u-boot-brain/lib/efi_loader/efi_memory.c
Alexander Graf 7b05667ce2 efi_loader: Merge memory map entries
We currently do not combine memory entries that are adjacent and have
the same attributes. The problem with that is that our memory map can
easily grow multiple hundreds of entries in a simple UEFI Shell
environment.

So let's make sure we always combine all entries to make the memory
map as small as possible. That way every other piece of code that
loops through it should also gain some nice speed ups.

Signed-off-by: Alexander Graf <agraf@suse.de>
2018-09-23 21:55:30 +02:00

604 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* EFI application memory management
*
* Copyright (c) 2016 Alexander Graf
*/
#include <common.h>
#include <efi_loader.h>
#include <malloc.h>
#include <mapmem.h>
#include <watchdog.h>
#include <linux/list_sort.h>
DECLARE_GLOBAL_DATA_PTR;
efi_uintn_t efi_memory_map_key;
struct efi_mem_list {
struct list_head link;
struct efi_mem_desc desc;
};
#define EFI_CARVE_NO_OVERLAP -1
#define EFI_CARVE_LOOP_AGAIN -2
#define EFI_CARVE_OVERLAPS_NONRAM -3
/* This list contains all memory map items */
LIST_HEAD(efi_mem);
#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
void *efi_bounce_buffer;
#endif
/*
* U-Boot services each EFI AllocatePool request as a separate
* (multiple) page allocation. We have to track the number of pages
* to be able to free the correct amount later.
* EFI requires 8 byte alignment for pool allocations, so we can
* prepend each allocation with an 64 bit header tracking the
* allocation size, and hand out the remainder to the caller.
*/
struct efi_pool_allocation {
u64 num_pages;
char data[] __aligned(ARCH_DMA_MINALIGN);
};
/*
* Sorts the memory list from highest address to lowest address
*
* When allocating memory we should always start from the highest
* address chunk, so sort the memory list such that the first list
* iterator gets the highest address and goes lower from there.
*/
static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
if (mema->desc.physical_start == memb->desc.physical_start)
return 0;
else if (mema->desc.physical_start < memb->desc.physical_start)
return 1;
else
return -1;
}
static uint64_t desc_get_end(struct efi_mem_desc *desc)
{
return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
}
static void efi_mem_sort(void)
{
struct list_head *lhandle;
struct efi_mem_list *prevmem = NULL;
bool merge_again = true;
list_sort(NULL, &efi_mem, efi_mem_cmp);
/* Now merge entries that can be merged */
while (merge_again) {
merge_again = false;
list_for_each(lhandle, &efi_mem) {
struct efi_mem_list *lmem;
struct efi_mem_desc *prev = &prevmem->desc;
struct efi_mem_desc *cur;
uint64_t pages;
lmem = list_entry(lhandle, struct efi_mem_list, link);
if (!prevmem) {
prevmem = lmem;
continue;
}
cur = &lmem->desc;
if ((desc_get_end(cur) == prev->physical_start) &&
(prev->type == cur->type) &&
(prev->attribute == cur->attribute)) {
/* There is an existing map before, reuse it */
pages = cur->num_pages;
prev->num_pages += pages;
prev->physical_start -= pages << EFI_PAGE_SHIFT;
prev->virtual_start -= pages << EFI_PAGE_SHIFT;
list_del(&lmem->link);
free(lmem);
merge_again = true;
break;
}
prevmem = lmem;
}
}
}
/** efi_mem_carve_out - unmap memory region
*
* @map: memory map
* @carve_desc: memory region to unmap
* @overlap_only_ram: the carved out region may only overlap RAM
* Return Value: the number of overlapping pages which have been
* removed from the map,
* EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
* EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
* and the map contains anything but free ram
* (only when overlap_only_ram is true),
* EFI_CARVE_LOOP_AGAIN, if the mapping list should be
* traversed again, as it has been altered.
*
* Unmaps all memory occupied by the carve_desc region from the list entry
* pointed to by map.
*
* In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
* to re-add the already carved out pages to the mapping.
*/
static s64 efi_mem_carve_out(struct efi_mem_list *map,
struct efi_mem_desc *carve_desc,
bool overlap_only_ram)
{
struct efi_mem_list *newmap;
struct efi_mem_desc *map_desc = &map->desc;
uint64_t map_start = map_desc->physical_start;
uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
uint64_t carve_start = carve_desc->physical_start;
uint64_t carve_end = carve_start +
(carve_desc->num_pages << EFI_PAGE_SHIFT);
/* check whether we're overlapping */
if ((carve_end <= map_start) || (carve_start >= map_end))
return EFI_CARVE_NO_OVERLAP;
/* We're overlapping with non-RAM, warn the caller if desired */
if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
return EFI_CARVE_OVERLAPS_NONRAM;
/* Sanitize carve_start and carve_end to lie within our bounds */
carve_start = max(carve_start, map_start);
carve_end = min(carve_end, map_end);
/* Carving at the beginning of our map? Just move it! */
if (carve_start == map_start) {
if (map_end == carve_end) {
/* Full overlap, just remove map */
list_del(&map->link);
free(map);
} else {
map->desc.physical_start = carve_end;
map->desc.num_pages = (map_end - carve_end)
>> EFI_PAGE_SHIFT;
}
return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
}
/*
* Overlapping maps, just split the list map at carve_start,
* it will get moved or removed in the next iteration.
*
* [ map_desc |__carve_start__| newmap ]
*/
/* Create a new map from [ carve_start ... map_end ] */
newmap = calloc(1, sizeof(*newmap));
newmap->desc = map->desc;
newmap->desc.physical_start = carve_start;
newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
/* Insert before current entry (descending address order) */
list_add_tail(&newmap->link, &map->link);
/* Shrink the map to [ map_start ... carve_start ] */
map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
return EFI_CARVE_LOOP_AGAIN;
}
uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
bool overlap_only_ram)
{
struct list_head *lhandle;
struct efi_mem_list *newlist;
bool carve_again;
uint64_t carved_pages = 0;
debug("%s: 0x%llx 0x%llx %d %s\n", __func__,
start, pages, memory_type, overlap_only_ram ? "yes" : "no");
if (memory_type >= EFI_MAX_MEMORY_TYPE)
return EFI_INVALID_PARAMETER;
if (!pages)
return start;
++efi_memory_map_key;
newlist = calloc(1, sizeof(*newlist));
newlist->desc.type = memory_type;
newlist->desc.physical_start = start;
newlist->desc.virtual_start = start;
newlist->desc.num_pages = pages;
switch (memory_type) {
case EFI_RUNTIME_SERVICES_CODE:
case EFI_RUNTIME_SERVICES_DATA:
newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
break;
case EFI_MMAP_IO:
newlist->desc.attribute = EFI_MEMORY_RUNTIME;
break;
default:
newlist->desc.attribute = EFI_MEMORY_WB;
break;
}
/* Add our new map */
do {
carve_again = false;
list_for_each(lhandle, &efi_mem) {
struct efi_mem_list *lmem;
s64 r;
lmem = list_entry(lhandle, struct efi_mem_list, link);
r = efi_mem_carve_out(lmem, &newlist->desc,
overlap_only_ram);
switch (r) {
case EFI_CARVE_OVERLAPS_NONRAM:
/*
* The user requested to only have RAM overlaps,
* but we hit a non-RAM region. Error out.
*/
return 0;
case EFI_CARVE_NO_OVERLAP:
/* Just ignore this list entry */
break;
case EFI_CARVE_LOOP_AGAIN:
/*
* We split an entry, but need to loop through
* the list again to actually carve it.
*/
carve_again = true;
break;
default:
/* We carved a number of pages */
carved_pages += r;
carve_again = true;
break;
}
if (carve_again) {
/* The list changed, we need to start over */
break;
}
}
} while (carve_again);
if (overlap_only_ram && (carved_pages != pages)) {
/*
* The payload wanted to have RAM overlaps, but we overlapped
* with an unallocated region. Error out.
*/
return 0;
}
/* Add our new map */
list_add_tail(&newlist->link, &efi_mem);
/* And make sure memory is listed in descending order */
efi_mem_sort();
return start;
}
static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
{
struct list_head *lhandle;
list_for_each(lhandle, &efi_mem) {
struct efi_mem_list *lmem = list_entry(lhandle,
struct efi_mem_list, link);
struct efi_mem_desc *desc = &lmem->desc;
uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
uint64_t desc_end = desc->physical_start + desc_len;
uint64_t curmax = min(max_addr, desc_end);
uint64_t ret = curmax - len;
/* We only take memory from free RAM */
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
/* Out of bounds for max_addr */
if ((ret + len) > max_addr)
continue;
/* Out of bounds for upper map limit */
if ((ret + len) > desc_end)
continue;
/* Out of bounds for lower map limit */
if (ret < desc->physical_start)
continue;
/* Return the highest address in this map within bounds */
return ret;
}
return 0;
}
/*
* Allocate memory pages.
*
* @type type of allocation to be performed
* @memory_type usage type of the allocated memory
* @pages number of pages to be allocated
* @memory allocated memory
* @return status code
*/
efi_status_t efi_allocate_pages(int type, int memory_type,
efi_uintn_t pages, uint64_t *memory)
{
u64 len = pages << EFI_PAGE_SHIFT;
efi_status_t r = EFI_SUCCESS;
uint64_t addr;
if (!memory)
return EFI_INVALID_PARAMETER;
switch (type) {
case EFI_ALLOCATE_ANY_PAGES:
/* Any page */
addr = efi_find_free_memory(len, -1ULL);
if (!addr) {
r = EFI_NOT_FOUND;
break;
}
break;
case EFI_ALLOCATE_MAX_ADDRESS:
/* Max address */
addr = efi_find_free_memory(len, *memory);
if (!addr) {
r = EFI_NOT_FOUND;
break;
}
break;
case EFI_ALLOCATE_ADDRESS:
/* Exact address, reserve it. The addr is already in *memory. */
addr = *memory;
break;
default:
/* UEFI doesn't specify other allocation types */
r = EFI_INVALID_PARAMETER;
break;
}
if (r == EFI_SUCCESS) {
uint64_t ret;
/* Reserve that map in our memory maps */
ret = efi_add_memory_map(addr, pages, memory_type, true);
if (ret == addr) {
*memory = (uintptr_t)map_sysmem(addr, len);
} else {
/* Map would overlap, bail out */
r = EFI_OUT_OF_RESOURCES;
}
}
return r;
}
void *efi_alloc(uint64_t len, int memory_type)
{
uint64_t ret = 0;
uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
efi_status_t r;
r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
&ret);
if (r == EFI_SUCCESS)
return (void*)(uintptr_t)ret;
return NULL;
}
/*
* Free memory pages.
*
* @memory start of the memory area to be freed
* @pages number of pages to be freed
* @return status code
*/
efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
{
uint64_t r = 0;
uint64_t addr = map_to_sysmem((void *)(uintptr_t)memory);
r = efi_add_memory_map(addr, pages, EFI_CONVENTIONAL_MEMORY, false);
/* Merging of adjacent free regions is missing */
if (r == addr)
return EFI_SUCCESS;
return EFI_NOT_FOUND;
}
/*
* Allocate memory from pool.
*
* @pool_type type of the pool from which memory is to be allocated
* @size number of bytes to be allocated
* @buffer allocated memory
* @return status code
*/
efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
{
efi_status_t r;
struct efi_pool_allocation *alloc;
u64 num_pages = (size + sizeof(struct efi_pool_allocation) +
EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
if (!buffer)
return EFI_INVALID_PARAMETER;
if (size == 0) {
*buffer = NULL;
return EFI_SUCCESS;
}
r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
(uint64_t *)&alloc);
if (r == EFI_SUCCESS) {
alloc->num_pages = num_pages;
*buffer = alloc->data;
}
return r;
}
/*
* Free memory from pool.
*
* @buffer start of memory to be freed
* @return status code
*/
efi_status_t efi_free_pool(void *buffer)
{
efi_status_t r;
struct efi_pool_allocation *alloc;
if (buffer == NULL)
return EFI_INVALID_PARAMETER;
alloc = container_of(buffer, struct efi_pool_allocation, data);
/* Sanity check, was the supplied address returned by allocate_pool */
assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
return r;
}
/*
* Get map describing memory usage.
*
* @memory_map_size on entry the size, in bytes, of the memory map buffer,
* on exit the size of the copied memory map
* @memory_map buffer to which the memory map is written
* @map_key key for the memory map
* @descriptor_size size of an individual memory descriptor
* @descriptor_version version number of the memory descriptor structure
* @return status code
*/
efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
struct efi_mem_desc *memory_map,
efi_uintn_t *map_key,
efi_uintn_t *descriptor_size,
uint32_t *descriptor_version)
{
efi_uintn_t map_size = 0;
int map_entries = 0;
struct list_head *lhandle;
efi_uintn_t provided_map_size;
if (!memory_map_size)
return EFI_INVALID_PARAMETER;
provided_map_size = *memory_map_size;
list_for_each(lhandle, &efi_mem)
map_entries++;
map_size = map_entries * sizeof(struct efi_mem_desc);
*memory_map_size = map_size;
if (provided_map_size < map_size)
return EFI_BUFFER_TOO_SMALL;
if (!memory_map)
return EFI_INVALID_PARAMETER;
if (descriptor_size)
*descriptor_size = sizeof(struct efi_mem_desc);
if (descriptor_version)
*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
/* Copy list into array */
/* Return the list in ascending order */
memory_map = &memory_map[map_entries - 1];
list_for_each(lhandle, &efi_mem) {
struct efi_mem_list *lmem;
lmem = list_entry(lhandle, struct efi_mem_list, link);
*memory_map = lmem->desc;
memory_map--;
}
if (map_key)
*map_key = efi_memory_map_key;
return EFI_SUCCESS;
}
__weak void efi_add_known_memory(void)
{
int i;
/* Add RAM */
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
u64 ram_start = gd->bd->bi_dram[i].start;
u64 ram_size = gd->bd->bi_dram[i].size;
u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
false);
}
}
/* Add memory regions for U-Boot's memory and for the runtime services code */
static void add_u_boot_and_runtime(void)
{
unsigned long runtime_start, runtime_end, runtime_pages;
unsigned long uboot_start, uboot_pages;
unsigned long uboot_stack_size = 16 * 1024 * 1024;
/* Add U-Boot */
uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
/* Add Runtime Services */
runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
runtime_end = (ulong)&__efi_runtime_stop;
runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
efi_add_memory_map(runtime_start, runtime_pages,
EFI_RUNTIME_SERVICES_CODE, false);
}
int efi_memory_init(void)
{
efi_add_known_memory();
if (!IS_ENABLED(CONFIG_SANDBOX))
add_u_boot_and_runtime();
#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
/* Request a 32bit 64MB bounce buffer region */
uint64_t efi_bounce_buffer_addr = 0xffffffff;
if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
(64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
&efi_bounce_buffer_addr) != EFI_SUCCESS)
return -1;
efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
#endif
return 0;
}