u-boot-brain/include/asm-microblaze/bitops.h
Michal Simek 386118a896 microblaze: Correct ffs regression for Microblaze
We are using generic implementation of ffs. This should
be part of Simon's commit 0413cfecea

Here is warning message which this patch removes.

In file included from /tmp/u-boot-microblaze/include/common.h:38,
                 from cmd_mtdparts.c:87:
/tmp/u-boot-microblaze/include/linux/bitops.h:123:1: warning: "ffs" redefined
In file included from /tmp/u-boot-microblaze/include/linux/bitops.h:110,
                 from /tmp/u-boot-microblaze/include/common.h:38,
                 from cmd_mtdparts.c:87:
/tmp/u-boot-microblaze/include/asm/bitops.h:269:1:
warning: this is the location of the previous definition

Signed-off-by: Michal Simek <monstr@monstr.eu>
2009-12-08 09:19:01 +01:00

393 lines
8.7 KiB
C

#ifndef _MICROBLAZE_BITOPS_H
#define _MICROBLAZE_BITOPS_H
/*
* Copyright 1992, Linus Torvalds.
*/
#include <linux/config.h>
#include <asm/byteorder.h> /* swab32 */
#include <asm/system.h> /* save_flags */
#ifdef __KERNEL__
/*
* Function prototypes to keep gcc -Wall happy
*/
/*
* The __ functions are not atomic
*/
extern void set_bit(int nr, volatile void * addr);
extern void __set_bit(int nr, volatile void * addr);
extern void clear_bit(int nr, volatile void * addr);
#define __clear_bit(nr, addr) clear_bit(nr, addr)
#define PLATFORM__CLEAR_BIT
extern void change_bit(int nr, volatile void * addr);
extern void __change_bit(int nr, volatile void * addr);
extern int test_and_set_bit(int nr, volatile void * addr);
extern int __test_and_set_bit(int nr, volatile void * addr);
extern int test_and_clear_bit(int nr, volatile void * addr);
extern int __test_and_clear_bit(int nr, volatile void * addr);
extern int test_and_change_bit(int nr, volatile void * addr);
extern int __test_and_change_bit(int nr, volatile void * addr);
extern int __constant_test_bit(int nr, const volatile void * addr);
extern int __test_bit(int nr, volatile void * addr);
extern int find_first_zero_bit(void * addr, unsigned size);
extern int find_next_zero_bit (void * addr, int size, int offset);
/*
* ffz = Find First Zero in word. Undefined if no zero exists,
* so code should check against ~0UL first..
*/
extern __inline__ unsigned long ffz(unsigned long word)
{
unsigned long result = 0;
while(word & 1) {
result++;
word >>= 1;
}
return result;
}
extern __inline__ void set_bit(int nr, volatile void * addr)
{
int * a = (int *) addr;
int mask;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
*a |= mask;
restore_flags(flags);
}
extern __inline__ void __set_bit(int nr, volatile void * addr)
{
int * a = (int *) addr;
int mask;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
*a |= mask;
}
#define PLATFORM__SET_BIT
/*
* clear_bit() doesn't provide any barrier for the compiler.
*/
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
extern __inline__ void clear_bit(int nr, volatile void * addr)
{
int * a = (int *) addr;
int mask;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
*a &= ~mask;
restore_flags(flags);
}
extern __inline__ void change_bit(int nr, volatile void * addr)
{
int mask;
unsigned long flags;
unsigned long *ADDR = (unsigned long *) addr;
ADDR += nr >> 5;
mask = 1 << (nr & 31);
save_flags_cli(flags);
*ADDR ^= mask;
restore_flags(flags);
}
extern __inline__ void __change_bit(int nr, volatile void * addr)
{
int mask;
unsigned long *ADDR = (unsigned long *) addr;
ADDR += nr >> 5;
mask = 1 << (nr & 31);
*ADDR ^= mask;
}
extern __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
retval = (mask & *a) != 0;
*a |= mask;
restore_flags(flags);
return retval;
}
extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *a) != 0;
*a |= mask;
return retval;
}
extern __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
retval = (mask & *a) != 0;
*a &= ~mask;
restore_flags(flags);
return retval;
}
extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *a) != 0;
*a &= ~mask;
return retval;
}
extern __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
unsigned long flags;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
save_flags_cli(flags);
retval = (mask & *a) != 0;
*a ^= mask;
restore_flags(flags);
return retval;
}
extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile unsigned int *a = (volatile unsigned int *) addr;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *a) != 0;
*a ^= mask;
return retval;
}
/*
* This routine doesn't need to be atomic.
*/
extern __inline__ int __constant_test_bit(int nr, const volatile void * addr)
{
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}
extern __inline__ int __test_bit(int nr, volatile void * addr)
{
int * a = (int *) addr;
int mask;
a += nr >> 5;
mask = 1 << (nr & 0x1f);
return ((mask & *a) != 0);
}
#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
__constant_test_bit((nr),(addr)) : \
__test_bit((nr),(addr)))
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (32-offset);
if (size < 32)
goto found_first;
if (~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size & ~31UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL >> size;
found_middle:
return result + ffz(tmp);
}
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
extern __inline__ int ext2_set_bit(int nr, volatile void * addr)
{
int mask, retval;
unsigned long flags;
volatile unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
save_flags_cli(flags);
retval = (mask & *ADDR) != 0;
*ADDR |= mask;
restore_flags(flags);
return retval;
}
extern __inline__ int ext2_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
unsigned long flags;
volatile unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
save_flags_cli(flags);
retval = (mask & *ADDR) != 0;
*ADDR &= ~mask;
restore_flags(flags);
return retval;
}
extern __inline__ int ext2_test_bit(int nr, const volatile void * addr)
{
int mask;
const volatile unsigned char *ADDR = (const unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
return ((mask & *ADDR) != 0);
}
#define ext2_find_first_zero_bit(addr, size) \
ext2_find_next_zero_bit((addr), (size), 0)
extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if(offset) {
/* We hold the little endian value in tmp, but then the
* shift is illegal. So we could keep a big endian value
* in tmp, like this:
*
* tmp = __swab32(*(p++));
* tmp |= ~0UL >> (32-offset);
*
* but this would decrease preformance, so we change the
* shift:
*/
tmp = *(p++);
tmp |= __swab32(~0UL >> (32-offset));
if(size < 32)
goto found_first;
if(~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while(size & ~31UL) {
if(~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if(!size)
return result;
tmp = *p;
found_first:
/* tmp is little endian, so we would have to swab the shift,
* see above. But then we have to swab tmp below for ffz, so
* we might as well do this here.
*/
return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
return result + ffz(__swab32(tmp));
}
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
/**
* hweightN - returns the hamming weight of a N-bit word
* @x: the word to weigh
*
* The Hamming Weight of a number is the total number of bits set in it.
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif /* __KERNEL__ */
#endif /* _MICROBLAZE_BITOPS_H */