u-boot-brain/drivers/phy/marvell/comphy_cp110.c

1215 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015-2016 Marvell International Ltd.
*/
#include <common.h>
#include <fdtdec.h>
#include <log.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/ptrace.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <linux/delay.h>
#include "comphy_core.h"
#include "comphy_hpipe.h"
#include "sata.h"
#include "utmi_phy.h"
DECLARE_GLOBAL_DATA_PTR;
#define SD_ADDR(base, lane) (base + 0x1000 * lane)
#define HPIPE_ADDR(base, lane) (SD_ADDR(base, lane) + 0x800)
#define COMPHY_ADDR(base, lane) (base + 0x28 * lane)
/* Firmware related definitions used for SMC calls */
#define MV_SIP_COMPHY_POWER_ON 0x82000001
#define MV_SIP_COMPHY_POWER_OFF 0x82000002
#define MV_SIP_COMPHY_PLL_LOCK 0x82000003
/* Used to distinguish between different possible callers (U-boot/Linux) */
#define COMPHY_CALLER_UBOOT (0x1 << 21)
#define COMPHY_FW_MODE_FORMAT(mode) ((mode) << 12)
#define COMPHY_FW_FORMAT(mode, idx, speeds) \
(((mode) << 12) | ((idx) << 8) | ((speeds) << 2))
#define COMPHY_FW_PCIE_FORMAT(pcie_width, clk_src, mode, speeds) \
(COMPHY_CALLER_UBOOT | ((pcie_width) << 18) | \
((clk_src) << 17) | COMPHY_FW_FORMAT(mode, 0, speeds))
#define COMPHY_SATA_MODE 0x1
#define COMPHY_SGMII_MODE 0x2 /* SGMII 1G */
#define COMPHY_HS_SGMII_MODE 0x3 /* SGMII 2.5G */
#define COMPHY_USB3H_MODE 0x4
#define COMPHY_USB3D_MODE 0x5
#define COMPHY_PCIE_MODE 0x6
#define COMPHY_RXAUI_MODE 0x7
#define COMPHY_XFI_MODE 0x8
#define COMPHY_SFI_MODE 0x9
#define COMPHY_USB3_MODE 0xa
#define COMPHY_AP_MODE 0xb
/* Comphy unit index macro */
#define COMPHY_UNIT_ID0 0
#define COMPHY_UNIT_ID1 1
#define COMPHY_UNIT_ID2 2
#define COMPHY_UNIT_ID3 3
struct utmi_phy_data {
void __iomem *utmi_base_addr;
void __iomem *usb_cfg_addr;
void __iomem *utmi_cfg_addr;
u32 utmi_phy_port;
};
/*
* For CP-110 we have 2 Selector registers "PHY Selectors",
* and "PIPE Selectors".
* PIPE selector include USB and PCIe options.
* PHY selector include the Ethernet and SATA options, every Ethernet
* option has different options, for example: serdes lane2 had option
* Eth_port_0 that include (SGMII0, RXAUI0, SFI)
*/
struct comphy_mux_data cp110_comphy_phy_mux_data[] = {
/* Lane 0 */
{4, {{COMPHY_TYPE_UNCONNECTED, 0x0}, {COMPHY_TYPE_SGMII1, 0x1},
{COMPHY_TYPE_SATA1, 0x4} } },
/* Lane 1 */
{4, {{COMPHY_TYPE_UNCONNECTED, 0x0}, {COMPHY_TYPE_SGMII2, 0x1},
{COMPHY_TYPE_SATA0, 0x4} } },
/* Lane 2 */
{6, {{COMPHY_TYPE_UNCONNECTED, 0x0}, {COMPHY_TYPE_SGMII0, 0x1},
{COMPHY_TYPE_RXAUI0, 0x1}, {COMPHY_TYPE_SFI, 0x1},
{COMPHY_TYPE_SATA0, 0x4} } },
/* Lane 3 */
{8, {{COMPHY_TYPE_UNCONNECTED, 0x0}, {COMPHY_TYPE_RXAUI1, 0x1},
{COMPHY_TYPE_SGMII1, 0x2}, {COMPHY_TYPE_SATA1, 0x4} } },
/* Lane 4 */
{7, {{COMPHY_TYPE_UNCONNECTED, 0x0}, {COMPHY_TYPE_SGMII0, 0x2},
{COMPHY_TYPE_RXAUI0, 0x2}, {COMPHY_TYPE_SFI, 0x2},
{COMPHY_TYPE_SGMII1, 0x1} } },
/* Lane 5 */
{6, {{COMPHY_TYPE_UNCONNECTED, 0x0}, {COMPHY_TYPE_SGMII2, 0x1},
{COMPHY_TYPE_RXAUI1, 0x2}, {COMPHY_TYPE_SATA1, 0x4} } },
};
struct comphy_mux_data cp110_comphy_pipe_mux_data[] = {
/* Lane 0 */
{2, {{COMPHY_TYPE_UNCONNECTED, 0x0}, {COMPHY_TYPE_PEX0, 0x4} } },
/* Lane 1 */
{4, {{COMPHY_TYPE_UNCONNECTED, 0x0},
{COMPHY_TYPE_USB3_HOST0, 0x1}, {COMPHY_TYPE_USB3_DEVICE, 0x2},
{COMPHY_TYPE_PEX0, 0x4} } },
/* Lane 2 */
{3, {{COMPHY_TYPE_UNCONNECTED, 0x0},
{COMPHY_TYPE_USB3_HOST0, 0x1}, {COMPHY_TYPE_PEX0, 0x4} } },
/* Lane 3 */
{3, {{COMPHY_TYPE_UNCONNECTED, 0x0},
{COMPHY_TYPE_USB3_HOST1, 0x1}, {COMPHY_TYPE_PEX0, 0x4} } },
/* Lane 4 */
{4, {{COMPHY_TYPE_UNCONNECTED, 0x0},
{COMPHY_TYPE_USB3_HOST1, 0x1},
{COMPHY_TYPE_USB3_DEVICE, 0x2}, {COMPHY_TYPE_PEX1, 0x4} } },
/* Lane 5 */
{2, {{COMPHY_TYPE_UNCONNECTED, 0x0}, {COMPHY_TYPE_PEX2, 0x4} } },
};
static u32 polling_with_timeout(void __iomem *addr, u32 val,
u32 mask, unsigned long usec_timout)
{
u32 data;
do {
udelay(1);
data = readl(addr) & mask;
} while (data != val && --usec_timout > 0);
if (usec_timout == 0)
return data;
return 0;
}
/* This function performs RX training for single FFE value.
* The result of the RX training is located in:
* Saved DFE values Register[10:15].
*
* The result is returned to the caller using *result
*
* Return '1' on succsess.
* Return '0' on failure.
*/
static int comphy_cp110_test_single_ffe(
struct chip_serdes_phy_config *ptr_chip_cfg,
u32 lane, u32 ffe, u32 *result)
{
u32 mask, data, timeout;
void __iomem *hpipe_base_addr = ptr_chip_cfg->hpipe3_base_addr;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base_addr, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base_addr, lane);
/* Configure PRBS counters */
mask = HPIPE_PHY_TEST_PATTERN_SEL_MASK;
data = 0xe << HPIPE_PHY_TEST_PATTERN_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mask = HPIPE_PHY_TEST_DATA_MASK;
data = 0x64 << HPIPE_PHY_TEST_DATA_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_DATA_REG, data, mask);
mask = HPIPE_PHY_TEST_EN_MASK;
data = 0x1 << HPIPE_PHY_TEST_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mdelay(50);
/* Set the FFE value */
mask = HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_MASK;
data = ffe << HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Start RX training */
mask = SD_EXTERNAL_STATUS_START_RX_TRAINING_MASK;
data = 1 << SD_EXTERNAL_STATUS_START_RX_TRAINING_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_STATUS_REG, data, mask);
/* Check the result of RX training */
timeout = RX_TRAINING_TIMEOUT;
while (timeout) {
data = readl(sd_ip_addr + SD_EXTERNAL_STATUS1_REG);
if (data & SD_EXTERNAL_STATUS1_REG_RX_TRAIN_COMP_MASK)
break;
mdelay(1);
timeout--;
}
if (timeout == 0)
return 0;
if (data & SD_EXTERNAL_STATUS1_REG_RX_TRAIN_FAILED_MASK)
return 0;
/* Stop RX training */
mask = SD_EXTERNAL_STATUS_START_RX_TRAINING_MASK;
data = 0 << SD_EXTERNAL_STATUS_START_RX_TRAINING_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_STATUS_REG, data, mask);
/* Read the result */
data = readl(hpipe_addr + HPIPE_SAVED_DFE_VALUES_REG);
data &= HPIPE_SAVED_DFE_VALUES_SAV_F0D_MASK;
data >>= HPIPE_SAVED_DFE_VALUES_SAV_F0D_OFFSET;
*result = data;
printf("FFE = %d, result = 0x%x\n", ffe, *result);
/* Clear the PRBS counters */
mask = HPIPE_PHY_TEST_RESET_MASK;
data = 0x1 << HPIPE_PHY_TEST_RESET_OFFSET;
mask |= HPIPE_PHY_TEST_EN_MASK;
data |= 0x0 << HPIPE_PHY_TEST_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mask = HPIPE_PHY_TEST_RESET_MASK;
data = 0x0 << HPIPE_PHY_TEST_RESET_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
return 1;
}
/* This function performs RX training for all FFE possible values.
* We get the result for each FFE and eventually the best FFE will
* be used and set to the HW.
*
* Return '1' on succsess.
* Return '0' on failure.
*/
int comphy_cp110_sfi_rx_training(struct chip_serdes_phy_config *ptr_chip_cfg,
u32 lane)
{
u32 mask, data, i, rx_train_result;
u32 max_rx_train = 0, max_rx_train_index = 0;
void __iomem *hpipe_base_addr = ptr_chip_cfg->hpipe3_base_addr;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base_addr, lane);
int ret;
debug_enter();
if (ptr_chip_cfg->comphy_map_data[lane].type != COMPHY_TYPE_SFI) {
pr_err("Comphy %d isn't configured to SFI\n", lane);
return 0;
}
/* Configure SQ threshold and CDR lock */
mask = HPIPE_SQUELCH_THRESH_IN_MASK;
data = 0xc << HPIPE_SQUELCH_THRESH_IN_OFFSET;
reg_set(hpipe_addr + HPIPE_SQUELCH_FFE_SETTING_REG, data, mask);
mask = HPIPE_SQ_DEGLITCH_WIDTH_P_MASK;
data = 0xf << HPIPE_SQ_DEGLITCH_WIDTH_P_OFFSET;
mask |= HPIPE_SQ_DEGLITCH_WIDTH_N_MASK;
data |= 0xf << HPIPE_SQ_DEGLITCH_WIDTH_N_OFFSET;
mask |= HPIPE_SQ_DEGLITCH_EN_MASK;
data |= 0x1 << HPIPE_SQ_DEGLITCH_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_SQ_GLITCH_FILTER_CTRL, data, mask);
mask = HPIPE_CDR_LOCK_DET_EN_MASK;
data = 0x1 << HPIPE_CDR_LOCK_DET_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG, data, mask);
udelay(100);
/* Determine if we have a cable attached to this comphy, if not,
* we can't perform RX training.
*/
data = readl(hpipe_addr + HPIPE_SQUELCH_FFE_SETTING_REG);
if (data & HPIPE_SQUELCH_DETECTED_MASK) {
pr_err("Squelsh is not detected, can't perform RX training\n");
return 0;
}
data = readl(hpipe_addr + HPIPE_LOOPBACK_REG);
if (!(data & HPIPE_CDR_LOCK_MASK)) {
pr_err("CDR is not locked, can't perform RX training\n");
return 0;
}
/* Do preparations for RX training */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x0 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
mask = HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_MASK;
data = 0xf << HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_MASK;
data |= 1 << HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Performs RX training for all possible FFE (Feed Forward
* Equalization, possible values are 0-7).
* We update the best value reached and the FFE which gave this value.
*/
for (i = 0; i < MAX_NUM_OF_FFE; i++) {
rx_train_result = 0;
ret = comphy_cp110_test_single_ffe(ptr_chip_cfg, lane,
i, &rx_train_result);
if (ret && (rx_train_result > max_rx_train)) {
max_rx_train = rx_train_result;
max_rx_train_index = i;
}
}
/* If we were able to determine which FFE gives the best value,
* now we need to set it and run RX training again (only for this
* FFE).
*/
if (max_rx_train) {
ret = comphy_cp110_test_single_ffe(ptr_chip_cfg, lane,
max_rx_train_index,
&rx_train_result);
if (ret == 1)
printf("RX Training passed(FFE = %d, result = 0x%x)\n",
max_rx_train_index, rx_train_result);
} else {
pr_err("RX training failed\n");
ret = 0;
}
debug_exit();
return ret;
}
static int comphy_usb3_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x1 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
mask |= COMMON_PHY_PHY_MODE_MASK;
data |= 0x1 << COMMON_PHY_PHY_MODE_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* release from hard reset */
mask = COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x1 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* Set PIPE soft reset */
mask = HPIPE_RST_CLK_CTRL_PIPE_RST_MASK;
data = 0x1 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET;
/* Set PHY datapath width mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_FIXED_PCLK_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_FIXED_PCLK_OFFSET;
/* Set Data bus width USB mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_PIPE_WIDTH_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_PIPE_WIDTH_OFFSET;
/* Set CORE_CLK output frequency for 250Mhz */
mask |= HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG, data, mask);
/* Set PLL ready delay for 0x2 */
reg_set(hpipe_addr + HPIPE_CLK_SRC_LO_REG,
0x2 << HPIPE_CLK_SRC_LO_PLL_RDY_DL_OFFSET,
HPIPE_CLK_SRC_LO_PLL_RDY_DL_MASK);
/* Set reference clock to come from group 1 - 25Mhz */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Set reference frequcency select - 0x2 */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x2 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
/* Set PHY mode to USB - 0x5 */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x5 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Set the amount of time spent in the LoZ state - set for 0x7 */
reg_set(hpipe_addr + HPIPE_GLOBAL_PM_CTRL,
0x7 << HPIPE_GLOBAL_PM_RXDLOZ_WAIT_OFFSET,
HPIPE_GLOBAL_PM_RXDLOZ_WAIT_MASK);
/* Set max PHY generation setting - 5Gbps */
reg_set(hpipe_addr + HPIPE_INTERFACE_REG,
0x1 << HPIPE_INTERFACE_GEN_MAX_OFFSET,
HPIPE_INTERFACE_GEN_MAX_MASK);
/* Set select data width 20Bit (SEL_BITS[2:0]) */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x1 << HPIPE_LOOPBACK_SEL_OFFSET,
HPIPE_LOOPBACK_SEL_MASK);
/* select de-emphasize 3.5db */
reg_set(hpipe_addr + HPIPE_LANE_CONFIG0_REG,
0x1 << HPIPE_LANE_CONFIG0_TXDEEMPH0_OFFSET,
HPIPE_LANE_CONFIG0_TXDEEMPH0_MASK);
/* override tx margining from the MAC */
reg_set(hpipe_addr + HPIPE_TST_MODE_CTRL_REG,
0x1 << HPIPE_TST_MODE_CTRL_MODE_MARGIN_OFFSET,
HPIPE_TST_MODE_CTRL_MODE_MARGIN_MASK);
/* Start analog paramters from ETP(HW) */
debug("stage: Analog paramters from ETP(HW)\n");
/* Set Pin DFE_PAT_DIS -> Bit[1]: PIN_DFE_PAT_DIS = 0x0 */
mask = HPIPE_LANE_CFG4_DFE_CTRL_MASK;
data = 0x1 << HPIPE_LANE_CFG4_DFE_CTRL_OFFSET;
/* Set Override PHY DFE control pins for 0x1 */
mask |= HPIPE_LANE_CFG4_DFE_OVER_MASK;
data |= 0x1 << HPIPE_LANE_CFG4_DFE_OVER_OFFSET;
/* Set Spread Spectrum Clock Enable fot 0x1 */
mask |= HPIPE_LANE_CFG4_SSC_CTRL_MASK;
data |= 0x1 << HPIPE_LANE_CFG4_SSC_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_CFG4_REG, data, mask);
/* End of analog parameters */
debug("stage: Comphy power up\n");
/* Release from PIPE soft reset */
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG,
0x0 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET,
HPIPE_RST_CLK_CTRL_PIPE_RST_MASK);
/* wait 15ms - for comphy calibration done */
debug("stage: Check PLL\n");
/* Read lane status */
addr = hpipe_addr + HPIPE_LANE_STATUS1_REG;
data = HPIPE_LANE_STATUS1_PCLK_EN_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
hpipe_addr + HPIPE_LANE_STATUS1_REG, data);
pr_err("HPIPE_LANE_STATUS1_PCLK_EN_MASK is 0\n");
ret = 0;
}
debug_exit();
return ret;
}
static int comphy_smc(u32 function_id, void __iomem *comphy_base_addr,
u32 lane, u32 mode)
{
struct pt_regs pregs = {0};
pregs.regs[0] = function_id;
pregs.regs[1] = (unsigned long)comphy_base_addr;
pregs.regs[2] = lane;
pregs.regs[3] = mode;
smc_call(&pregs);
/*
* TODO: Firmware return 0 on success, temporary map it to u-boot
* convention, but after all comphy will be reworked the convention in
* u-boot should be change and this conversion removed
*/
return pregs.regs[0] ? 0 : 1;
}
static int comphy_sata_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base_addr, int cp_index,
u32 type)
{
u32 mask, data, i, ret = 1;
void __iomem *sata_base = NULL;
int sata_node = -1; /* Set to -1 in order to read the first sata node */
debug_enter();
/*
* Assumption - each CP has only one SATA controller
* Calling fdt_node_offset_by_compatible first time (with sata_node = -1
* will return the first node always.
* In order to parse each CPs SATA node, fdt_node_offset_by_compatible
* must be called again (according to the CP id)
*/
for (i = 0; i < (cp_index + 1); i++)
sata_node = fdt_node_offset_by_compatible(
gd->fdt_blob, sata_node, "marvell,armada-8k-ahci");
if (sata_node == 0) {
pr_err("SATA node not found in FDT\n");
return 0;
}
sata_base = (void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, sata_node, "reg", 0, NULL, true);
if (sata_base == NULL) {
pr_err("SATA address not found in FDT\n");
return 0;
}
debug("SATA address found in FDT %p\n", sata_base);
debug("stage: MAC configuration - power down comphy\n");
/*
* MAC configuration powe down comphy use indirect address for
* vendor spesific SATA control register
*/
reg_set(sata_base + SATA3_VENDOR_ADDRESS,
SATA_CONTROL_REG << SATA3_VENDOR_ADDR_OFSSET,
SATA3_VENDOR_ADDR_MASK);
/* SATA 0 power down */
mask = SATA3_CTRL_SATA0_PD_MASK;
data = 0x1 << SATA3_CTRL_SATA0_PD_OFFSET;
/* SATA 1 power down */
mask |= SATA3_CTRL_SATA1_PD_MASK;
data |= 0x1 << SATA3_CTRL_SATA1_PD_OFFSET;
/* SATA SSU disable */
mask |= SATA3_CTRL_SATA1_ENABLE_MASK;
data |= 0x0 << SATA3_CTRL_SATA1_ENABLE_OFFSET;
/* SATA port 1 disable */
mask |= SATA3_CTRL_SATA_SSU_MASK;
data |= 0x0 << SATA3_CTRL_SATA_SSU_OFFSET;
reg_set(sata_base + SATA3_VENDOR_DATA, data, mask);
ret = comphy_smc(MV_SIP_COMPHY_POWER_ON, comphy_base_addr, lane, type);
/*
* MAC configuration power up comphy - power up PLL/TX/RX
* use indirect address for vendor spesific SATA control register
*/
reg_set(sata_base + SATA3_VENDOR_ADDRESS,
SATA_CONTROL_REG << SATA3_VENDOR_ADDR_OFSSET,
SATA3_VENDOR_ADDR_MASK);
/* SATA 0 power up */
mask = SATA3_CTRL_SATA0_PD_MASK;
data = 0x0 << SATA3_CTRL_SATA0_PD_OFFSET;
/* SATA 1 power up */
mask |= SATA3_CTRL_SATA1_PD_MASK;
data |= 0x0 << SATA3_CTRL_SATA1_PD_OFFSET;
/* SATA SSU enable */
mask |= SATA3_CTRL_SATA1_ENABLE_MASK;
data |= 0x1 << SATA3_CTRL_SATA1_ENABLE_OFFSET;
/* SATA port 1 enable */
mask |= SATA3_CTRL_SATA_SSU_MASK;
data |= 0x1 << SATA3_CTRL_SATA_SSU_OFFSET;
reg_set(sata_base + SATA3_VENDOR_DATA, data, mask);
/* MBUS request size and interface select register */
reg_set(sata_base + SATA3_VENDOR_ADDRESS,
SATA_MBUS_SIZE_SELECT_REG << SATA3_VENDOR_ADDR_OFSSET,
SATA3_VENDOR_ADDR_MASK);
/* Mbus regret enable */
reg_set(sata_base + SATA3_VENDOR_DATA,
0x1 << SATA_MBUS_REGRET_EN_OFFSET, SATA_MBUS_REGRET_EN_MASK);
ret = comphy_smc(MV_SIP_COMPHY_PLL_LOCK, comphy_base_addr, lane, type);
debug_exit();
return ret;
}
static int comphy_rxauii_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
if (lane == 2) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_RXAUI0_OFFSET,
COMMON_PHY_SD_CTRL1_RXAUI0_MASK);
}
if (lane == 4) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_RXAUI1_OFFSET,
COMMON_PHY_SD_CTRL1_RXAUI1_MASK);
}
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
data |= 0xB << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
data |= 0xB << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_MEDIA_MODE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_MEDIA_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x1 << HPIPE_LOOPBACK_SEL_OFFSET, HPIPE_LOOPBACK_SEL_MASK);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x1 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG,
0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET,
HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK);
/* Set analog paramters from ETP(HW) */
debug("stage: Analog paramters from ETP(HW)\n");
/* SERDES External Configuration 2 */
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG2_REG,
0x1 << SD_EXTERNAL_CONFIG2_PIN_DFE_EN_OFFSET,
SD_EXTERNAL_CONFIG2_PIN_DFE_EN_MASK);
/* 0x7-DFE Resolution control */
reg_set(hpipe_addr + HPIPE_DFE_REG0, 0x1 << HPIPE_DFE_RES_FORCE_OFFSET,
HPIPE_DFE_RES_FORCE_MASK);
/* 0xd-G1_Setting_0 */
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG,
0xd << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET,
HPIPE_G1_SET_0_G1_TX_EMPH1_MASK);
/* 0xE-G1_Setting_1 */
mask = HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data = 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPP_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPP_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_DFE_EN_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_DFE_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_1_REG, data, mask);
/* 0xA-DFE_Reg3 */
mask = HPIPE_DFE_F3_F5_DFE_EN_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_EN_OFFSET;
mask |= HPIPE_DFE_F3_F5_DFE_CTRL_MASK;
data |= 0x0 << HPIPE_DFE_F3_F5_DFE_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_F3_F5_REG, data, mask);
/* 0x111-G1_Setting_4 */
mask = HPIPE_G1_SETTINGS_4_G1_DFE_RES_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_4_G1_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_4_REG, data, mask);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* check PLL rx & tx ready */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_RX_MASK |
SD_EXTERNAL_STATUS0_PLL_TX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
pr_err("SD_EXTERNAL_STATUS0_PLL_RX is %d, SD_EXTERNAL_STATUS0_PLL_TX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK));
ret = 0;
}
/* RX init */
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG,
0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET,
SD_EXTERNAL_CONFIG1_RX_INIT_MASK);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
pr_err("SD_EXTERNAL_STATUS0_RX_INIT is 0\n");
ret = 0;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static void comphy_utmi_power_down(u32 utmi_index, void __iomem *utmi_base_addr,
void __iomem *usb_cfg_addr,
void __iomem *utmi_cfg_addr,
u32 utmi_phy_port)
{
u32 mask, data;
debug_enter();
debug("stage: UTMI %d - Power down transceiver (power down Phy), Power down PLL, and SuspendDM\n",
utmi_index);
/* Power down UTMI PHY */
reg_set(utmi_cfg_addr, 0x0 << UTMI_PHY_CFG_PU_OFFSET,
UTMI_PHY_CFG_PU_MASK);
/*
* If UTMI connected to USB Device, configure mux prior to PHY init
* (Device can be connected to UTMI0 or to UTMI1)
*/
if (utmi_phy_port == UTMI_PHY_TO_USB3_DEVICE0) {
debug("stage: UTMI %d - Enable Device mode and configure UTMI mux\n",
utmi_index);
/* USB3 Device UTMI enable */
mask = UTMI_USB_CFG_DEVICE_EN_MASK;
data = 0x1 << UTMI_USB_CFG_DEVICE_EN_OFFSET;
/* USB3 Device UTMI MUX */
mask |= UTMI_USB_CFG_DEVICE_MUX_MASK;
data |= utmi_index << UTMI_USB_CFG_DEVICE_MUX_OFFSET;
reg_set(usb_cfg_addr, data, mask);
}
/* Set Test suspendm mode */
mask = UTMI_CTRL_STATUS0_SUSPENDM_MASK;
data = 0x1 << UTMI_CTRL_STATUS0_SUSPENDM_OFFSET;
/* Enable Test UTMI select */
mask |= UTMI_CTRL_STATUS0_TEST_SEL_MASK;
data |= 0x1 << UTMI_CTRL_STATUS0_TEST_SEL_OFFSET;
reg_set(utmi_base_addr + UTMI_CTRL_STATUS0_REG, data, mask);
/* Wait for UTMI power down */
mdelay(1);
debug_exit();
return;
}
static void comphy_utmi_phy_config(u32 utmi_index, void __iomem *utmi_base_addr,
void __iomem *usb_cfg_addr,
void __iomem *utmi_cfg_addr,
u32 utmi_phy_port)
{
u32 mask, data;
debug_exit();
debug("stage: Configure UTMI PHY %d registers\n", utmi_index);
/* Reference Clock Divider Select */
mask = UTMI_PLL_CTRL_REFDIV_MASK;
data = 0x5 << UTMI_PLL_CTRL_REFDIV_OFFSET;
/* Feedback Clock Divider Select - 90 for 25Mhz*/
mask |= UTMI_PLL_CTRL_FBDIV_MASK;
data |= 0x60 << UTMI_PLL_CTRL_FBDIV_OFFSET;
/* Select LPFR - 0x0 for 25Mhz/5=5Mhz*/
mask |= UTMI_PLL_CTRL_SEL_LPFR_MASK;
data |= 0x0 << UTMI_PLL_CTRL_SEL_LPFR_OFFSET;
reg_set(utmi_base_addr + UTMI_PLL_CTRL_REG, data, mask);
/* Impedance Calibration Threshold Setting */
reg_set(utmi_base_addr + UTMI_CALIB_CTRL_REG,
0x7 << UTMI_CALIB_CTRL_IMPCAL_VTH_OFFSET,
UTMI_CALIB_CTRL_IMPCAL_VTH_MASK);
/* Set LS TX driver strength coarse control */
mask = UTMI_TX_CH_CTRL_AMP_MASK;
data = 0x4 << UTMI_TX_CH_CTRL_AMP_OFFSET;
reg_set(utmi_base_addr + UTMI_TX_CH_CTRL_REG, data, mask);
/* Enable SQ */
mask = UTMI_RX_CH_CTRL0_SQ_DET_MASK;
data = 0x0 << UTMI_RX_CH_CTRL0_SQ_DET_OFFSET;
/* Enable analog squelch detect */
mask |= UTMI_RX_CH_CTRL0_SQ_ANA_DTC_MASK;
data |= 0x1 << UTMI_RX_CH_CTRL0_SQ_ANA_DTC_OFFSET;
reg_set(utmi_base_addr + UTMI_RX_CH_CTRL0_REG, data, mask);
/* Set External squelch calibration number */
mask = UTMI_RX_CH_CTRL1_SQ_AMP_CAL_MASK;
data = 0x1 << UTMI_RX_CH_CTRL1_SQ_AMP_CAL_OFFSET;
/* Enable the External squelch calibration */
mask |= UTMI_RX_CH_CTRL1_SQ_AMP_CAL_EN_MASK;
data |= 0x1 << UTMI_RX_CH_CTRL1_SQ_AMP_CAL_EN_OFFSET;
reg_set(utmi_base_addr + UTMI_RX_CH_CTRL1_REG, data, mask);
/* Set Control VDAT Reference Voltage - 0.325V */
mask = UTMI_CHGDTC_CTRL_VDAT_MASK;
data = 0x1 << UTMI_CHGDTC_CTRL_VDAT_OFFSET;
/* Set Control VSRC Reference Voltage - 0.6V */
mask |= UTMI_CHGDTC_CTRL_VSRC_MASK;
data |= 0x1 << UTMI_CHGDTC_CTRL_VSRC_OFFSET;
reg_set(utmi_base_addr + UTMI_CHGDTC_CTRL_REG, data, mask);
debug_exit();
return;
}
static int comphy_utmi_power_up(u32 utmi_index, void __iomem *utmi_base_addr,
void __iomem *usb_cfg_addr,
void __iomem *utmi_cfg_addr, u32 utmi_phy_port)
{
u32 data, mask, ret = 1;
void __iomem *addr;
debug_enter();
debug("stage: UTMI %d - Power up transceiver(Power up Phy), and exit SuspendDM\n",
utmi_index);
/* Power UP UTMI PHY */
reg_set(utmi_cfg_addr, 0x1 << UTMI_PHY_CFG_PU_OFFSET,
UTMI_PHY_CFG_PU_MASK);
/* Disable Test UTMI select */
reg_set(utmi_base_addr + UTMI_CTRL_STATUS0_REG,
0x0 << UTMI_CTRL_STATUS0_TEST_SEL_OFFSET,
UTMI_CTRL_STATUS0_TEST_SEL_MASK);
debug("stage: Polling for PLL and impedance calibration done, and PLL ready done\n");
addr = utmi_base_addr + UTMI_CALIB_CTRL_REG;
data = UTMI_CALIB_CTRL_IMPCAL_DONE_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
pr_err("Impedance calibration is not done\n");
debug("Read from reg = %p - value = 0x%x\n", addr, data);
ret = 0;
}
data = UTMI_CALIB_CTRL_PLLCAL_DONE_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
pr_err("PLL calibration is not done\n");
debug("Read from reg = %p - value = 0x%x\n", addr, data);
ret = 0;
}
addr = utmi_base_addr + UTMI_PLL_CTRL_REG;
data = UTMI_PLL_CTRL_PLL_RDY_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
pr_err("PLL is not ready\n");
debug("Read from reg = %p - value = 0x%x\n", addr, data);
ret = 0;
}
if (ret)
debug("Passed\n");
else
debug("\n");
debug_exit();
return ret;
}
/*
* comphy_utmi_phy_init initialize the UTMI PHY
* the init split in 3 parts:
* 1. Power down transceiver and PLL
* 2. UTMI PHY configure
* 3. Power up transceiver and PLL
* Note: - Power down/up should be once for both UTMI PHYs
* - comphy_dedicated_phys_init call this function if at least there is
* one UTMI PHY exists in FDT blob. access to cp110_utmi_data[0] is
* legal
*/
static void comphy_utmi_phy_init(u32 utmi_phy_count,
struct utmi_phy_data *cp110_utmi_data)
{
u32 i;
debug_enter();
/* UTMI Power down */
for (i = 0; i < utmi_phy_count; i++) {
comphy_utmi_power_down(i, cp110_utmi_data[i].utmi_base_addr,
cp110_utmi_data[i].usb_cfg_addr,
cp110_utmi_data[i].utmi_cfg_addr,
cp110_utmi_data[i].utmi_phy_port);
}
/* PLL Power down */
debug("stage: UTMI PHY power down PLL\n");
for (i = 0; i < utmi_phy_count; i++) {
reg_set(cp110_utmi_data[i].usb_cfg_addr,
0x0 << UTMI_USB_CFG_PLL_OFFSET, UTMI_USB_CFG_PLL_MASK);
}
/* UTMI configure */
for (i = 0; i < utmi_phy_count; i++) {
comphy_utmi_phy_config(i, cp110_utmi_data[i].utmi_base_addr,
cp110_utmi_data[i].usb_cfg_addr,
cp110_utmi_data[i].utmi_cfg_addr,
cp110_utmi_data[i].utmi_phy_port);
}
/* UTMI Power up */
for (i = 0; i < utmi_phy_count; i++) {
if (!comphy_utmi_power_up(i, cp110_utmi_data[i].utmi_base_addr,
cp110_utmi_data[i].usb_cfg_addr,
cp110_utmi_data[i].utmi_cfg_addr,
cp110_utmi_data[i].utmi_phy_port)) {
pr_err("Failed to initialize UTMI PHY %d\n", i);
continue;
}
printf("UTMI PHY %d initialized to ", i);
if (cp110_utmi_data[i].utmi_phy_port ==
UTMI_PHY_TO_USB3_DEVICE0)
printf("USB Device\n");
else
printf("USB Host%d\n",
cp110_utmi_data[i].utmi_phy_port);
}
/* PLL Power up */
debug("stage: UTMI PHY power up PLL\n");
for (i = 0; i < utmi_phy_count; i++) {
reg_set(cp110_utmi_data[i].usb_cfg_addr,
0x1 << UTMI_USB_CFG_PLL_OFFSET, UTMI_USB_CFG_PLL_MASK);
}
debug_exit();
return;
}
/*
* comphy_dedicated_phys_init initialize the dedicated PHYs
* - not muxed SerDes lanes e.g. UTMI PHY
*/
void comphy_dedicated_phys_init(void)
{
struct utmi_phy_data cp110_utmi_data[MAX_UTMI_PHY_COUNT];
int node = -1;
int node_idx;
debug_enter();
debug("Initialize USB UTMI PHYs\n");
for (node_idx = 0; node_idx < MAX_UTMI_PHY_COUNT;) {
/* Find the UTMI phy node in device tree */
node = fdt_node_offset_by_compatible(gd->fdt_blob, node,
"marvell,mvebu-utmi-2.6.0");
if (node <= 0)
break;
/* check if node is enabled */
if (!fdtdec_get_is_enabled(gd->fdt_blob, node))
continue;
/* get base address of UTMI phy */
cp110_utmi_data[node_idx].utmi_base_addr =
(void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, node, "reg", 0, NULL, true);
if (!cp110_utmi_data[node_idx].utmi_base_addr) {
pr_err("UTMI PHY base address is invalid\n");
continue;
}
/* get usb config address */
cp110_utmi_data[node_idx].usb_cfg_addr =
(void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, node, "reg", 1, NULL, true);
if (!cp110_utmi_data[node_idx].usb_cfg_addr) {
pr_err("UTMI PHY base address is invalid\n");
continue;
}
/* get UTMI config address */
cp110_utmi_data[node_idx].utmi_cfg_addr =
(void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, node, "reg", 2, NULL, true);
if (!cp110_utmi_data[node_idx].utmi_cfg_addr) {
pr_err("UTMI PHY base address is invalid\n");
continue;
}
/*
* get the port number (to check if the utmi connected to
* host/device)
*/
cp110_utmi_data[node_idx].utmi_phy_port = fdtdec_get_int(
gd->fdt_blob, node, "utmi-port", UTMI_PHY_INVALID);
if (cp110_utmi_data[node_idx].utmi_phy_port ==
UTMI_PHY_INVALID) {
pr_err("UTMI PHY port type is invalid\n");
continue;
}
/* count valid UTMI unit */
node_idx++;
}
if (node_idx > 0)
comphy_utmi_phy_init(node_idx, cp110_utmi_data);
debug_exit();
}
static void comphy_mux_cp110_init(struct chip_serdes_phy_config *ptr_chip_cfg,
struct comphy_map *serdes_map)
{
void __iomem *comphy_base_addr;
struct comphy_map comphy_map_pipe_data[MAX_LANE_OPTIONS];
struct comphy_map comphy_map_phy_data[MAX_LANE_OPTIONS];
u32 lane, comphy_max_count;
comphy_max_count = ptr_chip_cfg->comphy_lanes_count;
comphy_base_addr = ptr_chip_cfg->comphy_base_addr;
/*
* Copy the SerDes map configuration for PIPE map and PHY map
* the comphy_mux_init modify the type of the lane if the type
* is not valid because we have 2 selectores run the
* comphy_mux_init twice and after that update the original
* serdes_map
*/
for (lane = 0; lane < comphy_max_count; lane++) {
comphy_map_pipe_data[lane].type = serdes_map[lane].type;
comphy_map_pipe_data[lane].speed = serdes_map[lane].speed;
comphy_map_phy_data[lane].type = serdes_map[lane].type;
comphy_map_phy_data[lane].speed = serdes_map[lane].speed;
}
ptr_chip_cfg->mux_data = cp110_comphy_phy_mux_data;
comphy_mux_init(ptr_chip_cfg, comphy_map_phy_data,
comphy_base_addr + COMMON_SELECTOR_PHY_OFFSET);
ptr_chip_cfg->mux_data = cp110_comphy_pipe_mux_data;
comphy_mux_init(ptr_chip_cfg, comphy_map_pipe_data,
comphy_base_addr + COMMON_SELECTOR_PIPE_OFFSET);
/* Fix the type after check the PHY and PIPE configuration */
for (lane = 0; lane < comphy_max_count; lane++) {
if ((comphy_map_pipe_data[lane].type == COMPHY_TYPE_UNCONNECTED) &&
(comphy_map_phy_data[lane].type == COMPHY_TYPE_UNCONNECTED))
serdes_map[lane].type = COMPHY_TYPE_UNCONNECTED;
}
}
int comphy_cp110_init(struct chip_serdes_phy_config *ptr_chip_cfg,
struct comphy_map *serdes_map)
{
struct comphy_map *ptr_comphy_map;
void __iomem *comphy_base_addr, *hpipe_base_addr;
u32 comphy_max_count, lane, ret = 0;
u32 pcie_width = 0;
u32 mode;
debug_enter();
comphy_max_count = ptr_chip_cfg->comphy_lanes_count;
comphy_base_addr = ptr_chip_cfg->comphy_base_addr;
hpipe_base_addr = ptr_chip_cfg->hpipe3_base_addr;
/* Config Comphy mux configuration */
comphy_mux_cp110_init(ptr_chip_cfg, serdes_map);
/* Check if the first 4 lanes configured as By-4 */
for (lane = 0, ptr_comphy_map = serdes_map; lane < 4;
lane++, ptr_comphy_map++) {
if (ptr_comphy_map->type != COMPHY_TYPE_PEX0)
break;
pcie_width++;
}
for (lane = 0, ptr_comphy_map = serdes_map; lane < comphy_max_count;
lane++, ptr_comphy_map++) {
debug("Initialize serdes number %d\n", lane);
debug("Serdes type = 0x%x\n", ptr_comphy_map->type);
if (lane == 4) {
/*
* PCIe lanes above the first 4 lanes, can be only
* by1
*/
pcie_width = 1;
}
switch (ptr_comphy_map->type) {
case COMPHY_TYPE_UNCONNECTED:
case COMPHY_TYPE_IGNORE:
continue;
break;
case COMPHY_TYPE_PEX0:
case COMPHY_TYPE_PEX1:
case COMPHY_TYPE_PEX2:
case COMPHY_TYPE_PEX3:
mode = COMPHY_FW_PCIE_FORMAT(pcie_width,
ptr_comphy_map->clk_src,
COMPHY_PCIE_MODE,
ptr_comphy_map->speed);
ret = comphy_smc(MV_SIP_COMPHY_POWER_ON,
ptr_chip_cfg->comphy_base_addr, lane,
mode);
break;
case COMPHY_TYPE_SATA0:
case COMPHY_TYPE_SATA1:
case COMPHY_TYPE_SATA2:
case COMPHY_TYPE_SATA3:
mode = COMPHY_FW_MODE_FORMAT(COMPHY_SATA_MODE);
ret = comphy_sata_power_up(lane, hpipe_base_addr,
comphy_base_addr,
ptr_chip_cfg->cp_index,
mode);
break;
case COMPHY_TYPE_USB3_HOST0:
case COMPHY_TYPE_USB3_HOST1:
case COMPHY_TYPE_USB3_DEVICE:
ret = comphy_usb3_power_up(lane, hpipe_base_addr,
comphy_base_addr);
break;
case COMPHY_TYPE_SGMII0:
case COMPHY_TYPE_SGMII1:
if (ptr_comphy_map->speed == COMPHY_SPEED_INVALID) {
debug("Warning: ");
debug("SGMII PHY speed in lane %d is invalid,",
lane);
debug(" set PHY speed to 1.25G\n");
ptr_comphy_map->speed = COMPHY_SPEED_1_25G;
}
/*
* UINIT_ID not relevant for SGMII0 and SGMII1 - will be
* ignored by firmware
*/
mode = COMPHY_FW_FORMAT(COMPHY_SGMII_MODE,
COMPHY_UNIT_ID0,
ptr_comphy_map->speed);
ret = comphy_smc(MV_SIP_COMPHY_POWER_ON,
ptr_chip_cfg->comphy_base_addr, lane,
mode);
break;
case COMPHY_TYPE_SGMII2:
case COMPHY_TYPE_SGMII3:
if (ptr_comphy_map->speed == COMPHY_SPEED_INVALID) {
debug("Warning: SGMII PHY speed in lane %d is invalid, set PHY speed to 1.25G\n",
lane);
ptr_comphy_map->speed = COMPHY_SPEED_1_25G;
}
mode = COMPHY_FW_FORMAT(COMPHY_SGMII_MODE,
COMPHY_UNIT_ID2,
ptr_comphy_map->speed);
ret = comphy_smc(MV_SIP_COMPHY_POWER_ON,
ptr_chip_cfg->comphy_base_addr, lane,
mode);
break;
case COMPHY_TYPE_SFI:
mode = COMPHY_FW_FORMAT(COMPHY_SFI_MODE,
COMPHY_UNIT_ID0,
ptr_comphy_map->speed);
ret = comphy_smc(MV_SIP_COMPHY_POWER_ON,
ptr_chip_cfg->comphy_base_addr, lane,
mode);
break;
case COMPHY_TYPE_RXAUI0:
case COMPHY_TYPE_RXAUI1:
ret = comphy_rxauii_power_up(lane, hpipe_base_addr,
comphy_base_addr);
break;
default:
debug("Unknown SerDes type, skip initialize SerDes %d\n",
lane);
break;
}
if (ret == 0) {
/*
* If interface wans't initialized, set the lane to
* COMPHY_TYPE_UNCONNECTED state.
*/
ptr_comphy_map->type = COMPHY_TYPE_UNCONNECTED;
pr_err("PLL is not locked - Failed to initialize lane %d\n",
lane);
}
}
debug_exit();
return 0;
}