u-boot-brain/arch/arm/mach-omap2/omap5/hwinit.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

509 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
*
* Functions for omap5 based boards.
*
* (C) Copyright 2011
* Texas Instruments, <www.ti.com>
*
* Author :
* Aneesh V <aneesh@ti.com>
* Steve Sakoman <steve@sakoman.com>
* Sricharan <r.sricharan@ti.com>
*/
#include <common.h>
#include <palmas.h>
#include <asm/armv7.h>
#include <asm/arch/cpu.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/clock.h>
#include <linux/sizes.h>
#include <asm/utils.h>
#include <asm/arch/gpio.h>
#include <asm/emif.h>
#include <asm/omap_common.h>
u32 *const omap_si_rev = (u32 *)OMAP_SRAM_SCRATCH_OMAP_REV;
#ifndef CONFIG_DM_GPIO
static struct gpio_bank gpio_bank_54xx[8] = {
{ (void *)OMAP54XX_GPIO1_BASE },
{ (void *)OMAP54XX_GPIO2_BASE },
{ (void *)OMAP54XX_GPIO3_BASE },
{ (void *)OMAP54XX_GPIO4_BASE },
{ (void *)OMAP54XX_GPIO5_BASE },
{ (void *)OMAP54XX_GPIO6_BASE },
{ (void *)OMAP54XX_GPIO7_BASE },
{ (void *)OMAP54XX_GPIO8_BASE },
};
const struct gpio_bank *const omap_gpio_bank = gpio_bank_54xx;
#endif
void do_set_mux32(u32 base, struct pad_conf_entry const *array, int size)
{
int i;
struct pad_conf_entry *pad = (struct pad_conf_entry *)array;
for (i = 0; i < size; i++, pad++)
writel(pad->val, base + pad->offset);
}
#ifdef CONFIG_SPL_BUILD
/* LPDDR2 specific IO settings */
static void io_settings_lpddr2(void)
{
const struct ctrl_ioregs *ioregs;
get_ioregs(&ioregs);
writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch1_0);
writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch1_1);
writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch2_0);
writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch2_1);
writel(ioregs->ctrl_lpddr2ch, (*ctrl)->control_lpddr2ch1_0);
writel(ioregs->ctrl_lpddr2ch, (*ctrl)->control_lpddr2ch1_1);
writel(ioregs->ctrl_ddrio_0, (*ctrl)->control_ddrio_0);
writel(ioregs->ctrl_ddrio_1, (*ctrl)->control_ddrio_1);
writel(ioregs->ctrl_ddrio_2, (*ctrl)->control_ddrio_2);
}
/* DDR3 specific IO settings */
static void io_settings_ddr3(void)
{
u32 io_settings = 0;
const struct ctrl_ioregs *ioregs;
get_ioregs(&ioregs);
writel(ioregs->ctrl_ddr3ch, (*ctrl)->control_ddr3ch1_0);
writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch1_0);
writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch1_1);
writel(ioregs->ctrl_ddr3ch, (*ctrl)->control_ddr3ch2_0);
writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch2_0);
writel(ioregs->ctrl_ddrch, (*ctrl)->control_ddrch2_1);
writel(ioregs->ctrl_ddrio_0, (*ctrl)->control_ddrio_0);
writel(ioregs->ctrl_ddrio_1, (*ctrl)->control_ddrio_1);
if (!is_dra7xx()) {
writel(ioregs->ctrl_ddrio_2, (*ctrl)->control_ddrio_2);
writel(ioregs->ctrl_lpddr2ch, (*ctrl)->control_lpddr2ch1_1);
}
/* omap5432 does not use lpddr2 */
writel(ioregs->ctrl_lpddr2ch, (*ctrl)->control_lpddr2ch1_0);
writel(ioregs->ctrl_emif_sdram_config_ext,
(*ctrl)->control_emif1_sdram_config_ext);
if (!is_dra72x())
writel(ioregs->ctrl_emif_sdram_config_ext,
(*ctrl)->control_emif2_sdram_config_ext);
if (is_omap54xx()) {
/* Disable DLL select */
io_settings = (readl((*ctrl)->control_port_emif1_sdram_config)
& 0xFFEFFFFF);
writel(io_settings,
(*ctrl)->control_port_emif1_sdram_config);
io_settings = (readl((*ctrl)->control_port_emif2_sdram_config)
& 0xFFEFFFFF);
writel(io_settings,
(*ctrl)->control_port_emif2_sdram_config);
} else {
writel(ioregs->ctrl_ddr_ctrl_ext_0,
(*ctrl)->control_ddr_control_ext_0);
}
}
/*
* Some tuning of IOs for optimal power and performance
*/
void do_io_settings(void)
{
u32 io_settings = 0, mask = 0;
struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
/* Impedance settings EMMC, C2C 1,2, hsi2 */
mask = (ds_mask << 2) | (ds_mask << 8) |
(ds_mask << 16) | (ds_mask << 18);
io_settings = readl((*ctrl)->control_smart1io_padconf_0) &
(~mask);
io_settings |= (ds_60_ohm << 8) | (ds_45_ohm << 16) |
(ds_45_ohm << 18) | (ds_60_ohm << 2);
writel(io_settings, (*ctrl)->control_smart1io_padconf_0);
/* Impedance settings Mcspi2 */
mask = (ds_mask << 30);
io_settings = readl((*ctrl)->control_smart1io_padconf_1) &
(~mask);
io_settings |= (ds_60_ohm << 30);
writel(io_settings, (*ctrl)->control_smart1io_padconf_1);
/* Impedance settings C2C 3,4 */
mask = (ds_mask << 14) | (ds_mask << 16);
io_settings = readl((*ctrl)->control_smart1io_padconf_2) &
(~mask);
io_settings |= (ds_45_ohm << 14) | (ds_45_ohm << 16);
writel(io_settings, (*ctrl)->control_smart1io_padconf_2);
/* Slew rate settings EMMC, C2C 1,2 */
mask = (sc_mask << 8) | (sc_mask << 16) | (sc_mask << 18);
io_settings = readl((*ctrl)->control_smart2io_padconf_0) &
(~mask);
io_settings |= (sc_fast << 8) | (sc_na << 16) | (sc_na << 18);
writel(io_settings, (*ctrl)->control_smart2io_padconf_0);
/* Slew rate settings hsi2, Mcspi2 */
mask = (sc_mask << 24) | (sc_mask << 28);
io_settings = readl((*ctrl)->control_smart2io_padconf_1) &
(~mask);
io_settings |= (sc_fast << 28) | (sc_fast << 24);
writel(io_settings, (*ctrl)->control_smart2io_padconf_1);
/* Slew rate settings C2C 3,4 */
mask = (sc_mask << 16) | (sc_mask << 18);
io_settings = readl((*ctrl)->control_smart2io_padconf_2) &
(~mask);
io_settings |= (sc_na << 16) | (sc_na << 18);
writel(io_settings, (*ctrl)->control_smart2io_padconf_2);
/* impedance and slew rate settings for usb */
mask = (usb_i_mask << 29) | (usb_i_mask << 26) | (usb_i_mask << 23) |
(usb_i_mask << 20) | (usb_i_mask << 17) | (usb_i_mask << 14);
io_settings = readl((*ctrl)->control_smart3io_padconf_1) &
(~mask);
io_settings |= (ds_60_ohm << 29) | (ds_60_ohm << 26) |
(ds_60_ohm << 23) | (sc_fast << 20) |
(sc_fast << 17) | (sc_fast << 14);
writel(io_settings, (*ctrl)->control_smart3io_padconf_1);
if (emif_sdram_type(emif->emif_sdram_config) == EMIF_SDRAM_TYPE_LPDDR2)
io_settings_lpddr2();
else
io_settings_ddr3();
}
static const struct srcomp_params srcomp_parameters[NUM_SYS_CLKS] = {
{0x45, 0x1}, /* 12 MHz */
{-1, -1}, /* 13 MHz */
{0x63, 0x2}, /* 16.8 MHz */
{0x57, 0x2}, /* 19.2 MHz */
{0x20, 0x1}, /* 26 MHz */
{-1, -1}, /* 27 MHz */
{0x41, 0x3} /* 38.4 MHz */
};
void srcomp_enable(void)
{
u32 srcomp_value, mul_factor, div_factor, clk_val, i;
u32 sysclk_ind = get_sys_clk_index();
u32 omap_rev = omap_revision();
if (!is_omap54xx())
return;
mul_factor = srcomp_parameters[sysclk_ind].multiply_factor;
div_factor = srcomp_parameters[sysclk_ind].divide_factor;
for (i = 0; i < 4; i++) {
srcomp_value = readl((*ctrl)->control_srcomp_north_side + i*4);
srcomp_value &=
~(MULTIPLY_FACTOR_XS_MASK | DIVIDE_FACTOR_XS_MASK);
srcomp_value |= (mul_factor << MULTIPLY_FACTOR_XS_SHIFT) |
(div_factor << DIVIDE_FACTOR_XS_SHIFT);
writel(srcomp_value, (*ctrl)->control_srcomp_north_side + i*4);
}
if ((omap_rev == OMAP5430_ES1_0) || (omap_rev == OMAP5432_ES1_0)) {
clk_val = readl((*prcm)->cm_coreaon_io_srcomp_clkctrl);
clk_val |= OPTFCLKEN_SRCOMP_FCLK_MASK;
writel(clk_val, (*prcm)->cm_coreaon_io_srcomp_clkctrl);
for (i = 0; i < 4; i++) {
srcomp_value =
readl((*ctrl)->control_srcomp_north_side + i*4);
srcomp_value &= ~PWRDWN_XS_MASK;
writel(srcomp_value,
(*ctrl)->control_srcomp_north_side + i*4);
while (((readl((*ctrl)->control_srcomp_north_side + i*4)
& SRCODE_READ_XS_MASK) >>
SRCODE_READ_XS_SHIFT) == 0)
;
srcomp_value =
readl((*ctrl)->control_srcomp_north_side + i*4);
srcomp_value &= ~OVERRIDE_XS_MASK;
writel(srcomp_value,
(*ctrl)->control_srcomp_north_side + i*4);
}
} else {
srcomp_value = readl((*ctrl)->control_srcomp_east_side_wkup);
srcomp_value &= ~(MULTIPLY_FACTOR_XS_MASK |
DIVIDE_FACTOR_XS_MASK);
srcomp_value |= (mul_factor << MULTIPLY_FACTOR_XS_SHIFT) |
(div_factor << DIVIDE_FACTOR_XS_SHIFT);
writel(srcomp_value, (*ctrl)->control_srcomp_east_side_wkup);
for (i = 0; i < 4; i++) {
srcomp_value =
readl((*ctrl)->control_srcomp_north_side + i*4);
srcomp_value |= SRCODE_OVERRIDE_SEL_XS_MASK;
writel(srcomp_value,
(*ctrl)->control_srcomp_north_side + i*4);
srcomp_value =
readl((*ctrl)->control_srcomp_north_side + i*4);
srcomp_value &= ~OVERRIDE_XS_MASK;
writel(srcomp_value,
(*ctrl)->control_srcomp_north_side + i*4);
}
srcomp_value =
readl((*ctrl)->control_srcomp_east_side_wkup);
srcomp_value |= SRCODE_OVERRIDE_SEL_XS_MASK;
writel(srcomp_value, (*ctrl)->control_srcomp_east_side_wkup);
srcomp_value =
readl((*ctrl)->control_srcomp_east_side_wkup);
srcomp_value &= ~OVERRIDE_XS_MASK;
writel(srcomp_value, (*ctrl)->control_srcomp_east_side_wkup);
clk_val = readl((*prcm)->cm_coreaon_io_srcomp_clkctrl);
clk_val |= OPTFCLKEN_SRCOMP_FCLK_MASK;
writel(clk_val, (*prcm)->cm_coreaon_io_srcomp_clkctrl);
clk_val = readl((*prcm)->cm_wkupaon_io_srcomp_clkctrl);
clk_val |= OPTFCLKEN_SRCOMP_FCLK_MASK;
writel(clk_val, (*prcm)->cm_wkupaon_io_srcomp_clkctrl);
for (i = 0; i < 4; i++) {
while (((readl((*ctrl)->control_srcomp_north_side + i*4)
& SRCODE_READ_XS_MASK) >>
SRCODE_READ_XS_SHIFT) == 0)
;
srcomp_value =
readl((*ctrl)->control_srcomp_north_side + i*4);
srcomp_value &= ~SRCODE_OVERRIDE_SEL_XS_MASK;
writel(srcomp_value,
(*ctrl)->control_srcomp_north_side + i*4);
}
while (((readl((*ctrl)->control_srcomp_east_side_wkup) &
SRCODE_READ_XS_MASK) >> SRCODE_READ_XS_SHIFT) == 0)
;
srcomp_value =
readl((*ctrl)->control_srcomp_east_side_wkup);
srcomp_value &= ~SRCODE_OVERRIDE_SEL_XS_MASK;
writel(srcomp_value, (*ctrl)->control_srcomp_east_side_wkup);
}
}
#endif
void config_data_eye_leveling_samples(u32 emif_base)
{
const struct ctrl_ioregs *ioregs;
get_ioregs(&ioregs);
/*EMIF_SDRAM_CONFIG_EXT-Read data eye leveling no of samples =4*/
if (emif_base == EMIF1_BASE)
writel(ioregs->ctrl_emif_sdram_config_ext_final,
(*ctrl)->control_emif1_sdram_config_ext);
else if (emif_base == EMIF2_BASE)
writel(ioregs->ctrl_emif_sdram_config_ext_final,
(*ctrl)->control_emif2_sdram_config_ext);
}
void init_cpu_configuration(void)
{
u32 l2actlr;
asm volatile("mrc p15, 1, %0, c15, c0, 0" : "=r"(l2actlr));
/*
* L2ACTLR: Ensure to enable the following:
* 3: Disable clean/evict push to external
* 4: Disable WriteUnique and WriteLineUnique transactions from master
* 8: Disable DVM/CMO message broadcast
*/
l2actlr |= 0x118;
omap_smc1(OMAP5_SERVICE_L2ACTLR_SET, l2actlr);
}
void init_omap_revision(void)
{
/*
* For some of the ES2/ES1 boards ID_CODE is not reliable:
* Also, ES1 and ES2 have different ARM revisions
* So use ARM revision for identification
*/
unsigned int rev = cortex_rev();
switch (readl(CONTROL_ID_CODE)) {
case OMAP5430_CONTROL_ID_CODE_ES1_0:
*omap_si_rev = OMAP5430_ES1_0;
if (rev == MIDR_CORTEX_A15_R2P2)
*omap_si_rev = OMAP5430_ES2_0;
break;
case OMAP5432_CONTROL_ID_CODE_ES1_0:
*omap_si_rev = OMAP5432_ES1_0;
if (rev == MIDR_CORTEX_A15_R2P2)
*omap_si_rev = OMAP5432_ES2_0;
break;
case OMAP5430_CONTROL_ID_CODE_ES2_0:
*omap_si_rev = OMAP5430_ES2_0;
break;
case OMAP5432_CONTROL_ID_CODE_ES2_0:
*omap_si_rev = OMAP5432_ES2_0;
break;
case DRA762_CONTROL_ID_CODE_ES1_0:
*omap_si_rev = DRA762_ES1_0;
break;
case DRA752_CONTROL_ID_CODE_ES1_0:
*omap_si_rev = DRA752_ES1_0;
break;
case DRA752_CONTROL_ID_CODE_ES1_1:
*omap_si_rev = DRA752_ES1_1;
break;
case DRA752_CONTROL_ID_CODE_ES2_0:
*omap_si_rev = DRA752_ES2_0;
break;
case DRA722_CONTROL_ID_CODE_ES1_0:
*omap_si_rev = DRA722_ES1_0;
break;
case DRA722_CONTROL_ID_CODE_ES2_0:
*omap_si_rev = DRA722_ES2_0;
break;
case DRA722_CONTROL_ID_CODE_ES2_1:
*omap_si_rev = DRA722_ES2_1;
break;
default:
*omap_si_rev = OMAP5430_SILICON_ID_INVALID;
}
init_cpu_configuration();
}
void init_package_revision(void)
{
unsigned int die_id[4] = { 0 };
u8 package;
omap_die_id(die_id);
package = (die_id[2] >> 16) & 0x3;
if (is_dra76x()) {
switch (package) {
case DRA762_ABZ_PACKAGE:
*omap_si_rev = DRA762_ABZ_ES1_0;
break;
case DRA762_ACD_PACKAGE:
default:
*omap_si_rev = DRA762_ACD_ES1_0;
break;
}
}
}
void omap_die_id(unsigned int *die_id)
{
die_id[0] = readl((*ctrl)->control_std_fuse_die_id_0);
die_id[1] = readl((*ctrl)->control_std_fuse_die_id_1);
die_id[2] = readl((*ctrl)->control_std_fuse_die_id_2);
die_id[3] = readl((*ctrl)->control_std_fuse_die_id_3);
}
void reset_cpu(ulong ignored)
{
u32 omap_rev = omap_revision();
/*
* WARM reset is not functional in case of OMAP5430 ES1.0 soc.
* So use cold reset in case instead.
*/
if (omap_rev == OMAP5430_ES1_0)
writel(PRM_RSTCTRL_RESET << 0x1, (*prcm)->prm_rstctrl);
else
writel(PRM_RSTCTRL_RESET, (*prcm)->prm_rstctrl);
}
u32 warm_reset(void)
{
return readl((*prcm)->prm_rstst) & PRM_RSTST_WARM_RESET_MASK;
}
void setup_warmreset_time(void)
{
u32 rst_time, rst_val;
/*
* MAX value for PRM_RSTTIME[9:0]RSTTIME1 stored is 0x3ff.
* 0x3ff is in the no of FUNC_32K_CLK cycles. Converting cycles
* into microsec and passing the value.
*/
rst_time = usec_to_32k(CONFIG_OMAP_PLATFORM_RESET_TIME_MAX_USEC)
<< RSTTIME1_SHIFT;
if (rst_time > RSTTIME1_MASK)
rst_time = RSTTIME1_MASK;
rst_val = readl((*prcm)->prm_rsttime) & ~RSTTIME1_MASK;
rst_val |= rst_time;
writel(rst_val, (*prcm)->prm_rsttime);
}
void v7_arch_cp15_set_l2aux_ctrl(u32 l2auxctrl, u32 cpu_midr,
u32 cpu_rev_comb, u32 cpu_variant,
u32 cpu_rev)
{
omap_smc1(OMAP5_SERVICE_L2ACTLR_SET, l2auxctrl);
}
void v7_arch_cp15_set_acr(u32 acr, u32 cpu_midr, u32 cpu_rev_comb,
u32 cpu_variant, u32 cpu_rev)
{
#ifdef CONFIG_ARM_ERRATA_801819
/*
* DRA72x processors are uniprocessors and DONOT have
* ACP (Accelerator Coherency Port) hooked to ACE (AXI Coherency
* Extensions) Hence the erratum workaround is not applicable for
* DRA72x processors.
*/
if (is_dra72x())
acr &= ~((0x3 << 23) | (0x3 << 25));
#endif
omap_smc1(OMAP5_SERVICE_ACR_SET, acr);
}
#if defined(CONFIG_PALMAS_POWER)
__weak void board_mmc_poweron_ldo(uint voltage)
{
palmas_mmc1_poweron_ldo(LDO1_VOLTAGE, LDO1_CTRL, voltage);
}
void vmmc_pbias_config(uint voltage)
{
u32 value = 0;
value = readl((*ctrl)->control_pbias);
value &= ~SDCARD_PWRDNZ;
writel(value, (*ctrl)->control_pbias);
udelay(10); /* wait 10 us */
value &= ~SDCARD_BIAS_PWRDNZ;
writel(value, (*ctrl)->control_pbias);
board_mmc_poweron_ldo(voltage);
value = readl((*ctrl)->control_pbias);
value |= SDCARD_BIAS_PWRDNZ;
writel(value, (*ctrl)->control_pbias);
udelay(150); /* wait 150 us */
value |= SDCARD_PWRDNZ;
writel(value, (*ctrl)->control_pbias);
udelay(150); /* wait 150 us */
}
#endif