u-boot-brain/arch/powerpc/cpu/mpc8xxx/ddr/main.c
York Sun 6f5e1dc531 powerpc/8xxx: Add support for interactive DDR programming interface
Interactive DDR debugging provides a user interface to view and modify SPD,
DIMM parameters, board options and DDR controller registers before DDR is
initialized. With this feature, developers can fine-tune DDR for board
bringup and other debugging without frequently having to reprogram the flash.

To enable this feature, define CONFIG_FSL_DDR_INTERACTIVE in board header
file and set an environment variable to activate it. Syntax:

setenv ddr_interactive on

After reset, U-boot prompts before initializing DDR controllers
FSL DDR>

The available commands are
print      print SPD and intermediate computed data
reset      reboot machine
recompute  reload SPD and options to default and recompute regs
edit       modify spd, parameter, or option
compute    recompute registers from current next_step to end
next_step  shows current next_step
help       this message
go         program the memory controller and continue with u-boot

The first command should be "compute", which reads data from DIMM SPDs and
board options, performs the calculation then stops before setting DDR
controller. A user can use "print" and "edit" commands to view and modify
anything. "Go" picks up from current step with any modification and
compltes the calculation then enables the DDR controller to continue u-boot.
"Recompute" does it over from fresh reading.

Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2011-10-09 17:57:53 -05:00

597 lines
17 KiB
C

/*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
/*
* Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
* Based on code from spd_sdram.c
* Author: James Yang [at freescale.com]
*/
#include <common.h>
#include <i2c.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
extern void fsl_ddr_set_lawbar(
const common_timing_params_t *memctl_common_params,
unsigned int memctl_interleaved,
unsigned int ctrl_num);
/* processor specific function */
extern void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
unsigned int ctrl_num);
#if defined(SPD_EEPROM_ADDRESS) || \
defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
#if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS,
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
[1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
};
#endif
static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
{
int ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
sizeof(generic_spd_eeprom_t));
if (ret) {
printf("DDR: failed to read SPD from address %u\n", i2c_address);
memset(spd, 0, sizeof(generic_spd_eeprom_t));
}
}
__attribute__((weak, alias("__get_spd")))
void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
unsigned int ctrl_num)
{
unsigned int i;
unsigned int i2c_address = 0;
if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
return;
}
for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
i2c_address = spd_i2c_addr[ctrl_num][i];
get_spd(&(ctrl_dimms_spd[i]), i2c_address);
}
}
#else
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
unsigned int ctrl_num)
{
}
#endif /* SPD_EEPROM_ADDRESSx */
/*
* ASSUMPTIONS:
* - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
* - Same memory data bus width on all controllers
*
* NOTES:
*
* The memory controller and associated documentation use confusing
* terminology when referring to the orgranization of DRAM.
*
* Here is a terminology translation table:
*
* memory controller/documention |industry |this code |signals
* -------------------------------|-----------|-----------|-----------------
* physical bank/bank |rank |rank |chip select (CS)
* logical bank/sub-bank |bank |bank |bank address (BA)
* page/row |row |page |row address
* ??? |column |column |column address
*
* The naming confusion is further exacerbated by the descriptions of the
* memory controller interleaving feature, where accesses are interleaved
* _BETWEEN_ two seperate memory controllers. This is configured only in
* CS0_CONFIG[INTLV_CTL] of each memory controller.
*
* memory controller documentation | number of chip selects
* | per memory controller supported
* --------------------------------|-----------------------------------------
* cache line interleaving | 1 (CS0 only)
* page interleaving | 1 (CS0 only)
* bank interleaving | 1 (CS0 only)
* superbank interleraving | depends on bank (chip select)
* | interleraving [rank interleaving]
* | mode used on every memory controller
*
* Even further confusing is the existence of the interleaving feature
* _WITHIN_ each memory controller. The feature is referred to in
* documentation as chip select interleaving or bank interleaving,
* although it is configured in the DDR_SDRAM_CFG field.
*
* Name of field | documentation name | this code
* -----------------------------|-----------------------|------------------
* DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
* | interleaving
*/
const char *step_string_tbl[] = {
"STEP_GET_SPD",
"STEP_COMPUTE_DIMM_PARMS",
"STEP_COMPUTE_COMMON_PARMS",
"STEP_GATHER_OPTS",
"STEP_ASSIGN_ADDRESSES",
"STEP_COMPUTE_REGS",
"STEP_PROGRAM_REGS",
"STEP_ALL"
};
const char * step_to_string(unsigned int step) {
unsigned int s = __ilog2(step);
if ((1 << s) != step)
return step_string_tbl[7];
return step_string_tbl[s];
}
int step_assign_addresses(fsl_ddr_info_t *pinfo,
unsigned int dbw_cap_adj[],
unsigned int *all_memctl_interleaving,
unsigned int *all_ctlr_rank_interleaving)
{
int i, j;
/*
* If a reduced data width is requested, but the SPD
* specifies a physically wider device, adjust the
* computed dimm capacities accordingly before
* assigning addresses.
*/
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
unsigned int found = 0;
switch (pinfo->memctl_opts[i].data_bus_width) {
case 2:
/* 16-bit */
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned int dw;
if (!pinfo->dimm_params[i][j].n_ranks)
continue;
dw = pinfo->dimm_params[i][j].primary_sdram_width;
if ((dw == 72 || dw == 64)) {
dbw_cap_adj[i] = 2;
break;
} else if ((dw == 40 || dw == 32)) {
dbw_cap_adj[i] = 1;
break;
}
}
break;
case 1:
/* 32-bit */
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned int dw;
dw = pinfo->dimm_params[i][j].data_width;
if (pinfo->dimm_params[i][j].n_ranks
&& (dw == 72 || dw == 64)) {
/*
* FIXME: can't really do it
* like this because this just
* further reduces the memory
*/
found = 1;
break;
}
}
if (found) {
dbw_cap_adj[i] = 1;
}
break;
case 0:
/* 64-bit */
break;
default:
printf("unexpected data bus width "
"specified controller %u\n", i);
return 1;
}
}
j = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)
if (pinfo->memctl_opts[i].memctl_interleaving)
j++;
/*
* Not support less than all memory controllers interleaving
* if more than two controllers
*/
if (j == CONFIG_NUM_DDR_CONTROLLERS)
*all_memctl_interleaving = 1;
/* Check that all controllers are rank interleaving. */
j = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)
if (pinfo->memctl_opts[i].ba_intlv_ctl)
j++;
/*
* All memory controllers must be populated to qualify for
* all controller rank interleaving
*/
if (j == CONFIG_NUM_DDR_CONTROLLERS)
*all_ctlr_rank_interleaving = 1;
if (*all_memctl_interleaving) {
unsigned long long addr, total_mem_per_ctlr = 0;
/*
* If interleaving between memory controllers,
* make each controller start at a base address
* of 0.
*
* Also, if bank interleaving (chip select
* interleaving) is enabled on each memory
* controller, CS0 needs to be programmed to
* cover the entire memory range on that memory
* controller
*
* Bank interleaving also implies that each
* addressed chip select is identical in size.
*/
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
addr = 0;
pinfo->common_timing_params[i].base_address = 0ull;
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned long long cap
= pinfo->dimm_params[i][j].capacity;
pinfo->dimm_params[i][j].base_address = addr;
addr += cap >> dbw_cap_adj[i];
total_mem_per_ctlr += cap >> dbw_cap_adj[i];
}
}
pinfo->common_timing_params[0].total_mem = total_mem_per_ctlr;
} else {
/*
* Simple linear assignment if memory
* controllers are not interleaved.
*/
unsigned long long cur_memsize = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
u64 total_mem_per_ctlr = 0;
pinfo->common_timing_params[i].base_address =
cur_memsize;
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
/* Compute DIMM base addresses. */
unsigned long long cap =
pinfo->dimm_params[i][j].capacity;
pinfo->dimm_params[i][j].base_address =
cur_memsize;
cur_memsize += cap >> dbw_cap_adj[i];
total_mem_per_ctlr += cap >> dbw_cap_adj[i];
}
pinfo->common_timing_params[i].total_mem =
total_mem_per_ctlr;
}
}
return 0;
}
unsigned long long
fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
unsigned int size_only)
{
unsigned int i, j;
unsigned int all_controllers_memctl_interleaving = 0;
unsigned int all_controllers_rank_interleaving = 0;
unsigned long long total_mem = 0;
fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
common_timing_params_t *timing_params = pinfo->common_timing_params;
/* data bus width capacity adjust shift amount */
unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
dbw_capacity_adjust[i] = 0;
}
debug("starting at step %u (%s)\n",
start_step, step_to_string(start_step));
switch (start_step) {
case STEP_GET_SPD:
#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
/* STEP 1: Gather all DIMM SPD data */
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
}
case STEP_COMPUTE_DIMM_PARMS:
/* STEP 2: Compute DIMM parameters from SPD data */
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned int retval;
generic_spd_eeprom_t *spd =
&(pinfo->spd_installed_dimms[i][j]);
dimm_params_t *pdimm =
&(pinfo->dimm_params[i][j]);
retval = compute_dimm_parameters(spd, pdimm, i);
#ifdef CONFIG_SYS_DDR_RAW_TIMING
if (retval != 0) {
printf("SPD error! Trying fallback to "
"raw timing calculation\n");
fsl_ddr_get_dimm_params(pdimm, i, j);
}
#else
if (retval == 2) {
printf("Error: compute_dimm_parameters"
" non-zero returned FATAL value "
"for memctl=%u dimm=%u\n", i, j);
return 0;
}
#endif
if (retval) {
debug("Warning: compute_dimm_parameters"
" non-zero return value for memctl=%u "
"dimm=%u\n", i, j);
}
}
}
#else
case STEP_COMPUTE_DIMM_PARMS:
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
dimm_params_t *pdimm =
&(pinfo->dimm_params[i][j]);
fsl_ddr_get_dimm_params(pdimm, i, j);
}
}
debug("Filling dimm parameters from board specific file\n");
#endif
case STEP_COMPUTE_COMMON_PARMS:
/*
* STEP 3: Compute a common set of timing parameters
* suitable for all of the DIMMs on each memory controller
*/
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
debug("Computing lowest common DIMM"
" parameters for memctl=%u\n", i);
compute_lowest_common_dimm_parameters(
pinfo->dimm_params[i],
&timing_params[i],
CONFIG_DIMM_SLOTS_PER_CTLR);
}
case STEP_GATHER_OPTS:
/* STEP 4: Gather configuration requirements from user */
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
debug("Reloading memory controller "
"configuration options for memctl=%u\n", i);
/*
* This "reloads" the memory controller options
* to defaults. If the user "edits" an option,
* next_step points to the step after this,
* which is currently STEP_ASSIGN_ADDRESSES.
*/
populate_memctl_options(
timing_params[i].all_DIMMs_registered,
&pinfo->memctl_opts[i],
pinfo->dimm_params[i], i);
}
check_interleaving_options(pinfo);
case STEP_ASSIGN_ADDRESSES:
/* STEP 5: Assign addresses to chip selects */
step_assign_addresses(pinfo,
dbw_capacity_adjust,
&all_controllers_memctl_interleaving,
&all_controllers_rank_interleaving);
case STEP_COMPUTE_REGS:
/* STEP 6: compute controller register values */
debug("FSL Memory ctrl cg register computation\n");
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
if (timing_params[i].ndimms_present == 0) {
memset(&ddr_reg[i], 0,
sizeof(fsl_ddr_cfg_regs_t));
continue;
}
compute_fsl_memctl_config_regs(
&pinfo->memctl_opts[i],
&ddr_reg[i], &timing_params[i],
pinfo->dimm_params[i],
dbw_capacity_adjust[i],
size_only);
}
default:
break;
}
/* Compute the total amount of memory. */
/*
* If bank interleaving but NOT memory controller interleaving
* CS_BNDS describe the quantity of memory on each memory
* controller, so the total is the sum across.
*/
if (!all_controllers_memctl_interleaving
&& all_controllers_rank_interleaving) {
total_mem = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
total_mem += timing_params[i].total_mem;
}
} else {
/*
* Compute the amount of memory available just by
* looking for the highest valid CSn_BNDS value.
* This allows us to also experiment with using
* only CS0 when using dual-rank DIMMs.
*/
unsigned int max_end = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
if (reg->cs[j].config & 0x80000000) {
unsigned int end;
end = reg->cs[j].bnds & 0xFFF;
if (end > max_end) {
max_end = end;
}
}
}
}
total_mem = 1 + (((unsigned long long)max_end << 24ULL)
| 0xFFFFFFULL);
}
return total_mem;
}
/*
* fsl_ddr_sdram() -- this is the main function to be called by
* initdram() in the board file.
*
* It returns amount of memory configured in bytes.
*/
phys_size_t fsl_ddr_sdram(void)
{
unsigned int i;
unsigned int memctl_interleaved;
unsigned long long total_memory;
fsl_ddr_info_t info;
/* Reset info structure. */
memset(&info, 0, sizeof(fsl_ddr_info_t));
/* Compute it once normally. */
#ifdef CONFIG_FSL_DDR_INTERACTIVE
if (getenv("ddr_interactive"))
total_memory = fsl_ddr_interactive(&info);
else
#endif
total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0);
/* Check for memory controller interleaving. */
memctl_interleaved = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
memctl_interleaved +=
info.memctl_opts[i].memctl_interleaving;
}
if (memctl_interleaved) {
if (memctl_interleaved == CONFIG_NUM_DDR_CONTROLLERS) {
debug("memctl interleaving\n");
/*
* Change the meaning of memctl_interleaved
* to be "boolean".
*/
memctl_interleaved = 1;
} else {
printf("Warning: memctl interleaving not "
"properly configured on all controllers\n");
memctl_interleaved = 0;
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)
info.memctl_opts[i].memctl_interleaving = 0;
debug("Recomputing with memctl_interleaving off.\n");
total_memory = fsl_ddr_compute(&info,
STEP_ASSIGN_ADDRESSES,
0);
}
}
/* Program configuration registers. */
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
debug("Programming controller %u\n", i);
if (info.common_timing_params[i].ndimms_present == 0) {
debug("No dimms present on controller %u; "
"skipping programming\n", i);
continue;
}
fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i);
}
if (memctl_interleaved) {
const unsigned int ctrl_num = 0;
/* Only set LAWBAR1 if memory controller interleaving is on. */
fsl_ddr_set_lawbar(&info.common_timing_params[0],
memctl_interleaved, ctrl_num);
} else {
/*
* Memory controller interleaving is NOT on;
* set each lawbar individually.
*/
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
fsl_ddr_set_lawbar(&info.common_timing_params[i],
0, i);
}
}
debug("total_memory = %llu\n", total_memory);
#if !defined(CONFIG_PHYS_64BIT)
/* Check for 4G or more. Bad. */
if (total_memory >= (1ull << 32)) {
printf("Detected %lld MB of memory\n", total_memory >> 20);
printf(" This U-Boot only supports < 4G of DDR\n");
printf(" You could rebuild it with CONFIG_PHYS_64BIT\n");
printf(" "); /* re-align to match init_func_ram print */
total_memory = CONFIG_MAX_MEM_MAPPED;
}
#endif
return total_memory;
}
/*
* fsl_ddr_sdram_size() - This function only returns the size of the total
* memory without setting ddr control registers.
*/
phys_size_t
fsl_ddr_sdram_size(void)
{
fsl_ddr_info_t info;
unsigned long long total_memory = 0;
memset(&info, 0 , sizeof(fsl_ddr_info_t));
/* Compute it once normally. */
total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
return total_memory;
}