u-boot-brain/tools/ifdtool.c
Simon Glass 31eca69727 x86: ifdtool: Add support for early microcode access
Some Intel CPUs use an 'FSP' binary blob which provides an inflexible
means of starting up the CPU. One result is that microcode updates can only
be done before RAM is available and therefore parsing of the device tree
is impracticle.

Worse, the addess of the microcode update must be stored in ROM since a
pointer to its start address and size is passed to the 'FSP' blob. It is
not possible to perform any calculations to obtain the address and size.

To work around this, ifdtool is enhanced to work out the address and size of
the first microcode update it finds in the supplied device tree. It then
writes these into the correct place in the ROM. U-Boot can then start up
the FSP correctly.

Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
2014-12-18 17:26:05 -07:00

1170 lines
30 KiB
C

/*
* ifdtool - Manage Intel Firmware Descriptor information
*
* Copyright 2014 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0
*
* From Coreboot project, but it got a serious code clean-up
* and a few new features
*/
#include <assert.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <libfdt.h>
#include "ifdtool.h"
#undef DEBUG
#ifdef DEBUG
#define debug(fmt, args...) printf(fmt, ##args)
#else
#define debug(fmt, args...)
#endif
#define FD_SIGNATURE 0x0FF0A55A
#define FLREG_BASE(reg) ((reg & 0x00000fff) << 12);
#define FLREG_LIMIT(reg) (((reg & 0x0fff0000) >> 4) | 0xfff);
enum input_file_type_t {
IF_normal,
IF_fdt,
IF_uboot,
};
struct input_file {
char *fname;
unsigned int addr;
enum input_file_type_t type;
};
/**
* find_fd() - Find the flash description in the ROM image
*
* @image: Pointer to image
* @size: Size of image in bytes
* @return pointer to structure, or NULL if not found
*/
static struct fdbar_t *find_fd(char *image, int size)
{
uint32_t *ptr, *end;
/* Scan for FD signature */
for (ptr = (uint32_t *)image, end = ptr + size / 4; ptr < end; ptr++) {
if (*ptr == FD_SIGNATURE)
break;
}
if (ptr == end) {
printf("No Flash Descriptor found in this image\n");
return NULL;
}
debug("Found Flash Descriptor signature at 0x%08lx\n",
(char *)ptr - image);
return (struct fdbar_t *)ptr;
}
/**
* get_region() - Get information about the selected region
*
* @frba: Flash region list
* @region_type: Type of region (0..MAX_REGIONS-1)
* @region: Region information is written here
* @return 0 if OK, else -ve
*/
static int get_region(struct frba_t *frba, int region_type,
struct region_t *region)
{
if (region_type >= MAX_REGIONS) {
fprintf(stderr, "Invalid region type.\n");
return -1;
}
region->base = FLREG_BASE(frba->flreg[region_type]);
region->limit = FLREG_LIMIT(frba->flreg[region_type]);
region->size = region->limit - region->base + 1;
return 0;
}
static const char *region_name(int region_type)
{
static const char *const regions[] = {
"Flash Descriptor",
"BIOS",
"Intel ME",
"GbE",
"Platform Data"
};
assert(region_type < MAX_REGIONS);
return regions[region_type];
}
static const char *region_filename(int region_type)
{
static const char *const region_filenames[] = {
"flashregion_0_flashdescriptor.bin",
"flashregion_1_bios.bin",
"flashregion_2_intel_me.bin",
"flashregion_3_gbe.bin",
"flashregion_4_platform_data.bin"
};
assert(region_type < MAX_REGIONS);
return region_filenames[region_type];
}
static int dump_region(int num, struct frba_t *frba)
{
struct region_t region;
int ret;
ret = get_region(frba, num, &region);
if (ret)
return ret;
printf(" Flash Region %d (%s): %08x - %08x %s\n",
num, region_name(num), region.base, region.limit,
region.size < 1 ? "(unused)" : "");
return ret;
}
static void dump_frba(struct frba_t *frba)
{
int i;
printf("Found Region Section\n");
for (i = 0; i < MAX_REGIONS; i++) {
printf("FLREG%d: 0x%08x\n", i, frba->flreg[i]);
dump_region(i, frba);
}
}
static void decode_spi_frequency(unsigned int freq)
{
switch (freq) {
case SPI_FREQUENCY_20MHZ:
printf("20MHz");
break;
case SPI_FREQUENCY_33MHZ:
printf("33MHz");
break;
case SPI_FREQUENCY_50MHZ:
printf("50MHz");
break;
default:
printf("unknown<%x>MHz", freq);
}
}
static void decode_component_density(unsigned int density)
{
switch (density) {
case COMPONENT_DENSITY_512KB:
printf("512KiB");
break;
case COMPONENT_DENSITY_1MB:
printf("1MiB");
break;
case COMPONENT_DENSITY_2MB:
printf("2MiB");
break;
case COMPONENT_DENSITY_4MB:
printf("4MiB");
break;
case COMPONENT_DENSITY_8MB:
printf("8MiB");
break;
case COMPONENT_DENSITY_16MB:
printf("16MiB");
break;
default:
printf("unknown<%x>MiB", density);
}
}
static void dump_fcba(struct fcba_t *fcba)
{
printf("\nFound Component Section\n");
printf("FLCOMP 0x%08x\n", fcba->flcomp);
printf(" Dual Output Fast Read Support: %ssupported\n",
(fcba->flcomp & (1 << 30)) ? "" : "not ");
printf(" Read ID/Read Status Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 27) & 7);
printf("\n Write/Erase Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 24) & 7);
printf("\n Fast Read Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 21) & 7);
printf("\n Fast Read Support: %ssupported",
(fcba->flcomp & (1 << 20)) ? "" : "not ");
printf("\n Read Clock Frequency: ");
decode_spi_frequency((fcba->flcomp >> 17) & 7);
printf("\n Component 2 Density: ");
decode_component_density((fcba->flcomp >> 3) & 7);
printf("\n Component 1 Density: ");
decode_component_density(fcba->flcomp & 7);
printf("\n");
printf("FLILL 0x%08x\n", fcba->flill);
printf(" Invalid Instruction 3: 0x%02x\n",
(fcba->flill >> 24) & 0xff);
printf(" Invalid Instruction 2: 0x%02x\n",
(fcba->flill >> 16) & 0xff);
printf(" Invalid Instruction 1: 0x%02x\n",
(fcba->flill >> 8) & 0xff);
printf(" Invalid Instruction 0: 0x%02x\n",
fcba->flill & 0xff);
printf("FLPB 0x%08x\n", fcba->flpb);
printf(" Flash Partition Boundary Address: 0x%06x\n\n",
(fcba->flpb & 0xfff) << 12);
}
static void dump_fpsba(struct fpsba_t *fpsba)
{
int i;
printf("Found PCH Strap Section\n");
for (i = 0; i < MAX_STRAPS; i++)
printf("PCHSTRP%-2d: 0x%08x\n", i, fpsba->pchstrp[i]);
}
static const char *get_enabled(int flag)
{
return flag ? "enabled" : "disabled";
}
static void decode_flmstr(uint32_t flmstr)
{
printf(" Platform Data Region Write Access: %s\n",
get_enabled(flmstr & (1 << 28)));
printf(" GbE Region Write Access: %s\n",
get_enabled(flmstr & (1 << 27)));
printf(" Intel ME Region Write Access: %s\n",
get_enabled(flmstr & (1 << 26)));
printf(" Host CPU/BIOS Region Write Access: %s\n",
get_enabled(flmstr & (1 << 25)));
printf(" Flash Descriptor Write Access: %s\n",
get_enabled(flmstr & (1 << 24)));
printf(" Platform Data Region Read Access: %s\n",
get_enabled(flmstr & (1 << 20)));
printf(" GbE Region Read Access: %s\n",
get_enabled(flmstr & (1 << 19)));
printf(" Intel ME Region Read Access: %s\n",
get_enabled(flmstr & (1 << 18)));
printf(" Host CPU/BIOS Region Read Access: %s\n",
get_enabled(flmstr & (1 << 17)));
printf(" Flash Descriptor Read Access: %s\n",
get_enabled(flmstr & (1 << 16)));
printf(" Requester ID: 0x%04x\n\n",
flmstr & 0xffff);
}
static void dump_fmba(struct fmba_t *fmba)
{
printf("Found Master Section\n");
printf("FLMSTR1: 0x%08x (Host CPU/BIOS)\n", fmba->flmstr1);
decode_flmstr(fmba->flmstr1);
printf("FLMSTR2: 0x%08x (Intel ME)\n", fmba->flmstr2);
decode_flmstr(fmba->flmstr2);
printf("FLMSTR3: 0x%08x (GbE)\n", fmba->flmstr3);
decode_flmstr(fmba->flmstr3);
}
static void dump_fmsba(struct fmsba_t *fmsba)
{
int i;
printf("Found Processor Strap Section\n");
for (i = 0; i < 4; i++)
printf("????: 0x%08x\n", fmsba->data[0]);
}
static void dump_jid(uint32_t jid)
{
printf(" SPI Component Device ID 1: 0x%02x\n",
(jid >> 16) & 0xff);
printf(" SPI Component Device ID 0: 0x%02x\n",
(jid >> 8) & 0xff);
printf(" SPI Component Vendor ID: 0x%02x\n",
jid & 0xff);
}
static void dump_vscc(uint32_t vscc)
{
printf(" Lower Erase Opcode: 0x%02x\n",
vscc >> 24);
printf(" Lower Write Enable on Write Status: 0x%02x\n",
vscc & (1 << 20) ? 0x06 : 0x50);
printf(" Lower Write Status Required: %s\n",
vscc & (1 << 19) ? "Yes" : "No");
printf(" Lower Write Granularity: %d bytes\n",
vscc & (1 << 18) ? 64 : 1);
printf(" Lower Block / Sector Erase Size: ");
switch ((vscc >> 16) & 0x3) {
case 0:
printf("256 Byte\n");
break;
case 1:
printf("4KB\n");
break;
case 2:
printf("8KB\n");
break;
case 3:
printf("64KB\n");
break;
}
printf(" Upper Erase Opcode: 0x%02x\n",
(vscc >> 8) & 0xff);
printf(" Upper Write Enable on Write Status: 0x%02x\n",
vscc & (1 << 4) ? 0x06 : 0x50);
printf(" Upper Write Status Required: %s\n",
vscc & (1 << 3) ? "Yes" : "No");
printf(" Upper Write Granularity: %d bytes\n",
vscc & (1 << 2) ? 64 : 1);
printf(" Upper Block / Sector Erase Size: ");
switch (vscc & 0x3) {
case 0:
printf("256 Byte\n");
break;
case 1:
printf("4KB\n");
break;
case 2:
printf("8KB\n");
break;
case 3:
printf("64KB\n");
break;
}
}
static void dump_vtba(struct vtba_t *vtba, int vtl)
{
int i;
int num = (vtl >> 1) < 8 ? (vtl >> 1) : 8;
printf("ME VSCC table:\n");
for (i = 0; i < num; i++) {
printf(" JID%d: 0x%08x\n", i, vtba->entry[i].jid);
dump_jid(vtba->entry[i].jid);
printf(" VSCC%d: 0x%08x\n", i, vtba->entry[i].vscc);
dump_vscc(vtba->entry[i].vscc);
}
printf("\n");
}
static void dump_oem(uint8_t *oem)
{
int i, j;
printf("OEM Section:\n");
for (i = 0; i < 4; i++) {
printf("%02x:", i << 4);
for (j = 0; j < 16; j++)
printf(" %02x", oem[(i<<4)+j]);
printf("\n");
}
printf("\n");
}
/**
* dump_fd() - Display a dump of the full flash description
*
* @image: Pointer to image
* @size: Size of image in bytes
* @return 0 if OK, -1 on error
*/
static int dump_fd(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
if (!fdb)
return -1;
printf("FLMAP0: 0x%08x\n", fdb->flmap0);
printf(" NR: %d\n", (fdb->flmap0 >> 24) & 7);
printf(" FRBA: 0x%x\n", ((fdb->flmap0 >> 16) & 0xff) << 4);
printf(" NC: %d\n", ((fdb->flmap0 >> 8) & 3) + 1);
printf(" FCBA: 0x%x\n", ((fdb->flmap0) & 0xff) << 4);
printf("FLMAP1: 0x%08x\n", fdb->flmap1);
printf(" ISL: 0x%02x\n", (fdb->flmap1 >> 24) & 0xff);
printf(" FPSBA: 0x%x\n", ((fdb->flmap1 >> 16) & 0xff) << 4);
printf(" NM: %d\n", (fdb->flmap1 >> 8) & 3);
printf(" FMBA: 0x%x\n", ((fdb->flmap1) & 0xff) << 4);
printf("FLMAP2: 0x%08x\n", fdb->flmap2);
printf(" PSL: 0x%04x\n", (fdb->flmap2 >> 8) & 0xffff);
printf(" FMSBA: 0x%x\n", ((fdb->flmap2) & 0xff) << 4);
printf("FLUMAP1: 0x%08x\n", fdb->flumap1);
printf(" Intel ME VSCC Table Length (VTL): %d\n",
(fdb->flumap1 >> 8) & 0xff);
printf(" Intel ME VSCC Table Base Address (VTBA): 0x%06x\n\n",
(fdb->flumap1 & 0xff) << 4);
dump_vtba((struct vtba_t *)
(image + ((fdb->flumap1 & 0xff) << 4)),
(fdb->flumap1 >> 8) & 0xff);
dump_oem((uint8_t *)image + 0xf00);
dump_frba((struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff)
<< 4)));
dump_fcba((struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4)));
dump_fpsba((struct fpsba_t *)
(image + (((fdb->flmap1 >> 16) & 0xff) << 4)));
dump_fmba((struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4)));
dump_fmsba((struct fmsba_t *)(image + (((fdb->flmap2) & 0xff) << 4)));
return 0;
}
/**
* write_regions() - Write each region from an image to its own file
*
* The filename to use in each case is fixed - see region_filename()
*
* @image: Pointer to image
* @size: Size of image in bytes
* @return 0 if OK, -ve on error
*/
static int write_regions(char *image, int size)
{
struct fdbar_t *fdb;
struct frba_t *frba;
int ret = 0;
int i;
fdb = find_fd(image, size);
if (!fdb)
return -1;
frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
for (i = 0; i < MAX_REGIONS; i++) {
struct region_t region;
int region_fd;
ret = get_region(frba, i, &region);
if (ret)
return ret;
dump_region(i, frba);
if (region.size == 0)
continue;
region_fd = open(region_filename(i),
O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
S_IWUSR | S_IRGRP | S_IROTH);
if (write(region_fd, image + region.base, region.size) !=
region.size) {
perror("Error while writing");
ret = -1;
}
close(region_fd);
}
return ret;
}
static int perror_fname(const char *fmt, const char *fname)
{
char msg[strlen(fmt) + strlen(fname) + 1];
sprintf(msg, fmt, fname);
perror(msg);
return -1;
}
/**
* write_image() - Write the image to a file
*
* @filename: Filename to use for the image
* @image: Pointer to image
* @size: Size of image in bytes
* @return 0 if OK, -ve on error
*/
static int write_image(char *filename, char *image, int size)
{
int new_fd;
debug("Writing new image to %s\n", filename);
new_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
S_IWUSR | S_IRGRP | S_IROTH);
if (new_fd < 0)
return perror_fname("Could not open file '%s'", filename);
if (write(new_fd, image, size) != size)
return perror_fname("Could not write file '%s'", filename);
close(new_fd);
return 0;
}
/**
* set_spi_frequency() - Set the SPI frequency to use when booting
*
* Several frequencies are supported, some of which work with fast devices.
* For SPI emulators, the slowest (SPI_FREQUENCY_20MHZ) is often used. The
* Intel boot system uses this information somehow on boot.
*
* The image is updated with the supplied value
*
* @image: Pointer to image
* @size: Size of image in bytes
* @freq: SPI frequency to use
*/
static void set_spi_frequency(char *image, int size, enum spi_frequency freq)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fcba_t *fcba;
fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
/* clear bits 21-29 */
fcba->flcomp &= ~0x3fe00000;
/* Read ID and Read Status Clock Frequency */
fcba->flcomp |= freq << 27;
/* Write and Erase Clock Frequency */
fcba->flcomp |= freq << 24;
/* Fast Read Clock Frequency */
fcba->flcomp |= freq << 21;
}
/**
* set_em100_mode() - Set a SPI frequency that will work with Dediprog EM100
*
* @image: Pointer to image
* @size: Size of image in bytes
*/
static void set_em100_mode(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fcba_t *fcba;
fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
fcba->flcomp &= ~(1 << 30);
set_spi_frequency(image, size, SPI_FREQUENCY_20MHZ);
}
/**
* lock_descriptor() - Lock the NE descriptor so it cannot be updated
*
* @image: Pointer to image
* @size: Size of image in bytes
*/
static void lock_descriptor(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fmba_t *fmba;
/*
* TODO: Dynamically take Platform Data Region and GbE Region into
* account.
*/
fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
fmba->flmstr1 = 0x0a0b0000;
fmba->flmstr2 = 0x0c0d0000;
fmba->flmstr3 = 0x08080118;
}
/**
* unlock_descriptor() - Lock the NE descriptor so it can be updated
*
* @image: Pointer to image
* @size: Size of image in bytes
*/
static void unlock_descriptor(char *image, int size)
{
struct fdbar_t *fdb = find_fd(image, size);
struct fmba_t *fmba;
fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
fmba->flmstr1 = 0xffff0000;
fmba->flmstr2 = 0xffff0000;
fmba->flmstr3 = 0x08080118;
}
/**
* open_for_read() - Open a file for reading
*
* @fname: Filename to open
* @sizep: Returns file size in bytes
* @return 0 if OK, -1 on error
*/
int open_for_read(const char *fname, int *sizep)
{
int fd = open(fname, O_RDONLY);
struct stat buf;
if (fd == -1)
return perror_fname("Could not open file '%s'", fname);
if (fstat(fd, &buf) == -1)
return perror_fname("Could not stat file '%s'", fname);
*sizep = buf.st_size;
debug("File %s is %d bytes\n", fname, *sizep);
return fd;
}
/**
* inject_region() - Add a file to an image region
*
* This puts a file into a particular region of the flash. Several pre-defined
* regions are used.
*
* @image: Pointer to image
* @size: Size of image in bytes
* @region_type: Region where the file should be added
* @region_fname: Filename to add to the image
* @return 0 if OK, -ve on error
*/
int inject_region(char *image, int size, int region_type, char *region_fname)
{
struct fdbar_t *fdb = find_fd(image, size);
struct region_t region;
struct frba_t *frba;
int region_size;
int offset = 0;
int region_fd;
int ret;
if (!fdb)
exit(EXIT_FAILURE);
frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
ret = get_region(frba, region_type, &region);
if (ret)
return -1;
if (region.size <= 0xfff) {
fprintf(stderr, "Region %s is disabled in target. Not injecting.\n",
region_name(region_type));
return -1;
}
region_fd = open_for_read(region_fname, &region_size);
if (region_fd < 0)
return region_fd;
if ((region_size > region.size) ||
((region_type != 1) && (region_size > region.size))) {
fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Not injecting.\n",
region_name(region_type), region.size,
region.size, region_size, region_size);
return -1;
}
if ((region_type == 1) && (region_size < region.size)) {
fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Padding before injecting.\n",
region_name(region_type), region.size,
region.size, region_size, region_size);
offset = region.size - region_size;
memset(image + region.base, 0xff, offset);
}
if (size < region.base + offset + region_size) {
fprintf(stderr, "Output file is too small. (%d < %d)\n",
size, region.base + offset + region_size);
return -1;
}
if (read(region_fd, image + region.base + offset, region_size)
!= region_size) {
perror("Could not read file");
return -1;
}
close(region_fd);
debug("Adding %s as the %s section\n", region_fname,
region_name(region_type));
return 0;
}
/**
* write_data() - Write some raw data into a region
*
* This puts a file into a particular place in the flash, ignoring the
* regions. Be careful not to overwrite something important.
*
* @image: Pointer to image
* @size: Size of image in bytes
* @addr: x86 ROM address to put file. The ROM ends at
* 0xffffffff so use an address relative to that. For an
* 8MB ROM the start address is 0xfff80000.
* @write_fname: Filename to add to the image
* @return number of bytes written if OK, -ve on error
*/
static int write_data(char *image, int size, unsigned int addr,
const char *write_fname)
{
int write_fd, write_size;
int offset;
write_fd = open_for_read(write_fname, &write_size);
if (write_fd < 0)
return write_fd;
offset = (uint32_t)(addr + size);
debug("Writing %s to offset %#x\n", write_fname, offset);
if (offset < 0 || offset + write_size > size) {
fprintf(stderr, "Output file is too small. (%d < %d)\n",
size, offset + write_size);
return -1;
}
if (read(write_fd, image + offset, write_size) != write_size) {
perror("Could not read file");
return -1;
}
close(write_fd);
return write_size;
}
/**
* write_uboot() - Write U-Boot, device tree and microcode pointer
*
* This writes U-Boot into a place in the flash, followed by its device tree.
* The microcode pointer is written so that U-Boot can find the microcode in
* the device tree very early in boot.
*
* @image: Pointer to image
* @size: Size of image in bytes
* @uboot: Input file information for u-boot.bin
* @fdt: Input file information for u-boot.dtb
* @ucode_ptr: Address in U-Boot where the microcode pointer should be placed
* @return 0 if OK, -ve on error
*/
static int write_uboot(char *image, int size, struct input_file *uboot,
struct input_file *fdt, unsigned int ucode_ptr)
{
const void *blob;
const char *data;
int uboot_size;
uint32_t *ptr;
int data_size;
int offset;
int node;
int ret;
uboot_size = write_data(image, size, uboot->addr, uboot->fname);
if (uboot_size < 0)
return uboot_size;
fdt->addr = uboot->addr + uboot_size;
debug("U-Boot size %#x, FDT at %#x\n", uboot_size, fdt->addr);
ret = write_data(image, size, fdt->addr, fdt->fname);
if (ret < 0)
return ret;
if (ucode_ptr) {
blob = (void *)image + (uint32_t)(fdt->addr + size);
debug("DTB at %lx\n", (char *)blob - image);
node = fdt_node_offset_by_compatible(blob, 0,
"intel,microcode");
if (node < 0) {
debug("No microcode found in FDT: %s\n",
fdt_strerror(node));
return -ENOENT;
}
data = fdt_getprop(blob, node, "data", &data_size);
if (!data) {
debug("No microcode data found in FDT: %s\n",
fdt_strerror(data_size));
return -ENOENT;
}
offset = ucode_ptr - uboot->addr;
ptr = (void *)image + offset;
ptr[0] = uboot->addr + (data - image);
ptr[1] = data_size;
debug("Wrote microcode pointer at %x: addr=%x, size=%x\n",
ucode_ptr, ptr[0], ptr[1]);
}
return 0;
}
static void print_version(void)
{
printf("ifdtool v%s -- ", IFDTOOL_VERSION);
printf("Copyright (C) 2014 Google Inc.\n\n");
printf("SPDX-License-Identifier: GPL-2.0+\n");
}
static void print_usage(const char *name)
{
printf("usage: %s [-vhdix?] <filename> [<outfile>]\n", name);
printf("\n"
" -d | --dump: dump intel firmware descriptor\n"
" -x | --extract: extract intel fd modules\n"
" -i | --inject <region>:<module> inject file <module> into region <region>\n"
" -w | --write <addr>:<file> write file to appear at memory address <addr>\n"
" multiple files can be written simultaneously\n"
" -s | --spifreq <20|33|50> set the SPI frequency\n"
" -e | --em100 set SPI frequency to 20MHz and disable\n"
" Dual Output Fast Read Support\n"
" -l | --lock Lock firmware descriptor and ME region\n"
" -u | --unlock Unlock firmware descriptor and ME region\n"
" -r | --romsize Specify ROM size\n"
" -D | --write-descriptor <file> Write descriptor at base\n"
" -c | --create Create a new empty image\n"
" -v | --version: print the version\n"
" -h | --help: print this help\n\n"
"<region> is one of Descriptor, BIOS, ME, GbE, Platform\n"
"\n");
}
/**
* get_two_words() - Convert a string into two words separated by :
*
* The supplied string is split at ':', two substrings are allocated and
* returned.
*
* @str: String to split
* @firstp: Returns first string
* @secondp: Returns second string
* @return 0 if OK, -ve if @str does not have a :
*/
static int get_two_words(const char *str, char **firstp, char **secondp)
{
const char *p;
p = strchr(str, ':');
if (!p)
return -1;
*firstp = strdup(str);
(*firstp)[p - str] = '\0';
*secondp = strdup(p + 1);
return 0;
}
int main(int argc, char *argv[])
{
int opt, option_index = 0;
int mode_dump = 0, mode_extract = 0, mode_inject = 0;
int mode_spifreq = 0, mode_em100 = 0, mode_locked = 0;
int mode_unlocked = 0, mode_write = 0, mode_write_descriptor = 0;
int create = 0;
char *region_type_string = NULL, *inject_fname = NULL;
char *desc_fname = NULL, *addr_str = NULL;
int region_type = -1, inputfreq = 0;
enum spi_frequency spifreq = SPI_FREQUENCY_20MHZ;
struct input_file input_file[WRITE_MAX], *ifile, *fdt = NULL;
unsigned char wr_idx, wr_num = 0;
int rom_size = -1;
bool write_it;
char *filename;
char *outfile = NULL;
struct stat buf;
int size = 0;
unsigned int ucode_ptr = 0;
bool have_uboot = false;
int bios_fd;
char *image;
int ret;
static struct option long_options[] = {
{"create", 0, NULL, 'c'},
{"dump", 0, NULL, 'd'},
{"descriptor", 1, NULL, 'D'},
{"em100", 0, NULL, 'e'},
{"extract", 0, NULL, 'x'},
{"fdt", 1, NULL, 'f'},
{"inject", 1, NULL, 'i'},
{"lock", 0, NULL, 'l'},
{"microcode", 1, NULL, 'm'},
{"romsize", 1, NULL, 'r'},
{"spifreq", 1, NULL, 's'},
{"unlock", 0, NULL, 'u'},
{"uboot", 1, NULL, 'U'},
{"write", 1, NULL, 'w'},
{"version", 0, NULL, 'v'},
{"help", 0, NULL, 'h'},
{0, 0, 0, 0}
};
while ((opt = getopt_long(argc, argv, "cdD:ef:hi:lm:r:s:uU:vw:x?",
long_options, &option_index)) != EOF) {
switch (opt) {
case 'c':
create = 1;
break;
case 'd':
mode_dump = 1;
break;
case 'D':
mode_write_descriptor = 1;
desc_fname = optarg;
break;
case 'e':
mode_em100 = 1;
break;
case 'i':
if (get_two_words(optarg, &region_type_string,
&inject_fname)) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if (!strcasecmp("Descriptor", region_type_string))
region_type = 0;
else if (!strcasecmp("BIOS", region_type_string))
region_type = 1;
else if (!strcasecmp("ME", region_type_string))
region_type = 2;
else if (!strcasecmp("GbE", region_type_string))
region_type = 3;
else if (!strcasecmp("Platform", region_type_string))
region_type = 4;
if (region_type == -1) {
fprintf(stderr, "No such region type: '%s'\n\n",
region_type_string);
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
mode_inject = 1;
break;
case 'l':
mode_locked = 1;
break;
case 'm':
ucode_ptr = strtoul(optarg, NULL, 0);
break;
case 'r':
rom_size = strtol(optarg, NULL, 0);
debug("ROM size %d\n", rom_size);
break;
case 's':
/* Parse the requested SPI frequency */
inputfreq = strtol(optarg, NULL, 0);
switch (inputfreq) {
case 20:
spifreq = SPI_FREQUENCY_20MHZ;
break;
case 33:
spifreq = SPI_FREQUENCY_33MHZ;
break;
case 50:
spifreq = SPI_FREQUENCY_50MHZ;
break;
default:
fprintf(stderr, "Invalid SPI Frequency: %d\n",
inputfreq);
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
mode_spifreq = 1;
break;
case 'u':
mode_unlocked = 1;
break;
case 'v':
print_version();
exit(EXIT_SUCCESS);
break;
case 'w':
case 'U':
case 'f':
ifile = &input_file[wr_num];
mode_write = 1;
if (wr_num < WRITE_MAX) {
if (get_two_words(optarg, &addr_str,
&ifile->fname)) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
ifile->addr = strtol(optarg, NULL, 0);
ifile->type = opt == 'f' ? IF_fdt :
opt == 'U' ? IF_uboot : IF_normal;
if (ifile->type == IF_fdt)
fdt = ifile;
else if (ifile->type == IF_uboot)
have_uboot = true;
wr_num++;
} else {
fprintf(stderr,
"The number of files to write simultaneously exceeds the limitation (%d)\n",
WRITE_MAX);
}
break;
case 'x':
mode_extract = 1;
break;
case 'h':
case '?':
default:
print_usage(argv[0]);
exit(EXIT_SUCCESS);
break;
}
}
if (mode_locked == 1 && mode_unlocked == 1) {
fprintf(stderr, "Locking/Unlocking FD and ME are mutually exclusive\n");
exit(EXIT_FAILURE);
}
if (mode_inject == 1 && mode_write == 1) {
fprintf(stderr, "Inject/Write are mutually exclusive\n");
exit(EXIT_FAILURE);
}
if ((mode_dump + mode_extract + mode_inject +
(mode_spifreq | mode_em100 | mode_unlocked |
mode_locked)) > 1) {
fprintf(stderr, "You may not specify more than one mode.\n\n");
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if ((mode_dump + mode_extract + mode_inject + mode_spifreq +
mode_em100 + mode_locked + mode_unlocked + mode_write +
mode_write_descriptor) == 0 && !create) {
fprintf(stderr, "You need to specify a mode.\n\n");
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if (create && rom_size == -1) {
fprintf(stderr, "You need to specify a rom size when creating.\n\n");
exit(EXIT_FAILURE);
}
if (optind + 1 != argc) {
fprintf(stderr, "You need to specify a file.\n\n");
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if (have_uboot && !fdt) {
fprintf(stderr,
"You must supply a device tree file for U-Boot\n\n");
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
filename = argv[optind];
if (optind + 2 != argc)
outfile = argv[optind + 1];
if (create)
bios_fd = open(filename, O_WRONLY | O_CREAT, 0666);
else
bios_fd = open(filename, outfile ? O_RDONLY : O_RDWR);
if (bios_fd == -1) {
perror("Could not open file");
exit(EXIT_FAILURE);
}
if (!create) {
if (fstat(bios_fd, &buf) == -1) {
perror("Could not stat file");
exit(EXIT_FAILURE);
}
size = buf.st_size;
}
debug("File %s is %d bytes\n", filename, size);
if (rom_size == -1)
rom_size = size;
image = malloc(rom_size);
if (!image) {
printf("Out of memory.\n");
exit(EXIT_FAILURE);
}
memset(image, '\xff', rom_size);
if (!create && read(bios_fd, image, size) != size) {
perror("Could not read file");
exit(EXIT_FAILURE);
}
if (size != rom_size) {
debug("ROM size changed to %d bytes\n", rom_size);
size = rom_size;
}
write_it = true;
ret = 0;
if (mode_dump) {
ret = dump_fd(image, size);
write_it = false;
}
if (mode_extract) {
ret = write_regions(image, size);
write_it = false;
}
if (mode_write_descriptor)
ret = write_data(image, size, -size, desc_fname);
if (mode_inject)
ret = inject_region(image, size, region_type, inject_fname);
if (mode_write) {
for (wr_idx = 0; wr_idx < wr_num; wr_idx++) {
ifile = &input_file[wr_idx];
if (ifile->type == IF_fdt) {
continue;
} else if (ifile->type == IF_uboot) {
ret = write_uboot(image, size, ifile, fdt,
ucode_ptr);
} else {
ret = write_data(image, size, ifile->addr,
ifile->fname);
}
if (ret < 0)
break;
}
}
if (mode_spifreq)
set_spi_frequency(image, size, spifreq);
if (mode_em100)
set_em100_mode(image, size);
if (mode_locked)
lock_descriptor(image, size);
if (mode_unlocked)
unlock_descriptor(image, size);
if (write_it) {
if (outfile) {
ret = write_image(outfile, image, size);
} else {
if (lseek(bios_fd, 0, SEEK_SET)) {
perror("Error while seeking");
ret = -1;
}
if (write(bios_fd, image, size) != size) {
perror("Error while writing");
ret = -1;
}
}
}
free(image);
close(bios_fd);
return ret < 0 ? 1 : 0;
}