode
[ Upstream commit 04587ad9bef6ce9d510325b4ba9852b6129eebdb ]

If we fail to update the delayed inode we need to abort the transaction,
because we could leave an inode with the improper counts or some other
such corruption behind.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14 16:53:14 +02:00
Josef Bacik 504081c415 btrfs: fix error handling in __btrfs_update_delayed_inode
[ Upstream commit bb385bedded3ccbd794559600de4a09448810f4a ]

If we get an error while looking up the inode item we'll simply bail
without cleaning up the delayed node.  This results in this style of
warning happening on commit:

  WARNING: CPU: 0 PID: 76403 at fs/btrfs/delayed-inode.c:1365 btrfs_assert_delayed_root_empty+0x5b/0x90
  CPU: 0 PID: 76403 Comm: fsstress Tainted: G        W         5.13.0-rc1+ #373
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  RIP: 0010:btrfs_assert_delayed_root_empty+0x5b/0x90
  RSP: 0018:ffffb8bb815a7e50 EFLAGS: 00010286
  RAX: 0000000000000000 RBX: ffff95d6d07e1888 RCX: ffff95d6c0fa3000
  RDX: 0000000000000002 RSI: 000000000029e91c RDI: ffff95d6c0fc8060
  RBP: ffff95d6c0fc8060 R08: 00008d6d701a2c1d R09: 0000000000000000
  R10: ffff95d6d1760ea0 R11: 0000000000000001 R12: ffff95d6c15a4d00
  R13: ffff95d6c0fa3000 R14: 0000000000000000 R15: ffffb8bb815a7e90
  FS:  00007f490e8dbb80(0000) GS:ffff95d73bc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f6e75555cb0 CR3: 00000001101ce001 CR4: 0000000000370ef0
  Call Trace:
   btrfs_commit_transaction+0x43c/0xb00
   ? finish_wait+0x80/0x80
   ? vfs_fsync_range+0x90/0x90
   iterate_supers+0x8c/0x100
   ksys_sync+0x50/0x90
   __do_sys_sync+0xa/0x10
   do_syscall_64+0x3d/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Because the iref isn't dropped and this leaves an elevated node->count,
so any release just re-queues it onto the delayed inodes list.  Fix this
by going to the out label to handle the proper cleanup of the delayed
node.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14 16:53:14 +02:00
David Sterba e3d3cf2e5a btrfs: clear defrag status of a root if starting transaction fails
commit 6819703f5a365c95488b07066a8744841bf14231 upstream.

The defrag loop processes leaves in batches and starting transaction for
each. The whole defragmentation on a given root is protected by a bit
but in case the transaction fails, the bit is not cleared

In case the transaction fails the bit would prevent starting
defragmentation again, so make sure it's cleared.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-14 16:53:02 +02:00
Filipe Manana 077f06b648 btrfs: send: fix invalid path for unlink operations after parent orphanization
commit d8ac76cdd1755b21e8c008c28d0b7251c0b14986 upstream.

During an incremental send operation, when processing the new references
for the current inode, we might send an unlink operation for another inode
that has a conflicting path and has more than one hard link. However this
path was computed and cached before we processed previous new references
for the current inode. We may have orphanized a directory of that path
while processing a previous new reference, in which case the path will
be invalid and cause the receiver process to fail.

The following reproducer triggers the problem and explains how/why it
happens in its comments:

  $ cat test-send-unlink.sh
  #!/bin/bash

  DEV=/dev/sdi
  MNT=/mnt/sdi

  mkfs.btrfs -f $DEV >/dev/null
  mount $DEV $MNT

  # Create our test files and directory. Inode 259 (file3) has two hard
  # links.
  touch $MNT/file1
  touch $MNT/file2
  touch $MNT/file3

  mkdir $MNT/A
  ln $MNT/file3 $MNT/A/hard_link

  # Filesystem looks like:
  #
  # .                                     (ino 256)
  # |----- file1                          (ino 257)
  # |----- file2                          (ino 258)
  # |----- file3                          (ino 259)
  # |----- A/                             (ino 260)
  #        |---- hard_link                (ino 259)
  #

  # Now create the base snapshot, which is going to be the parent snapshot
  # for a later incremental send.
  btrfs subvolume snapshot -r $MNT $MNT/snap1
  btrfs send -f /tmp/snap1.send $MNT/snap1

  # Move inode 257 into directory inode 260. This results in computing the
  # path for inode 260 as "/A" and caching it.
  mv $MNT/file1 $MNT/A/file1

  # Move inode 258 (file2) into directory inode 260, with a name of
  # "hard_link", moving first inode 259 away since it currently has that
  # location and name.
  mv $MNT/A/hard_link $MNT/tmp
  mv $MNT/file2 $MNT/A/hard_link

  # Now rename inode 260 to something else (B for example) and then create
  # a hard link for inode 258 that has the old name and location of inode
  # 260 ("/A").
  mv $MNT/A $MNT/B
  ln $MNT/B/hard_link $MNT/A

  # Filesystem now looks like:
  #
  # .                                     (ino 256)
  # |----- tmp                            (ino 259)
  # |----- file3                          (ino 259)
  # |----- B/                             (ino 260)
  # |      |---- file1                    (ino 257)
  # |      |---- hard_link                (ino 258)
  # |
  # |----- A                              (ino 258)

  # Create another snapshot of our subvolume and use it for an incremental
  # send.
  btrfs subvolume snapshot -r $MNT $MNT/snap2
  btrfs send -f /tmp/snap2.send -p $MNT/snap1 $MNT/snap2

  # Now unmount the filesystem, create a new one, mount it and try to
  # apply both send streams to recreate both snapshots.
  umount $DEV

  mkfs.btrfs -f $DEV >/dev/null

  mount $DEV $MNT

  # First add the first snapshot to the new filesystem by applying the
  # first send stream.
  btrfs receive -f /tmp/snap1.send $MNT

  # The incremental receive operation below used to fail with the
  # following error:
  #
  #    ERROR: unlink A/hard_link failed: No such file or directory
  #
  # This is because when send is processing inode 257, it generates the
  # path for inode 260 as "/A", since that inode is its parent in the send
  # snapshot, and caches that path.
  #
  # Later when processing inode 258, it first processes its new reference
  # that has the path of "/A", which results in orphanizing inode 260
  # because there is a a path collision. This results in issuing a rename
  # operation from "/A" to "/o260-6-0".
  #
  # Finally when processing the new reference "B/hard_link" for inode 258,
  # it notices that it collides with inode 259 (not yet processed, because
  # it has a higher inode number), since that inode has the name
  # "hard_link" under the directory inode 260. It also checks that inode
  # 259 has two hardlinks, so it decides to issue a unlink operation for
  # the name "hard_link" for inode 259. However the path passed to the
  # unlink operation is "/A/hard_link", which is incorrect since currently
  # "/A" does not exists, due to the orphanization of inode 260 mentioned
  # before. The path is incorrect because it was computed and cached
  # before the orphanization. This results in the receiver to fail with
  # the above error.
  btrfs receive -f /tmp/snap2.send $MNT

  umount $MNT

When running the test, it fails like this:

  $ ./test-send-unlink.sh
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
  At subvol /mnt/sdi/snap1
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
  At subvol /mnt/sdi/snap2
  At subvol snap1
  At snapshot snap2
  ERROR: unlink A/hard_link failed: No such file or directory

Fix this by recomputing a path before issuing an unlink operation when
processing the new references for the current inode if we previously
have orphanized a directory.

A test case for fstests will follow soon.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-14 16:53:02 +02:00
Nikolay Borisov 298499d73d btrfs: promote debugging asserts to full-fledged checks in validate_super
commit aefd7f7065567a4666f42c0fc8cdb379d2e036bf upstream.

Syzbot managed to trigger this assert while performing its fuzzing.
Turns out it's better to have those asserts turned into full-fledged
checks so that in case buggy btrfs images are mounted the users gets
an error and mounting is stopped. Alternatively with CONFIG_BTRFS_ASSERT
disabled such image would have been erroneously allowed to be mounted.

Reported-by: syzbot+a6bf271c02e4fe66b4e4@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add uuids to the messages ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-16 11:59:40 +02:00
Ritesh Harjani d4b047651f btrfs: return value from btrfs_mark_extent_written() in case of error
commit e7b2ec3d3d4ebeb4cff7ae45cf430182fa6a49fb upstream.

We always return 0 even in case of an error in btrfs_mark_extent_written().
Fix it to return proper error value in case of a failure. All callers
handle it.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-16 11:59:40 +02:00
Anand Jain 0450af01ae btrfs: fix unmountable seed device after fstrim
commit 5e753a817b2d5991dfe8a801b7b1e8e79a1c5a20 upstream.

The following test case reproduces an issue of wrongly freeing in-use
blocks on the readonly seed device when fstrim is called on the rw sprout
device. As shown below.

Create a seed device and add a sprout device to it:

  $ mkfs.btrfs -fq -dsingle -msingle /dev/loop0
  $ btrfstune -S 1 /dev/loop0
  $ mount /dev/loop0 /btrfs
  $ btrfs dev add -f /dev/loop1 /btrfs
  BTRFS info (device loop0): relocating block group 290455552 flags system
  BTRFS info (device loop0): relocating block group 1048576 flags system
  BTRFS info (device loop0): disk added /dev/loop1
  $ umount /btrfs

Mount the sprout device and run fstrim:

  $ mount /dev/loop1 /btrfs
  $ fstrim /btrfs
  $ umount /btrfs

Now try to mount the seed device, and it fails:

  $ mount /dev/loop0 /btrfs
  mount: /btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error.

Block 5292032 is missing on the readonly seed device:

 $ dmesg -kt | tail
 <snip>
 BTRFS error (device loop0): bad tree block start, want 5292032 have 0
 BTRFS warning (device loop0): couldn't read-tree root
 BTRFS error (device loop0): open_ctree failed

>From the dump-tree of the seed device (taken before the fstrim). Block
5292032 belonged to the block group starting at 5242880:

  $ btrfs inspect dump-tree -e /dev/loop0 | grep -A1 BLOCK_GROUP
  <snip>
  item 3 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16169 itemsize 24
  	block group used 114688 chunk_objectid 256 flags METADATA
  <snip>

>From the dump-tree of the sprout device (taken before the fstrim).
fstrim used block-group 5242880 to find the related free space to free:

  $ btrfs inspect dump-tree -e /dev/loop1 | grep -A1 BLOCK_GROUP
  <snip>
  item 1 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16226 itemsize 24
  	block group used 32768 chunk_objectid 256 flags METADATA
  <snip>

BPF kernel tracing the fstrim command finds the missing block 5292032
within the range of the discarded blocks as below:

  kprobe:btrfs_discard_extent {
  	printf("freeing start %llu end %llu num_bytes %llu:\n",
  		arg1, arg1+arg2, arg2);
  }

  freeing start 5259264 end 5406720 num_bytes 147456
  <snip>

Fix this by avoiding the discard command to the readonly seed device.

Reported-by: Chris Murphy <lists@colorremedies.com>
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:37:15 +02:00
Josef Bacik 6d4da27bd9 btrfs: fixup error handling in fixup_inode_link_counts
commit 011b28acf940eb61c000059dd9e2cfcbf52ed96b upstream.

This function has the following pattern

	while (1) {
		ret = whatever();
		if (ret)
			goto out;
	}
	ret = 0
out:
	return ret;

However several places in this while loop we simply break; when there's
a problem, thus clearing the return value, and in one case we do a
return -EIO, and leak the memory for the path.

Fix this by re-arranging the loop to deal with ret == 1 coming from
btrfs_search_slot, and then simply delete the

	ret = 0;
out:

bit so everybody can break if there is an error, which will allow for
proper error handling to occur.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:37:13 +02:00
Josef Bacik dad974d249 btrfs: return errors from btrfs_del_csums in cleanup_ref_head
commit 856bd270dc4db209c779ce1e9555c7641ffbc88e upstream.

We are unconditionally returning 0 in cleanup_ref_head, despite the fact
that btrfs_del_csums could fail.  We need to return the error so the
transaction gets aborted properly, fix this by returning ret from
btrfs_del_csums in cleanup_ref_head.

Reviewed-by: Qu Wenruo <wqu@suse.com>
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:37:13 +02:00
Josef Bacik 0fd9149a82 btrfs: fix error handling in btrfs_del_csums
commit b86652be7c83f70bf406bed18ecf55adb9bfb91b upstream.

Error injection stress would sometimes fail with checksums on disk that
did not have a corresponding extent.  This occurred because the pattern
in btrfs_del_csums was

	while (1) {
		ret = btrfs_search_slot();
		if (ret < 0)
			break;
	}
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;

If we got an error from btrfs_search_slot we'd clear the error because
we were breaking instead of goto out.  Instead of using goto out, simply
handle the cases where we may leave a random value in ret, and get rid
of the

	ret = 0;
out:

pattern and simply allow break to have the proper error reporting.  With
this fix we properly abort the transaction and do not commit thinking we
successfully deleted the csum.

Reviewed-by: Qu Wenruo <wqu@suse.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:37:13 +02:00
Josef Bacik 295859a555 btrfs: mark ordered extent and inode with error if we fail to finish
commit d61bec08b904cf171835db98168f82bc338e92e4 upstream.

While doing error injection testing I saw that sometimes we'd get an
abort that wouldn't stop the current transaction commit from completing.
This abort was coming from finish ordered IO, but at this point in the
transaction commit we should have gotten an error and stopped.

It turns out the abort came from finish ordered io while trying to write
out the free space cache.  It occurred to me that any failure inside of
finish_ordered_io isn't actually raised to the person doing the writing,
so we could have any number of failures in this path and think the
ordered extent completed successfully and the inode was fine.

Fix this by marking the ordered extent with BTRFS_ORDERED_IOERR, and
marking the mapping of the inode with mapping_set_error, so any callers
that simply call fdatawait will also get the error.

With this we're seeing the IO error on the free space inode when we fail
to do the finish_ordered_io.

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10 13:37:13 +02:00
Josef Bacik 96a40c3fa3 btrfs: tree-checker: do not error out if extent ref hash doesn't match
commit 1119a72e223f3073a604f8fccb3a470ccd8a4416 upstream.

The tree checker checks the extent ref hash at read and write time to
make sure we do not corrupt the file system.  Generally extent
references go inline, but if we have enough of them we need to make an
item, which looks like

key.objectid	= <bytenr>
key.type	= <BTRFS_EXTENT_DATA_REF_KEY|BTRFS_TREE_BLOCK_REF_KEY>
key.offset	= hash(tree, owner, offset)

However if key.offset collide with an unrelated extent reference we'll
simply key.offset++ until we get something that doesn't collide.
Obviously this doesn't match at tree checker time, and thus we error
while writing out the transaction.  This is relatively easy to
reproduce, simply do something like the following

  xfs_io -f -c "pwrite 0 1M" file
  offset=2

  for i in {0..10000}
  do
	  xfs_io -c "reflink file 0 ${offset}M 1M" file
	  offset=$(( offset + 2 ))
  done

  xfs_io -c "reflink file 0 17999258914816 1M" file
  xfs_io -c "reflink file 0 35998517829632 1M" file
  xfs_io -c "reflink file 0 53752752058368 1M" file

  btrfs filesystem sync

And the sync will error out because we'll abort the transaction.  The
magic values above are used because they generate hash collisions with
the first file in the main subvol.

The fix for this is to remove the hash value check from tree checker, as
we have no idea which offset ours should belong to.

Reported-by: Tuomas Lähdekorpi <tuomas.lahdekorpi@gmail.com>
Fixes: 0785a9aacf ("btrfs: tree-checker: Add EXTENT_DATA_REF check")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-10 13:37:01 +02:00
Josef Bacik 0ed102453a btrfs: do not BUG_ON in link_to_fixup_dir
[ Upstream commit 91df99a6eb50d5a1bc70fff4a09a0b7ae6aab96d ]

While doing error injection testing I got the following panic

  kernel BUG at fs/btrfs/tree-log.c:1862!
  invalid opcode: 0000 [#1] SMP NOPTI
  CPU: 1 PID: 7836 Comm: mount Not tainted 5.13.0-rc1+ #305
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  RIP: 0010:link_to_fixup_dir+0xd5/0xe0
  RSP: 0018:ffffb5800180fa30 EFLAGS: 00010216
  RAX: fffffffffffffffb RBX: 00000000fffffffb RCX: ffff8f595287faf0
  RDX: ffffb5800180fa37 RSI: ffff8f5954978800 RDI: 0000000000000000
  RBP: ffff8f5953af9450 R08: 0000000000000019 R09: 0000000000000001
  R10: 000151f408682970 R11: 0000000120021001 R12: ffff8f5954978800
  R13: ffff8f595287faf0 R14: ffff8f5953c77dd0 R15: 0000000000000065
  FS:  00007fc5284c8c40(0000) GS:ffff8f59bbd00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fc5287f47c0 CR3: 000000011275e002 CR4: 0000000000370ee0
  Call Trace:
   replay_one_buffer+0x409/0x470
   ? btree_read_extent_buffer_pages+0xd0/0x110
   walk_up_log_tree+0x157/0x1e0
   walk_log_tree+0xa6/0x1d0
   btrfs_recover_log_trees+0x1da/0x360
   ? replay_one_extent+0x7b0/0x7b0
   open_ctree+0x1486/0x1720
   btrfs_mount_root.cold+0x12/0xea
   ? __kmalloc_track_caller+0x12f/0x240
   legacy_get_tree+0x24/0x40
   vfs_get_tree+0x22/0xb0
   vfs_kern_mount.part.0+0x71/0xb0
   btrfs_mount+0x10d/0x380
   ? vfs_parse_fs_string+0x4d/0x90
   legacy_get_tree+0x24/0x40
   vfs_get_tree+0x22/0xb0
   path_mount+0x433/0xa10
   __x64_sys_mount+0xe3/0x120
   do_syscall_64+0x3d/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xae

We can get -EIO or any number of legitimate errors from
btrfs_search_slot(), panicing here is not the appropriate response.  The
error path for this code handles errors properly, simply return the
error.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-03 08:59:11 +02:00
Boris Burkov 55575c0850 btrfs: return whole extents in fiemap
[ Upstream commit 15c7745c9a0078edad1f7df5a6bb7b80bc8cca23 ]

  `xfs_io -c 'fiemap <off> <len>' <file>`

can give surprising results on btrfs that differ from xfs.

btrfs prints out extents trimmed to fit the user input. If the user's
fiemap request has an offset, then rather than returning each whole
extent which intersects that range, we also trim the start extent to not
have start < off.

Documentation in filesystems/fiemap.txt and the xfs_io man page suggests
that returning the whole extent is expected.

Some cases which all yield the same fiemap in xfs, but not btrfs:
  dd if=/dev/zero of=$f bs=4k count=1
  sudo xfs_io -c 'fiemap 0 1024' $f
    0: [0..7]: 26624..26631
  sudo xfs_io -c 'fiemap 2048 1024' $f
    0: [4..7]: 26628..26631
  sudo xfs_io -c 'fiemap 2048 4096' $f
    0: [4..7]: 26628..26631
  sudo xfs_io -c 'fiemap 3584 512' $f
    0: [7..7]: 26631..26631
  sudo xfs_io -c 'fiemap 4091 5' $f
    0: [7..6]: 26631..26630

I believe this is a consequence of the logic for merging contiguous
extents represented by separate extent items. That logic needs to track
the last offset as it loops through the extent items, which happens to
pick up the start offset on the first iteration, and trim off the
beginning of the full extent. To fix it, start `off` at 0 rather than
`start` so that we keep the iteration/merging intact without cutting off
the start of the extent.

after the fix, all the above commands give:

  0: [0..7]: 26624..26631

The merging logic is exercised by fstest generic/483, and I have written
a new fstest for checking we don't have backwards or zero-length fiemaps
for cases like those above.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-03 08:59:11 +02:00
Josef Bacik 20197d3275 btrfs: avoid RCU stalls while running delayed iputs
commit 71795ee590111e3636cc3c148289dfa9fa0a5fc3 upstream.

Generally a delayed iput is added when we might do the final iput, so
usually we'll end up sleeping while processing the delayed iputs
naturally.  However there's no guarantee of this, especially for small
files.  In production we noticed 5 instances of RCU stalls while testing
a kernel release overnight across 1000 machines, so this is relatively
common:

  host count: 5
  rcu: INFO: rcu_sched self-detected stall on CPU
  rcu: ....: (20998 ticks this GP) idle=59e/1/0x4000000000000002 softirq=12333372/12333372 fqs=3208
   	(t=21031 jiffies g=27810193 q=41075) NMI backtrace for cpu 1
  CPU: 1 PID: 1713 Comm: btrfs-cleaner Kdump: loaded Not tainted 5.6.13-0_fbk12_rc1_5520_gec92bffc1ec9 #1
  Call Trace:
    <IRQ> dump_stack+0x50/0x70
    nmi_cpu_backtrace.cold.6+0x30/0x65
    ? lapic_can_unplug_cpu.cold.30+0x40/0x40
    nmi_trigger_cpumask_backtrace+0xba/0xca
    rcu_dump_cpu_stacks+0x99/0xc7
    rcu_sched_clock_irq.cold.90+0x1b2/0x3a3
    ? trigger_load_balance+0x5c/0x200
    ? tick_sched_do_timer+0x60/0x60
    ? tick_sched_do_timer+0x60/0x60
    update_process_times+0x24/0x50
    tick_sched_timer+0x37/0x70
    __hrtimer_run_queues+0xfe/0x270
    hrtimer_interrupt+0xf4/0x210
    smp_apic_timer_interrupt+0x5e/0x120
    apic_timer_interrupt+0xf/0x20 </IRQ>
   RIP: 0010:queued_spin_lock_slowpath+0x17d/0x1b0
   RSP: 0018:ffffc9000da5fe48 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff13
   RAX: 0000000000000000 RBX: ffff889fa81d0cd8 RCX: 0000000000000029
   RDX: ffff889fff86c0c0 RSI: 0000000000080000 RDI: ffff88bfc2da7200
   RBP: ffff888f2dcdd768 R08: 0000000001040000 R09: 0000000000000000
   R10: 0000000000000001 R11: ffffffff82a55560 R12: ffff88bfc2da7200
   R13: 0000000000000000 R14: ffff88bff6c2a360 R15: ffffffff814bd870
   ? kzalloc.constprop.57+0x30/0x30
   list_lru_add+0x5a/0x100
   inode_lru_list_add+0x20/0x40
   iput+0x1c1/0x1f0
   run_delayed_iput_locked+0x46/0x90
   btrfs_run_delayed_iputs+0x3f/0x60
   cleaner_kthread+0xf2/0x120
   kthread+0x10b/0x130

Fix this by adding a cond_resched_lock() to the loop processing delayed
iputs so we can avoid these sort of stalls.

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-26 12:05:16 +02:00
Filipe Manana f40bf82bf6 btrfs: fix race when picking most recent mod log operation for an old root
[ Upstream commit f9690f426b2134cc3e74bfc5d9dfd6a4b2ca5281 ]

Commit dbcc7d57bffc0c ("btrfs: fix race when cloning extent buffer during
rewind of an old root"), fixed a race when we need to rewind the extent
buffer of an old root. It was caused by picking a new mod log operation
for the extent buffer while getting a cloned extent buffer with an outdated
number of items (off by -1), because we cloned the extent buffer without
locking it first.

However there is still another similar race, but in the opposite direction.
The cloned extent buffer has a number of items that does not match the
number of tree mod log operations that are going to be replayed. This is
because right after we got the last (most recent) tree mod log operation to
replay and before locking and cloning the extent buffer, another task adds
a new pointer to the extent buffer, which results in adding a new tree mod
log operation and incrementing the number of items in the extent buffer.
So after cloning we have mismatch between the number of items in the extent
buffer and the number of mod log operations we are going to apply to it.
This results in hitting a BUG_ON() that produces the following stack trace:

   ------------[ cut here ]------------
   kernel BUG at fs/btrfs/tree-mod-log.c:675!
   invalid opcode: 0000 [#1] SMP KASAN PTI
   CPU: 3 PID: 4811 Comm: crawl_1215 Tainted: G        W         5.12.0-7d1efdf501f8-misc-next+ #99
   Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
   RIP: 0010:tree_mod_log_rewind+0x3b1/0x3c0
   Code: 05 48 8d 74 10 (...)
   RSP: 0018:ffffc90001027090 EFLAGS: 00010293
   RAX: 0000000000000000 RBX: ffff8880a8514600 RCX: ffffffffaa9e59b6
   RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff8880a851462c
   RBP: ffffc900010270e0 R08: 00000000000000c0 R09: ffffed1004333417
   R10: ffff88802199a0b7 R11: ffffed1004333416 R12: 000000000000000e
   R13: ffff888135af8748 R14: ffff88818766ff00 R15: ffff8880a851462c
   FS:  00007f29acf62700(0000) GS:ffff8881f2200000(0000) knlGS:0000000000000000
   CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
   CR2: 00007f0e6013f718 CR3: 000000010d42e003 CR4: 0000000000170ee0
   Call Trace:
    btrfs_get_old_root+0x16a/0x5c0
    ? lock_downgrade+0x400/0x400
    btrfs_search_old_slot+0x192/0x520
    ? btrfs_search_slot+0x1090/0x1090
    ? free_extent_buffer.part.61+0xd7/0x140
    ? free_extent_buffer+0x13/0x20
    resolve_indirect_refs+0x3e9/0xfc0
    ? lock_downgrade+0x400/0x400
    ? __kasan_check_read+0x11/0x20
    ? add_prelim_ref.part.11+0x150/0x150
    ? lock_downgrade+0x400/0x400
    ? __kasan_check_read+0x11/0x20
    ? lock_acquired+0xbb/0x620
    ? __kasan_check_write+0x14/0x20
    ? do_raw_spin_unlock+0xa8/0x140
    ? rb_insert_color+0x340/0x360
    ? prelim_ref_insert+0x12d/0x430
    find_parent_nodes+0x5c3/0x1830
    ? stack_trace_save+0x87/0xb0
    ? resolve_indirect_refs+0xfc0/0xfc0
    ? fs_reclaim_acquire+0x67/0xf0
    ? __kasan_check_read+0x11/0x20
    ? lockdep_hardirqs_on_prepare+0x210/0x210
    ? fs_reclaim_acquire+0x67/0xf0
    ? __kasan_check_read+0x11/0x20
    ? ___might_sleep+0x10f/0x1e0
    ? __kasan_kmalloc+0x9d/0xd0
    ? trace_hardirqs_on+0x55/0x120
    btrfs_find_all_roots_safe+0x142/0x1e0
    ? find_parent_nodes+0x1830/0x1830
    ? trace_hardirqs_on+0x55/0x120
    ? ulist_free+0x1f/0x30
    ? btrfs_inode_flags_to_xflags+0x50/0x50
    iterate_extent_inodes+0x20e/0x580
    ? tree_backref_for_extent+0x230/0x230
    ? release_extent_buffer+0x225/0x280
    ? read_extent_buffer+0xdd/0x110
    ? lock_downgrade+0x400/0x400
    ? __kasan_check_read+0x11/0x20
    ? lock_acquired+0xbb/0x620
    ? __kasan_check_write+0x14/0x20
    ? do_raw_spin_unlock+0xa8/0x140
    ? _raw_spin_unlock+0x22/0x30
    ? release_extent_buffer+0x225/0x280
    iterate_inodes_from_logical+0x129/0x170
    ? iterate_inodes_from_logical+0x129/0x170
    ? btrfs_inode_flags_to_xflags+0x50/0x50
    ? iterate_extent_inodes+0x580/0x580
    ? __vmalloc_node+0x92/0xb0
    ? init_data_container+0x34/0xb0
    ? init_data_container+0x34/0xb0
    ? kvmalloc_node+0x60/0x80
    btrfs_ioctl_logical_to_ino+0x158/0x230
    btrfs_ioctl+0x2038/0x4360
    ? __kasan_check_write+0x14/0x20
    ? mmput+0x3b/0x220
    ? btrfs_ioctl_get_supported_features+0x30/0x30
    ? __kasan_check_read+0x11/0x20
    ? __kasan_check_read+0x11/0x20
    ? lock_release+0xc8/0x650
    ? __might_fault+0x64/0xd0
    ? __kasan_check_read+0x11/0x20
    ? lock_downgrade+0x400/0x400
    ? lockdep_hardirqs_on_prepare+0x210/0x210
    ? lockdep_hardirqs_on_prepare+0x13/0x210
    ? _raw_spin_unlock_irqrestore+0x51/0x63
    ? __kasan_check_read+0x11/0x20
    ? do_vfs_ioctl+0xfc/0x9d0
    ? ioctl_file_clone+0xe0/0xe0
    ? lock_downgrade+0x400/0x400
    ? lockdep_hardirqs_on_prepare+0x210/0x210
    ? __kasan_check_read+0x11/0x20
    ? lock_release+0xc8/0x650
    ? __task_pid_nr_ns+0xd3/0x250
    ? __kasan_check_read+0x11/0x20
    ? __fget_files+0x160/0x230
    ? __fget_light+0xf2/0x110
    __x64_sys_ioctl+0xc3/0x100
    do_syscall_64+0x37/0x80
    entry_SYSCALL_64_after_hwframe+0x44/0xae
   RIP: 0033:0x7f29ae85b427
   Code: 00 00 90 48 8b (...)
   RSP: 002b:00007f29acf5fcf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
   RAX: ffffffffffffffda RBX: 00007f29acf5ff40 RCX: 00007f29ae85b427
   RDX: 00007f29acf5ff48 RSI: 00000000c038943b RDI: 0000000000000003
   RBP: 0000000001000000 R08: 0000000000000000 R09: 00007f29acf60120
   R10: 00005640d5fc7b00 R11: 0000000000000246 R12: 0000000000000003
   R13: 00007f29acf5ff48 R14: 00007f29acf5ff40 R15: 00007f29acf5fef8
   Modules linked in:
   ---[ end trace 85e5fce078dfbe04 ]---

  (gdb) l *(tree_mod_log_rewind+0x3b1)
  0xffffffff819e5b21 is in tree_mod_log_rewind (fs/btrfs/tree-mod-log.c:675).
  670                      * the modification. As we're going backwards, we do the
  671                      * opposite of each operation here.
  672                      */
  673                     switch (tm->op) {
  674                     case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
  675                             BUG_ON(tm->slot < n);
  676                             fallthrough;
  677                     case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
  678                     case BTRFS_MOD_LOG_KEY_REMOVE:
  679                             btrfs_set_node_key(eb, &tm->key, tm->slot);
  (gdb) quit

The following steps explain in more detail how it happens:

1) We have one tree mod log user (through fiemap or the logical ino ioctl),
   with a sequence number of 1, so we have fs_info->tree_mod_seq == 1.
   This is task A;

2) Another task is at ctree.c:balance_level() and we have eb X currently as
   the root of the tree, and we promote its single child, eb Y, as the new
   root.

   Then, at ctree.c:balance_level(), we call:

      ret = btrfs_tree_mod_log_insert_root(root->node, child, true);

3) At btrfs_tree_mod_log_insert_root() we create a tree mod log operation
   of type BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, with a ->logical field
   pointing to ebX->start. We only have one item in eb X, so we create
   only one tree mod log operation, and store in the "tm_list" array;

4) Then, still at btrfs_tree_mod_log_insert_root(), we create a tree mod
   log element of operation type BTRFS_MOD_LOG_ROOT_REPLACE, ->logical set
   to ebY->start, ->old_root.logical set to ebX->start, ->old_root.level
   set to the level of eb X and ->generation set to the generation of eb X;

5) Then btrfs_tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
   "tm_list" as argument. After that, tree_mod_log_free_eb() calls
   tree_mod_log_insert(). This inserts the mod log operation of type
   BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING from step 3 into the rbtree
   with a sequence number of 2 (and fs_info->tree_mod_seq set to 2);

6) Then, after inserting the "tm_list" single element into the tree mod
   log rbtree, the BTRFS_MOD_LOG_ROOT_REPLACE element is inserted, which
   gets the sequence number 3 (and fs_info->tree_mod_seq set to 3);

7) Back to ctree.c:balance_level(), we free eb X by calling
   btrfs_free_tree_block() on it. Because eb X was created in the current
   transaction, has no other references and writeback did not happen for
   it, we add it back to the free space cache/tree;

8) Later some other task B allocates the metadata extent from eb X, since
   it is marked as free space in the space cache/tree, and uses it as a
   node for some other btree;

9) The tree mod log user task calls btrfs_search_old_slot(), which calls
   btrfs_get_old_root(), and finally that calls tree_mod_log_oldest_root()
   with time_seq == 1 and eb_root == eb Y;

10) The first iteration of the while loop finds the tree mod log element
    with sequence number 3, for the logical address of eb Y and of type
    BTRFS_MOD_LOG_ROOT_REPLACE;

11) Because the operation type is BTRFS_MOD_LOG_ROOT_REPLACE, we don't
    break out of the loop, and set root_logical to point to
    tm->old_root.logical, which corresponds to the logical address of
    eb X;

12) On the next iteration of the while loop, the call to
    tree_mod_log_search_oldest() returns the smallest tree mod log element
    for the logical address of eb X, which has a sequence number of 2, an
    operation type of BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and
    corresponds to the old slot 0 of eb X (eb X had only 1 item in it
    before being freed at step 7);

13) We then break out of the while loop and return the tree mod log
    operation of type BTRFS_MOD_LOG_ROOT_REPLACE (eb Y), and not the one
    for slot 0 of eb X, to btrfs_get_old_root();

14) At btrfs_get_old_root(), we process the BTRFS_MOD_LOG_ROOT_REPLACE
    operation and set "logical" to the logical address of eb X, which was
    the old root. We then call tree_mod_log_search() passing it the logical
    address of eb X and time_seq == 1;

15) But before calling tree_mod_log_search(), task B locks eb X, adds a
    key to eb X, which results in adding a tree mod log operation of type
    BTRFS_MOD_LOG_KEY_ADD, with a sequence number of 4, to the tree mod
    log, and increments the number of items in eb X from 0 to 1.
    Now fs_info->tree_mod_seq has a value of 4;

16) Task A then calls tree_mod_log_search(), which returns the most recent
    tree mod log operation for eb X, which is the one just added by task B
    at the previous step, with a sequence number of 4, a type of
    BTRFS_MOD_LOG_KEY_ADD and for slot 0;

17) Before task A locks and clones eb X, task A adds another key to eb X,
    which results in adding a new BTRFS_MOD_LOG_KEY_ADD mod log operation,
    with a sequence number of 5, for slot 1 of eb X, increments the
    number of items in eb X from 1 to 2, and unlocks eb X.
    Now fs_info->tree_mod_seq has a value of 5;

18) Task A then locks eb X and clones it. The clone has a value of 2 for
    the number of items and the pointer "tm" points to the tree mod log
    operation with sequence number 4, not the most recent one with a
    sequence number of 5, so there is mismatch between the number of
    mod log operations that are going to be applied to the cloned version
    of eb X and the number of items in the clone;

19) Task A then calls tree_mod_log_rewind() with the clone of eb X, the
    tree mod log operation with sequence number 4 and a type of
    BTRFS_MOD_LOG_KEY_ADD, and time_seq == 1;

20) At tree_mod_log_rewind(), we set the local variable "n" with a value
    of 2, which is the number of items in the clone of eb X.

    Then in the first iteration of the while loop, we process the mod log
    operation with sequence number 4, which is targeted at slot 0 and has
    a type of BTRFS_MOD_LOG_KEY_ADD. This results in decrementing "n" from
    2 to 1.

    Then we pick the next tree mod log operation for eb X, which is the
    tree mod log operation with a sequence number of 2, a type of
    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and for slot 0, it is the one
    added in step 5 to the tree mod log tree.

    We go back to the top of the loop to process this mod log operation,
    and because its slot is 0 and "n" has a value of 1, we hit the BUG_ON:

        (...)
        switch (tm->op) {
        case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
                BUG_ON(tm->slot < n);
                fallthrough;
	(...)

Fix this by checking for a more recent tree mod log operation after locking
and cloning the extent buffer of the old root node, and use it as the first
operation to apply to the cloned extent buffer when rewinding it.

Stable backport notes: due to moved code and renames, in =< 5.11 the
change should be applied to ctree.c:get_old_root.

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210404040732.GZ32440@hungrycats.org/
Fixes: 834328a849 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11 14:04:14 +02:00
Josef Bacik 567c831044 btrfs: convert logic BUG_ON()'s in replace_path to ASSERT()'s
[ Upstream commit 7a9213a93546e7eaef90e6e153af6b8fc7553f10 ]

A few BUG_ON()'s in replace_path are purely to keep us from making
logical mistakes, so replace them with ASSERT()'s.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11 14:04:07 +02:00
Filipe Manana b6635915a3 btrfs: fix metadata extent leak after failure to create subvolume
commit 67addf29004c5be9fa0383c82a364bb59afc7f84 upstream.

When creating a subvolume we allocate an extent buffer for its root node
after starting a transaction. We setup a root item for the subvolume that
points to that extent buffer and then attempt to insert the root item into
the root tree - however if that fails, due to ENOMEM for example, we do
not free the extent buffer previously allocated and we do not abort the
transaction (as at that point we did nothing that can not be undone).

This means that we effectively do not return the metadata extent back to
the free space cache/tree and we leave a delayed reference for it which
causes a metadata extent item to be added to the extent tree, in the next
transaction commit, without having backreferences. When this happens
'btrfs check' reports the following:

  $ btrfs check /dev/sdi
  Opening filesystem to check...
  Checking filesystem on /dev/sdi
  UUID: dce2cb9d-025f-4b05-a4bf-cee0ad3785eb
  [1/7] checking root items
  [2/7] checking extents
  ref mismatch on [30425088 16384] extent item 1, found 0
  backref 30425088 root 256 not referenced back 0x564a91c23d70
  incorrect global backref count on 30425088 found 1 wanted 0
  backpointer mismatch on [30425088 16384]
  owner ref check failed [30425088 16384]
  ERROR: errors found in extent allocation tree or chunk allocation
  [3/7] checking free space cache
  [4/7] checking fs roots
  [5/7] checking only csums items (without verifying data)
  [6/7] checking root refs
  [7/7] checking quota groups skipped (not enabled on this FS)
  found 212992 bytes used, error(s) found
  total csum bytes: 0
  total tree bytes: 131072
  total fs tree bytes: 32768
  total extent tree bytes: 16384
  btree space waste bytes: 124669
  file data blocks allocated: 65536
   referenced 65536

So fix this by freeing the metadata extent if btrfs_insert_root() returns
an error.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11 14:04:04 +02:00
David Sterba 24c553371a btrfs: fix slab cache flags for free space tree bitmap
commit 34e49994d0dcdb2d31d4d2908d04f4e9ce57e4d7 upstream.

The free space tree bitmap slab cache is created with SLAB_RED_ZONE but
that's a debugging flag and not always enabled. Also the other slabs are
created with at least SLAB_MEM_SPREAD that we want as well to average
the memory placement cost.

Reported-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 3acd48507d ("btrfs: fix allocation of free space cache v1 bitmap pages")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-24 11:26:36 +01:00
Filipe Manana 5b3b99525c btrfs: fix race when cloning extent buffer during rewind of an old root
commit dbcc7d57bffc0c8cac9dac11bec548597d59a6a5 upstream.

While resolving backreferences, as part of a logical ino ioctl call or
fiemap, we can end up hitting a BUG_ON() when replaying tree mod log
operations of a root, triggering a stack trace like the following:

  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.c:1210!
  invalid opcode: 0000 [#1] SMP KASAN PTI
  CPU: 1 PID: 19054 Comm: crawl_335 Tainted: G        W         5.11.0-2d11c0084b02-misc-next+ #89
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
  RIP: 0010:__tree_mod_log_rewind+0x3b1/0x3c0
  Code: 05 48 8d 74 10 (...)
  RSP: 0018:ffffc90001eb70b8 EFLAGS: 00010297
  RAX: 0000000000000000 RBX: ffff88812344e400 RCX: ffffffffb28933b6
  RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff88812344e42c
  RBP: ffffc90001eb7108 R08: 1ffff11020b60a20 R09: ffffed1020b60a20
  R10: ffff888105b050f9 R11: ffffed1020b60a1f R12: 00000000000000ee
  R13: ffff8880195520c0 R14: ffff8881bc958500 R15: ffff88812344e42c
  FS:  00007fd1955e8700(0000) GS:ffff8881f5600000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007efdb7928718 CR3: 000000010103a006 CR4: 0000000000170ee0
  Call Trace:
   btrfs_search_old_slot+0x265/0x10d0
   ? lock_acquired+0xbb/0x600
   ? btrfs_search_slot+0x1090/0x1090
   ? free_extent_buffer.part.61+0xd7/0x140
   ? free_extent_buffer+0x13/0x20
   resolve_indirect_refs+0x3e9/0xfc0
   ? lock_downgrade+0x3d0/0x3d0
   ? __kasan_check_read+0x11/0x20
   ? add_prelim_ref.part.11+0x150/0x150
   ? lock_downgrade+0x3d0/0x3d0
   ? __kasan_check_read+0x11/0x20
   ? lock_acquired+0xbb/0x600
   ? __kasan_check_write+0x14/0x20
   ? do_raw_spin_unlock+0xa8/0x140
   ? rb_insert_color+0x30/0x360
   ? prelim_ref_insert+0x12d/0x430
   find_parent_nodes+0x5c3/0x1830
   ? resolve_indirect_refs+0xfc0/0xfc0
   ? lock_release+0xc8/0x620
   ? fs_reclaim_acquire+0x67/0xf0
   ? lock_acquire+0xc7/0x510
   ? lock_downgrade+0x3d0/0x3d0
   ? lockdep_hardirqs_on_prepare+0x160/0x210
   ? lock_release+0xc8/0x620
   ? fs_reclaim_acquire+0x67/0xf0
   ? lock_acquire+0xc7/0x510
   ? poison_range+0x38/0x40
   ? unpoison_range+0x14/0x40
   ? trace_hardirqs_on+0x55/0x120
   btrfs_find_all_roots_safe+0x142/0x1e0
   ? find_parent_nodes+0x1830/0x1830
   ? btrfs_inode_flags_to_xflags+0x50/0x50
   iterate_extent_inodes+0x20e/0x580
   ? tree_backref_for_extent+0x230/0x230
   ? lock_downgrade+0x3d0/0x3d0
   ? read_extent_buffer+0xdd/0x110
   ? lock_downgrade+0x3d0/0x3d0
   ? __kasan_check_read+0x11/0x20
   ? lock_acquired+0xbb/0x600
   ? __kasan_check_write+0x14/0x20
   ? _raw_spin_unlock+0x22/0x30
   ? __kasan_check_write+0x14/0x20
   iterate_inodes_from_logical+0x129/0x170
   ? iterate_inodes_from_logical+0x129/0x170
   ? btrfs_inode_flags_to_xflags+0x50/0x50
   ? iterate_extent_inodes+0x580/0x580
   ? __vmalloc_node+0x92/0xb0
   ? init_data_container+0x34/0xb0
   ? init_data_container+0x34/0xb0
   ? kvmalloc_node+0x60/0x80
   btrfs_ioctl_logical_to_ino+0x158/0x230
   btrfs_ioctl+0x205e/0x4040
   ? __might_sleep+0x71/0xe0
   ? btrfs_ioctl_get_supported_features+0x30/0x30
   ? getrusage+0x4b6/0x9c0
   ? __kasan_check_read+0x11/0x20
   ? lock_release+0xc8/0x620
   ? __might_fault+0x64/0xd0
   ? lock_acquire+0xc7/0x510
   ? lock_downgrade+0x3d0/0x3d0
   ? lockdep_hardirqs_on_prepare+0x210/0x210
   ? lockdep_hardirqs_on_prepare+0x210/0x210
   ? __kasan_check_read+0x11/0x20
   ? do_vfs_ioctl+0xfc/0x9d0
   ? ioctl_file_clone+0xe0/0xe0
   ? lock_downgrade+0x3d0/0x3d0
   ? lockdep_hardirqs_on_prepare+0x210/0x210
   ? __kasan_check_read+0x11/0x20
   ? lock_release+0xc8/0x620
   ? __task_pid_nr_ns+0xd3/0x250
   ? lock_acquire+0xc7/0x510
   ? __fget_files+0x160/0x230
   ? __fget_light+0xf2/0x110
   __x64_sys_ioctl+0xc3/0x100
   do_syscall_64+0x37/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7fd1976e2427
  Code: 00 00 90 48 8b 05 (...)
  RSP: 002b:00007fd1955e5cf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  RAX: ffffffffffffffda RBX: 00007fd1955e5f40 RCX: 00007fd1976e2427
  RDX: 00007fd1955e5f48 RSI: 00000000c038943b RDI: 0000000000000004
  RBP: 0000000001000000 R08: 0000000000000000 R09: 00007fd1955e6120
  R10: 0000557835366b00 R11: 0000000000000246 R12: 0000000000000004
  R13: 00007fd1955e5f48 R14: 00007fd1955e5f40 R15: 00007fd1955e5ef8
  Modules linked in:
  ---[ end trace ec8931a1c36e57be ]---

  (gdb) l *(__tree_mod_log_rewind+0x3b1)
  0xffffffff81893521 is in __tree_mod_log_rewind (fs/btrfs/ctree.c:1210).
  1205                     * the modification. as we're going backwards, we do the
  1206                     * opposite of each operation here.
  1207                     */
  1208                    switch (tm->op) {
  1209                    case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
  1210                            BUG_ON(tm->slot < n);
  1211                            fallthrough;
  1212                    case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
  1213                    case MOD_LOG_KEY_REMOVE:
  1214                            btrfs_set_node_key(eb, &tm->key, tm->slot);

Here's what happens to hit that BUG_ON():

1) We have one tree mod log user (through fiemap or the logical ino ioctl),
   with a sequence number of 1, so we have fs_info->tree_mod_seq == 1;

2) Another task is at ctree.c:balance_level() and we have eb X currently as
   the root of the tree, and we promote its single child, eb Y, as the new
   root.

   Then, at ctree.c:balance_level(), we call:

      tree_mod_log_insert_root(eb X, eb Y, 1);

3) At tree_mod_log_insert_root() we create tree mod log elements for each
   slot of eb X, of operation type MOD_LOG_KEY_REMOVE_WHILE_FREEING each
   with a ->logical pointing to ebX->start. These are placed in an array
   named tm_list.
   Lets assume there are N elements (N pointers in eb X);

4) Then, still at tree_mod_log_insert_root(), we create a tree mod log
   element of operation type MOD_LOG_ROOT_REPLACE, ->logical set to
   ebY->start, ->old_root.logical set to ebX->start, ->old_root.level set
   to the level of eb X and ->generation set to the generation of eb X;

5) Then tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
   tm_list as argument. After that, tree_mod_log_free_eb() calls
   __tree_mod_log_insert() for each member of tm_list in reverse order,
   from highest slot in eb X, slot N - 1, to slot 0 of eb X;

6) __tree_mod_log_insert() sets the sequence number of each given tree mod
   log operation - it increments fs_info->tree_mod_seq and sets
   fs_info->tree_mod_seq as the sequence number of the given tree mod log
   operation.

   This means that for the tm_list created at tree_mod_log_insert_root(),
   the element corresponding to slot 0 of eb X has the highest sequence
   number (1 + N), and the element corresponding to the last slot has the
   lowest sequence number (2);

7) Then, after inserting tm_list's elements into the tree mod log rbtree,
   the MOD_LOG_ROOT_REPLACE element is inserted, which gets the highest
   sequence number, which is N + 2;

8) Back to ctree.c:balance_level(), we free eb X by calling
   btrfs_free_tree_block() on it. Because eb X was created in the current
   transaction, has no other references and writeback did not happen for
   it, we add it back to the free space cache/tree;

9) Later some other task T allocates the metadata extent from eb X, since
   it is marked as free space in the space cache/tree, and uses it as a
   node for some other btree;

10) The tree mod log user task calls btrfs_search_old_slot(), which calls
    get_old_root(), and finally that calls __tree_mod_log_oldest_root()
    with time_seq == 1 and eb_root == eb Y;

11) First iteration of the while loop finds the tree mod log element with
    sequence number N + 2, for the logical address of eb Y and of type
    MOD_LOG_ROOT_REPLACE;

12) Because the operation type is MOD_LOG_ROOT_REPLACE, we don't break out
    of the loop, and set root_logical to point to tm->old_root.logical
    which corresponds to the logical address of eb X;

13) On the next iteration of the while loop, the call to
    tree_mod_log_search_oldest() returns the smallest tree mod log element
    for the logical address of eb X, which has a sequence number of 2, an
    operation type of MOD_LOG_KEY_REMOVE_WHILE_FREEING and corresponds to
    the old slot N - 1 of eb X (eb X had N items in it before being freed);

14) We then break out of the while loop and return the tree mod log operation
    of type MOD_LOG_ROOT_REPLACE (eb Y), and not the one for slot N - 1 of
    eb X, to get_old_root();

15) At get_old_root(), we process the MOD_LOG_ROOT_REPLACE operation
    and set "logical" to the logical address of eb X, which was the old
    root. We then call tree_mod_log_search() passing it the logical
    address of eb X and time_seq == 1;

16) Then before calling tree_mod_log_search(), task T adds a key to eb X,
    which results in adding a tree mod log operation of type
    MOD_LOG_KEY_ADD to the tree mod log - this is done at
    ctree.c:insert_ptr() - but after adding the tree mod log operation
    and before updating the number of items in eb X from 0 to 1...

17) The task at get_old_root() calls tree_mod_log_search() and gets the
    tree mod log operation of type MOD_LOG_KEY_ADD just added by task T.
    Then it enters the following if branch:

    if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
       (...)
    } (...)

    Calls read_tree_block() for eb X, which gets a reference on eb X but
    does not lock it - task T has it locked.
    Then it clones eb X while it has nritems set to 0 in its header, before
    task T sets nritems to 1 in eb X's header. From hereupon we use the
    clone of eb X which no other task has access to;

18) Then we call __tree_mod_log_rewind(), passing it the MOD_LOG_KEY_ADD
    mod log operation we just got from tree_mod_log_search() in the
    previous step and the cloned version of eb X;

19) At __tree_mod_log_rewind(), we set the local variable "n" to the number
    of items set in eb X's clone, which is 0. Then we enter the while loop,
    and in its first iteration we process the MOD_LOG_KEY_ADD operation,
    which just decrements "n" from 0 to (u32)-1, since "n" is declared with
    a type of u32. At the end of this iteration we call rb_next() to find the
    next tree mod log operation for eb X, that gives us the mod log operation
    of type MOD_LOG_KEY_REMOVE_WHILE_FREEING, for slot 0, with a sequence
    number of N + 1 (steps 3 to 6);

20) Then we go back to the top of the while loop and trigger the following
    BUG_ON():

        (...)
        switch (tm->op) {
        case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
                 BUG_ON(tm->slot < n);
                 fallthrough;
        (...)

    Because "n" has a value of (u32)-1 (4294967295) and tm->slot is 0.

Fix this by taking a read lock on the extent buffer before cloning it at
ctree.c:get_old_root(). This should be done regardless of the extent
buffer having been freed and reused, as a concurrent task might be
modifying it (while holding a write lock on it).

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210227155037.GN28049@hungrycats.org/
Fixes: 834328a849 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-24 11:26:35 +01:00
Qu Wenruo 50f83ffc58 btrfs: scrub: Don't check free space before marking a block group RO
commit b12de52896c0e8213f70e3a168fde9e6eee95909 upstream.

[BUG]
When running btrfs/072 with only one online CPU, it has a pretty high
chance to fail:

#  btrfs/072 12s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//btrfs/072.dmesg)
#  - output mismatch (see xfstests-dev/results//btrfs/072.out.bad)
#      --- tests/btrfs/072.out     2019-10-22 15:18:14.008965340 +0800
#      +++ /xfstests-dev/results//btrfs/072.out.bad      2019-11-14 15:56:45.877152240 +0800
#      @@ -1,2 +1,3 @@
#       QA output created by 072
#       Silence is golden
#      +Scrub find errors in "-m dup -d single" test
#      ...

And with the following call trace:

  BTRFS info (device dm-5): scrub: started on devid 1
  ------------[ cut here ]------------
  BTRFS: Transaction aborted (error -27)
  WARNING: CPU: 0 PID: 55087 at fs/btrfs/block-group.c:1890 btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs]
  CPU: 0 PID: 55087 Comm: btrfs Tainted: G        W  O      5.4.0-rc1-custom+ #13
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs]
  Call Trace:
   __btrfs_end_transaction+0xdb/0x310 [btrfs]
   btrfs_end_transaction+0x10/0x20 [btrfs]
   btrfs_inc_block_group_ro+0x1c9/0x210 [btrfs]
   scrub_enumerate_chunks+0x264/0x940 [btrfs]
   btrfs_scrub_dev+0x45c/0x8f0 [btrfs]
   btrfs_ioctl+0x31a1/0x3fb0 [btrfs]
   do_vfs_ioctl+0x636/0xaa0
   ksys_ioctl+0x67/0x90
   __x64_sys_ioctl+0x43/0x50
   do_syscall_64+0x79/0xe0
   entry_SYSCALL_64_after_hwframe+0x49/0xbe
  ---[ end trace 166c865cec7688e7 ]---

[CAUSE]
The error number -27 is -EFBIG, returned from the following call chain:
btrfs_end_transaction()
|- __btrfs_end_transaction()
   |- btrfs_create_pending_block_groups()
      |- btrfs_finish_chunk_alloc()
         |- btrfs_add_system_chunk()

This happens because we have used up all space of
btrfs_super_block::sys_chunk_array.

The root cause is, we have the following bad loop of creating tons of
system chunks:

1. The only SYSTEM chunk is being scrubbed
   It's very common to have only one SYSTEM chunk.
2. New SYSTEM bg will be allocated
   As btrfs_inc_block_group_ro() will check if we have enough space
   after marking current bg RO. If not, then allocate a new chunk.
3. New SYSTEM bg is still empty, will be reclaimed
   During the reclaim, we will mark it RO again.
4. That newly allocated empty SYSTEM bg get scrubbed
   We go back to step 2, as the bg is already mark RO but still not
   cleaned up yet.

If the cleaner kthread doesn't get executed fast enough (e.g. only one
CPU), then we will get more and more empty SYSTEM chunks, using up all
the space of btrfs_super_block::sys_chunk_array.

[FIX]
Since scrub/dev-replace doesn't always need to allocate new extent,
especially chunk tree extent, so we don't really need to do chunk
pre-allocation.

To break above spiral, here we introduce a new parameter to
btrfs_inc_block_group(), @do_chunk_alloc, which indicates whether we
need extra chunk pre-allocation.

For relocation, we pass @do_chunk_alloc=true, while for scrub, we pass
@do_chunk_alloc=false.
This should keep unnecessary empty chunks from popping up for scrub.

Also, since there are two parameters for btrfs_inc_block_group_ro(),
add more comment for it.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-20 10:39:46 +01:00