u-boot-brain/lib/efi_loader/efi_image_loader.c
Heinrich Schuchardt dec88e41e0 efi_loader: consistent naming of protocol GUIDs
We should consistently use the same name for protocol GUIDs as defined in
the UEFI specification. Not adhering to this rule has led to duplicate
definitions for the EFI_LOADED_IMAGE_PROTOCOL_GUID.

Adjust misnamed protocol GUIDs.

Adjust the text for the graphics output protocol in the output of the
`efidebug dh` command.

Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
2019-04-23 00:37:27 +02:00

342 lines
9.8 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* EFI image loader
*
* based partly on wine code
*
* Copyright (c) 2016 Alexander Graf
*/
#include <common.h>
#include <efi_loader.h>
#include <pe.h>
const efi_guid_t efi_global_variable_guid = EFI_GLOBAL_VARIABLE_GUID;
const efi_guid_t efi_guid_device_path = EFI_DEVICE_PATH_PROTOCOL_GUID;
const efi_guid_t efi_guid_loaded_image = EFI_LOADED_IMAGE_PROTOCOL_GUID;
const efi_guid_t efi_guid_loaded_image_device_path =
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID;
const efi_guid_t efi_simple_file_system_protocol_guid =
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID;
const efi_guid_t efi_file_info_guid = EFI_FILE_INFO_GUID;
static int machines[] = {
#if defined(__aarch64__)
IMAGE_FILE_MACHINE_ARM64,
#elif defined(__arm__)
IMAGE_FILE_MACHINE_ARM,
IMAGE_FILE_MACHINE_THUMB,
IMAGE_FILE_MACHINE_ARMNT,
#endif
#if defined(__x86_64__)
IMAGE_FILE_MACHINE_AMD64,
#elif defined(__i386__)
IMAGE_FILE_MACHINE_I386,
#endif
#if defined(__riscv) && (__riscv_xlen == 32)
IMAGE_FILE_MACHINE_RISCV32,
#endif
#if defined(__riscv) && (__riscv_xlen == 64)
IMAGE_FILE_MACHINE_RISCV64,
#endif
0 };
/**
* efi_print_image_info() - print information about a loaded image
*
* If the program counter is located within the image the offset to the base
* address is shown.
*
* @obj: EFI object
* @image: loaded image
* @pc: program counter (use NULL to suppress offset output)
* Return: status code
*/
static efi_status_t efi_print_image_info(struct efi_loaded_image_obj *obj,
struct efi_loaded_image *image,
void *pc)
{
printf("UEFI image");
printf(" [0x%p:0x%p]",
image->image_base, image->image_base + image->image_size - 1);
if (pc && pc >= image->image_base &&
pc < image->image_base + image->image_size)
printf(" pc=0x%zx", pc - image->image_base);
if (image->file_path)
printf(" '%pD'", image->file_path);
printf("\n");
return EFI_SUCCESS;
}
/**
* efi_print_image_infos() - print information about all loaded images
*
* @pc: program counter (use NULL to suppress offset output)
*/
void efi_print_image_infos(void *pc)
{
struct efi_object *efiobj;
struct efi_handler *handler;
list_for_each_entry(efiobj, &efi_obj_list, link) {
list_for_each_entry(handler, &efiobj->protocols, link) {
if (!guidcmp(handler->guid, &efi_guid_loaded_image)) {
efi_print_image_info(
(struct efi_loaded_image_obj *)efiobj,
handler->protocol_interface, pc);
}
}
}
}
/**
* efi_loader_relocate() - relocate UEFI binary
*
* @rel: pointer to the relocation table
* @rel_size: size of the relocation table in bytes
* @efi_reloc: actual load address of the image
* @pref_address: preferred load address of the image
* Return: status code
*/
static efi_status_t efi_loader_relocate(const IMAGE_BASE_RELOCATION *rel,
unsigned long rel_size, void *efi_reloc,
unsigned long pref_address)
{
unsigned long delta = (unsigned long)efi_reloc - pref_address;
const IMAGE_BASE_RELOCATION *end;
int i;
if (delta == 0)
return EFI_SUCCESS;
end = (const IMAGE_BASE_RELOCATION *)((const char *)rel + rel_size);
while (rel < end && rel->SizeOfBlock) {
const uint16_t *relocs = (const uint16_t *)(rel + 1);
i = (rel->SizeOfBlock - sizeof(*rel)) / sizeof(uint16_t);
while (i--) {
uint32_t offset = (uint32_t)(*relocs & 0xfff) +
rel->VirtualAddress;
int type = *relocs >> EFI_PAGE_SHIFT;
uint64_t *x64 = efi_reloc + offset;
uint32_t *x32 = efi_reloc + offset;
uint16_t *x16 = efi_reloc + offset;
switch (type) {
case IMAGE_REL_BASED_ABSOLUTE:
break;
case IMAGE_REL_BASED_HIGH:
*x16 += ((uint32_t)delta) >> 16;
break;
case IMAGE_REL_BASED_LOW:
*x16 += (uint16_t)delta;
break;
case IMAGE_REL_BASED_HIGHLOW:
*x32 += (uint32_t)delta;
break;
case IMAGE_REL_BASED_DIR64:
*x64 += (uint64_t)delta;
break;
#ifdef __riscv
case IMAGE_REL_BASED_RISCV_HI20:
*x32 = ((*x32 & 0xfffff000) + (uint32_t)delta) |
(*x32 & 0x00000fff);
break;
case IMAGE_REL_BASED_RISCV_LOW12I:
case IMAGE_REL_BASED_RISCV_LOW12S:
/* We know that we're 4k aligned */
if (delta & 0xfff) {
printf("Unsupported reloc offset\n");
return EFI_LOAD_ERROR;
}
break;
#endif
default:
printf("Unknown Relocation off %x type %x\n",
offset, type);
return EFI_LOAD_ERROR;
}
relocs++;
}
rel = (const IMAGE_BASE_RELOCATION *)relocs;
}
return EFI_SUCCESS;
}
void __weak invalidate_icache_all(void)
{
/* If the system doesn't support icache_all flush, cross our fingers */
}
/**
* efi_set_code_and_data_type() - determine the memory types to be used for code
* and data.
*
* @loaded_image_info: image descriptor
* @image_type: field Subsystem of the optional header for
* Windows specific field
*/
static void efi_set_code_and_data_type(
struct efi_loaded_image *loaded_image_info,
uint16_t image_type)
{
switch (image_type) {
case IMAGE_SUBSYSTEM_EFI_APPLICATION:
loaded_image_info->image_code_type = EFI_LOADER_CODE;
loaded_image_info->image_data_type = EFI_LOADER_DATA;
break;
case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
loaded_image_info->image_code_type = EFI_BOOT_SERVICES_CODE;
loaded_image_info->image_data_type = EFI_BOOT_SERVICES_DATA;
break;
case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
case IMAGE_SUBSYSTEM_EFI_ROM:
loaded_image_info->image_code_type = EFI_RUNTIME_SERVICES_CODE;
loaded_image_info->image_data_type = EFI_RUNTIME_SERVICES_DATA;
break;
default:
printf("%s: invalid image type: %u\n", __func__, image_type);
/* Let's assume it is an application */
loaded_image_info->image_code_type = EFI_LOADER_CODE;
loaded_image_info->image_data_type = EFI_LOADER_DATA;
break;
}
}
/**
* efi_load_pe() - relocate EFI binary
*
* This function loads all sections from a PE binary into a newly reserved
* piece of memory. On success the entry point is returned as handle->entry.
*
* @handle: loaded image handle
* @efi: pointer to the EFI binary
* @loaded_image_info: loaded image protocol
* Return: status code
*/
efi_status_t efi_load_pe(struct efi_loaded_image_obj *handle, void *efi,
struct efi_loaded_image *loaded_image_info)
{
IMAGE_NT_HEADERS32 *nt;
IMAGE_DOS_HEADER *dos;
IMAGE_SECTION_HEADER *sections;
int num_sections;
void *efi_reloc;
int i;
const IMAGE_BASE_RELOCATION *rel;
unsigned long rel_size;
int rel_idx = IMAGE_DIRECTORY_ENTRY_BASERELOC;
uint64_t image_base;
unsigned long virt_size = 0;
int supported = 0;
dos = efi;
if (dos->e_magic != IMAGE_DOS_SIGNATURE) {
printf("%s: Invalid DOS Signature\n", __func__);
return EFI_LOAD_ERROR;
}
nt = (void *) ((char *)efi + dos->e_lfanew);
if (nt->Signature != IMAGE_NT_SIGNATURE) {
printf("%s: Invalid NT Signature\n", __func__);
return EFI_LOAD_ERROR;
}
for (i = 0; machines[i]; i++)
if (machines[i] == nt->FileHeader.Machine) {
supported = 1;
break;
}
if (!supported) {
printf("%s: Machine type 0x%04x is not supported\n",
__func__, nt->FileHeader.Machine);
return EFI_LOAD_ERROR;
}
/* Calculate upper virtual address boundary */
num_sections = nt->FileHeader.NumberOfSections;
sections = (void *)&nt->OptionalHeader +
nt->FileHeader.SizeOfOptionalHeader;
for (i = num_sections - 1; i >= 0; i--) {
IMAGE_SECTION_HEADER *sec = &sections[i];
virt_size = max_t(unsigned long, virt_size,
sec->VirtualAddress + sec->Misc.VirtualSize);
}
/* Read 32/64bit specific header bits */
if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
IMAGE_NT_HEADERS64 *nt64 = (void *)nt;
IMAGE_OPTIONAL_HEADER64 *opt = &nt64->OptionalHeader;
image_base = opt->ImageBase;
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
efi_reloc = efi_alloc(virt_size,
loaded_image_info->image_code_type);
if (!efi_reloc) {
printf("%s: Could not allocate %lu bytes\n",
__func__, virt_size);
return EFI_OUT_OF_RESOURCES;
}
handle->entry = efi_reloc + opt->AddressOfEntryPoint;
rel_size = opt->DataDirectory[rel_idx].Size;
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
virt_size = ALIGN(virt_size, opt->SectionAlignment);
} else if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
IMAGE_OPTIONAL_HEADER32 *opt = &nt->OptionalHeader;
image_base = opt->ImageBase;
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
efi_reloc = efi_alloc(virt_size,
loaded_image_info->image_code_type);
if (!efi_reloc) {
printf("%s: Could not allocate %lu bytes\n",
__func__, virt_size);
return EFI_OUT_OF_RESOURCES;
}
handle->entry = efi_reloc + opt->AddressOfEntryPoint;
rel_size = opt->DataDirectory[rel_idx].Size;
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
virt_size = ALIGN(virt_size, opt->SectionAlignment);
} else {
printf("%s: Invalid optional header magic %x\n", __func__,
nt->OptionalHeader.Magic);
return EFI_LOAD_ERROR;
}
/* Copy PE headers */
memcpy(efi_reloc, efi, sizeof(*dos) + sizeof(*nt)
+ nt->FileHeader.SizeOfOptionalHeader
+ num_sections * sizeof(IMAGE_SECTION_HEADER));
/* Load sections into RAM */
for (i = num_sections - 1; i >= 0; i--) {
IMAGE_SECTION_HEADER *sec = &sections[i];
memset(efi_reloc + sec->VirtualAddress, 0,
sec->Misc.VirtualSize);
memcpy(efi_reloc + sec->VirtualAddress,
efi + sec->PointerToRawData,
sec->SizeOfRawData);
}
/* Run through relocations */
if (efi_loader_relocate(rel, rel_size, efi_reloc,
(unsigned long)image_base) != EFI_SUCCESS) {
efi_free_pages((uintptr_t) efi_reloc,
(virt_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT);
return EFI_LOAD_ERROR;
}
/* Flush cache */
flush_cache((ulong)efi_reloc,
ALIGN(virt_size, EFI_CACHELINE_SIZE));
invalidate_icache_all();
/* Populate the loaded image interface bits */
loaded_image_info->image_base = efi_reloc;
loaded_image_info->image_size = virt_size;
return EFI_SUCCESS;
}