u-boot-brain/lib/efi_loader/efi_image_loader.c
Heinrich Schuchardt 55af40a578 efi_loader: simplify PE consistency check
Knowing that at least one section header follows the optional header we
only need to check for the length of the 64bit header which is longer than
the 32bit header.

Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
2020-06-03 17:19:18 +02:00

782 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* EFI image loader
*
* based partly on wine code
*
* Copyright (c) 2016 Alexander Graf
*/
#include <common.h>
#include <cpu_func.h>
#include <efi_loader.h>
#include <malloc.h>
#include <pe.h>
#include <sort.h>
#include <crypto/pkcs7_parser.h>
#include <linux/err.h>
const efi_guid_t efi_global_variable_guid = EFI_GLOBAL_VARIABLE_GUID;
const efi_guid_t efi_guid_device_path = EFI_DEVICE_PATH_PROTOCOL_GUID;
const efi_guid_t efi_guid_loaded_image = EFI_LOADED_IMAGE_PROTOCOL_GUID;
const efi_guid_t efi_guid_loaded_image_device_path =
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID;
const efi_guid_t efi_simple_file_system_protocol_guid =
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID;
const efi_guid_t efi_file_info_guid = EFI_FILE_INFO_GUID;
static int machines[] = {
#if defined(__aarch64__)
IMAGE_FILE_MACHINE_ARM64,
#elif defined(__arm__)
IMAGE_FILE_MACHINE_ARM,
IMAGE_FILE_MACHINE_THUMB,
IMAGE_FILE_MACHINE_ARMNT,
#endif
#if defined(__x86_64__)
IMAGE_FILE_MACHINE_AMD64,
#elif defined(__i386__)
IMAGE_FILE_MACHINE_I386,
#endif
#if defined(__riscv) && (__riscv_xlen == 32)
IMAGE_FILE_MACHINE_RISCV32,
#endif
#if defined(__riscv) && (__riscv_xlen == 64)
IMAGE_FILE_MACHINE_RISCV64,
#endif
0 };
/**
* efi_print_image_info() - print information about a loaded image
*
* If the program counter is located within the image the offset to the base
* address is shown.
*
* @obj: EFI object
* @image: loaded image
* @pc: program counter (use NULL to suppress offset output)
* Return: status code
*/
static efi_status_t efi_print_image_info(struct efi_loaded_image_obj *obj,
struct efi_loaded_image *image,
void *pc)
{
printf("UEFI image");
printf(" [0x%p:0x%p]",
image->image_base, image->image_base + image->image_size - 1);
if (pc && pc >= image->image_base &&
pc < image->image_base + image->image_size)
printf(" pc=0x%zx", pc - image->image_base);
if (image->file_path)
printf(" '%pD'", image->file_path);
printf("\n");
return EFI_SUCCESS;
}
/**
* efi_print_image_infos() - print information about all loaded images
*
* @pc: program counter (use NULL to suppress offset output)
*/
void efi_print_image_infos(void *pc)
{
struct efi_object *efiobj;
struct efi_handler *handler;
list_for_each_entry(efiobj, &efi_obj_list, link) {
list_for_each_entry(handler, &efiobj->protocols, link) {
if (!guidcmp(handler->guid, &efi_guid_loaded_image)) {
efi_print_image_info(
(struct efi_loaded_image_obj *)efiobj,
handler->protocol_interface, pc);
}
}
}
}
/**
* efi_loader_relocate() - relocate UEFI binary
*
* @rel: pointer to the relocation table
* @rel_size: size of the relocation table in bytes
* @efi_reloc: actual load address of the image
* @pref_address: preferred load address of the image
* Return: status code
*/
static efi_status_t efi_loader_relocate(const IMAGE_BASE_RELOCATION *rel,
unsigned long rel_size, void *efi_reloc,
unsigned long pref_address)
{
unsigned long delta = (unsigned long)efi_reloc - pref_address;
const IMAGE_BASE_RELOCATION *end;
int i;
if (delta == 0)
return EFI_SUCCESS;
end = (const IMAGE_BASE_RELOCATION *)((const char *)rel + rel_size);
while (rel < end && rel->SizeOfBlock) {
const uint16_t *relocs = (const uint16_t *)(rel + 1);
i = (rel->SizeOfBlock - sizeof(*rel)) / sizeof(uint16_t);
while (i--) {
uint32_t offset = (uint32_t)(*relocs & 0xfff) +
rel->VirtualAddress;
int type = *relocs >> EFI_PAGE_SHIFT;
uint64_t *x64 = efi_reloc + offset;
uint32_t *x32 = efi_reloc + offset;
uint16_t *x16 = efi_reloc + offset;
switch (type) {
case IMAGE_REL_BASED_ABSOLUTE:
break;
case IMAGE_REL_BASED_HIGH:
*x16 += ((uint32_t)delta) >> 16;
break;
case IMAGE_REL_BASED_LOW:
*x16 += (uint16_t)delta;
break;
case IMAGE_REL_BASED_HIGHLOW:
*x32 += (uint32_t)delta;
break;
case IMAGE_REL_BASED_DIR64:
*x64 += (uint64_t)delta;
break;
#ifdef __riscv
case IMAGE_REL_BASED_RISCV_HI20:
*x32 = ((*x32 & 0xfffff000) + (uint32_t)delta) |
(*x32 & 0x00000fff);
break;
case IMAGE_REL_BASED_RISCV_LOW12I:
case IMAGE_REL_BASED_RISCV_LOW12S:
/* We know that we're 4k aligned */
if (delta & 0xfff) {
printf("Unsupported reloc offset\n");
return EFI_LOAD_ERROR;
}
break;
#endif
default:
printf("Unknown Relocation off %x type %x\n",
offset, type);
return EFI_LOAD_ERROR;
}
relocs++;
}
rel = (const IMAGE_BASE_RELOCATION *)relocs;
}
return EFI_SUCCESS;
}
void __weak invalidate_icache_all(void)
{
/* If the system doesn't support icache_all flush, cross our fingers */
}
/**
* efi_set_code_and_data_type() - determine the memory types to be used for code
* and data.
*
* @loaded_image_info: image descriptor
* @image_type: field Subsystem of the optional header for
* Windows specific field
*/
static void efi_set_code_and_data_type(
struct efi_loaded_image *loaded_image_info,
uint16_t image_type)
{
switch (image_type) {
case IMAGE_SUBSYSTEM_EFI_APPLICATION:
loaded_image_info->image_code_type = EFI_LOADER_CODE;
loaded_image_info->image_data_type = EFI_LOADER_DATA;
break;
case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
loaded_image_info->image_code_type = EFI_BOOT_SERVICES_CODE;
loaded_image_info->image_data_type = EFI_BOOT_SERVICES_DATA;
break;
case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
case IMAGE_SUBSYSTEM_EFI_ROM:
loaded_image_info->image_code_type = EFI_RUNTIME_SERVICES_CODE;
loaded_image_info->image_data_type = EFI_RUNTIME_SERVICES_DATA;
break;
default:
printf("%s: invalid image type: %u\n", __func__, image_type);
/* Let's assume it is an application */
loaded_image_info->image_code_type = EFI_LOADER_CODE;
loaded_image_info->image_data_type = EFI_LOADER_DATA;
break;
}
}
#ifdef CONFIG_EFI_SECURE_BOOT
/**
* cmp_pe_section() - compare virtual addresses of two PE image sections
* @arg1: pointer to pointer to first section header
* @arg2: pointer to pointer to second section header
*
* Compare the virtual addresses of two sections of an portable executable.
* The arguments are defined as const void * to allow usage with qsort().
*
* Return: -1 if the virtual address of arg1 is less than that of arg2,
* 0 if the virtual addresses are equal, 1 if the virtual address
* of arg1 is greater than that of arg2.
*/
static int cmp_pe_section(const void *arg1, const void *arg2)
{
const IMAGE_SECTION_HEADER *section1, *section2;
section1 = *((const IMAGE_SECTION_HEADER **)arg1);
section2 = *((const IMAGE_SECTION_HEADER **)arg2);
if (section1->VirtualAddress < section2->VirtualAddress)
return -1;
else if (section1->VirtualAddress == section2->VirtualAddress)
return 0;
else
return 1;
}
/**
* efi_image_parse() - parse a PE image
* @efi: Pointer to image
* @len: Size of @efi
* @regp: Pointer to a list of regions
* @auth: Pointer to a pointer to authentication data in PE
* @auth_len: Size of @auth
*
* Parse image binary in PE32(+) format, assuming that sanity of PE image
* has been checked by a caller.
* On success, an address of authentication data in @efi and its size will
* be returned in @auth and @auth_len, respectively.
*
* Return: true on success, false on error
*/
bool efi_image_parse(void *efi, size_t len, struct efi_image_regions **regp,
WIN_CERTIFICATE **auth, size_t *auth_len)
{
struct efi_image_regions *regs;
IMAGE_DOS_HEADER *dos;
IMAGE_NT_HEADERS32 *nt;
IMAGE_SECTION_HEADER *sections, **sorted;
int num_regions, num_sections, i;
int ctidx = IMAGE_DIRECTORY_ENTRY_SECURITY;
u32 align, size, authsz, authoff;
size_t bytes_hashed;
dos = (void *)efi;
nt = (void *)(efi + dos->e_lfanew);
/*
* Count maximum number of regions to be digested.
* We don't have to have an exact number here.
* See efi_image_region_add()'s in parsing below.
*/
num_regions = 3; /* for header */
num_regions += nt->FileHeader.NumberOfSections;
num_regions++; /* for extra */
regs = calloc(sizeof(*regs) + sizeof(struct image_region) * num_regions,
1);
if (!regs)
goto err;
regs->max = num_regions;
/*
* Collect data regions for hash calculation
* 1. File headers
*/
if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
IMAGE_NT_HEADERS64 *nt64 = (void *)nt;
IMAGE_OPTIONAL_HEADER64 *opt = &nt64->OptionalHeader;
/* Skip CheckSum */
efi_image_region_add(regs, efi, &opt->CheckSum, 0);
if (nt64->OptionalHeader.NumberOfRvaAndSizes <= ctidx) {
efi_image_region_add(regs,
&opt->Subsystem,
efi + opt->SizeOfHeaders, 0);
} else {
/* Skip Certificates Table */
efi_image_region_add(regs,
&opt->Subsystem,
&opt->DataDirectory[ctidx], 0);
efi_image_region_add(regs,
&opt->DataDirectory[ctidx] + 1,
efi + opt->SizeOfHeaders, 0);
}
bytes_hashed = opt->SizeOfHeaders;
align = opt->FileAlignment;
authoff = opt->DataDirectory[ctidx].VirtualAddress;
authsz = opt->DataDirectory[ctidx].Size;
} else if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
IMAGE_OPTIONAL_HEADER32 *opt = &nt->OptionalHeader;
efi_image_region_add(regs, efi, &opt->CheckSum, 0);
efi_image_region_add(regs, &opt->Subsystem,
&opt->DataDirectory[ctidx], 0);
efi_image_region_add(regs, &opt->DataDirectory[ctidx] + 1,
efi + opt->SizeOfHeaders, 0);
bytes_hashed = opt->SizeOfHeaders;
align = opt->FileAlignment;
authoff = opt->DataDirectory[ctidx].VirtualAddress;
authsz = opt->DataDirectory[ctidx].Size;
} else {
debug("%s: Invalid optional header magic %x\n", __func__,
nt->OptionalHeader.Magic);
goto err;
}
/* 2. Sections */
num_sections = nt->FileHeader.NumberOfSections;
sections = (void *)((uint8_t *)&nt->OptionalHeader +
nt->FileHeader.SizeOfOptionalHeader);
sorted = calloc(sizeof(IMAGE_SECTION_HEADER *), num_sections);
if (!sorted) {
debug("%s: Out of memory\n", __func__);
goto err;
}
/*
* Make sure the section list is in ascending order.
*/
for (i = 0; i < num_sections; i++)
sorted[i] = &sections[i];
qsort(sorted, num_sections, sizeof(sorted[0]), cmp_pe_section);
for (i = 0; i < num_sections; i++) {
if (!sorted[i]->SizeOfRawData)
continue;
size = (sorted[i]->SizeOfRawData + align - 1) & ~(align - 1);
efi_image_region_add(regs, efi + sorted[i]->PointerToRawData,
efi + sorted[i]->PointerToRawData + size,
0);
debug("section[%d](%s): raw: 0x%x-0x%x, virt: %x-%x\n",
i, sorted[i]->Name,
sorted[i]->PointerToRawData,
sorted[i]->PointerToRawData + size,
sorted[i]->VirtualAddress,
sorted[i]->VirtualAddress
+ sorted[i]->Misc.VirtualSize);
bytes_hashed += size;
}
free(sorted);
/* 3. Extra data excluding Certificates Table */
if (bytes_hashed + authsz < len) {
debug("extra data for hash: %lu\n",
len - (bytes_hashed + authsz));
efi_image_region_add(regs, efi + bytes_hashed,
efi + len - authsz, 0);
}
/* Return Certificates Table */
if (authsz) {
if (len < authoff + authsz) {
debug("%s: Size for auth too large: %u >= %zu\n",
__func__, authsz, len - authoff);
goto err;
}
if (authsz < sizeof(*auth)) {
debug("%s: Size for auth too small: %u < %zu\n",
__func__, authsz, sizeof(*auth));
goto err;
}
*auth = efi + authoff;
*auth_len = authsz;
debug("WIN_CERTIFICATE: 0x%x, size: 0x%x\n", authoff, authsz);
} else {
*auth = NULL;
*auth_len = 0;
}
*regp = regs;
return true;
err:
free(regs);
return false;
}
/**
* efi_image_unsigned_authenticate() - authenticate unsigned image with
* SHA256 hash
* @regs: List of regions to be verified
*
* If an image is not signed, it doesn't have a signature. In this case,
* its message digest is calculated and it will be compared with one of
* hash values stored in signature databases.
*
* Return: true if authenticated, false if not
*/
static bool efi_image_unsigned_authenticate(struct efi_image_regions *regs)
{
struct efi_signature_store *db = NULL, *dbx = NULL;
bool ret = false;
dbx = efi_sigstore_parse_sigdb(L"dbx");
if (!dbx) {
debug("Getting signature database(dbx) failed\n");
goto out;
}
db = efi_sigstore_parse_sigdb(L"db");
if (!db) {
debug("Getting signature database(db) failed\n");
goto out;
}
/* try black-list first */
if (efi_signature_verify_with_sigdb(regs, NULL, dbx, NULL)) {
debug("Image is not signed and rejected by \"dbx\"\n");
goto out;
}
/* try white-list */
if (efi_signature_verify_with_sigdb(regs, NULL, db, NULL))
ret = true;
else
debug("Image is not signed and not found in \"db\" or \"dbx\"\n");
out:
efi_sigstore_free(db);
efi_sigstore_free(dbx);
return ret;
}
/**
* efi_image_authenticate() - verify a signature of signed image
* @efi: Pointer to image
* @efi_size: Size of @efi
*
* A signed image should have its signature stored in a table of its PE header.
* So if an image is signed and only if if its signature is verified using
* signature databases, an image is authenticated.
* If an image is not signed, its validity is checked by using
* efi_image_unsigned_authenticated().
* TODO:
* When AuditMode==0, if the image's signature is not found in
* the authorized database, or is found in the forbidden database,
* the image will not be started and instead, information about it
* will be placed in this table.
* When AuditMode==1, an EFI_IMAGE_EXECUTION_INFO element is created
* in the EFI_IMAGE_EXECUTION_INFO_TABLE for every certificate found
* in the certificate table of every image that is validated.
*
* Return: true if authenticated, false if not
*/
static bool efi_image_authenticate(void *efi, size_t efi_size)
{
struct efi_image_regions *regs = NULL;
WIN_CERTIFICATE *wincerts = NULL, *wincert;
size_t wincerts_len;
struct pkcs7_message *msg = NULL;
struct efi_signature_store *db = NULL, *dbx = NULL;
struct x509_certificate *cert = NULL;
void *new_efi = NULL;
size_t new_efi_size;
bool ret = false;
if (!efi_secure_boot_enabled())
return true;
/*
* Size must be 8-byte aligned and the trailing bytes must be
* zero'ed. Otherwise hash value may be incorrect.
*/
if (efi_size & 0x7) {
new_efi_size = (efi_size + 0x7) & ~0x7ULL;
new_efi = calloc(new_efi_size, 1);
if (!new_efi)
return false;
memcpy(new_efi, efi, efi_size);
efi = new_efi;
efi_size = new_efi_size;
}
if (!efi_image_parse(efi, efi_size, &regs, &wincerts,
&wincerts_len)) {
debug("Parsing PE executable image failed\n");
goto err;
}
if (!wincerts) {
/* The image is not signed */
ret = efi_image_unsigned_authenticate(regs);
goto err;
}
/*
* verify signature using db and dbx
*/
db = efi_sigstore_parse_sigdb(L"db");
if (!db) {
debug("Getting signature database(db) failed\n");
goto err;
}
dbx = efi_sigstore_parse_sigdb(L"dbx");
if (!dbx) {
debug("Getting signature database(dbx) failed\n");
goto err;
}
/* go through WIN_CERTIFICATE list */
for (wincert = wincerts;
(void *)wincert < (void *)wincerts + wincerts_len;
wincert = (void *)wincert + ALIGN(wincert->dwLength, 8)) {
if (wincert->dwLength < sizeof(*wincert)) {
debug("%s: dwLength too small: %u < %zu\n",
__func__, wincert->dwLength, sizeof(*wincert));
goto err;
}
msg = pkcs7_parse_message((void *)wincert + sizeof(*wincert),
wincert->dwLength - sizeof(*wincert));
if (IS_ERR(msg)) {
debug("Parsing image's signature failed\n");
msg = NULL;
goto err;
}
/* try black-list first */
if (efi_signature_verify_with_sigdb(regs, msg, dbx, NULL)) {
debug("Signature was rejected by \"dbx\"\n");
goto err;
}
if (!efi_signature_verify_signers(msg, dbx)) {
debug("Signer was rejected by \"dbx\"\n");
goto err;
} else {
ret = true;
}
/* try white-list */
if (!efi_signature_verify_with_sigdb(regs, msg, db, &cert)) {
debug("Verifying signature with \"db\" failed\n");
goto err;
} else {
ret = true;
}
if (!efi_signature_verify_cert(cert, dbx)) {
debug("Certificate was rejected by \"dbx\"\n");
goto err;
} else {
ret = true;
}
}
err:
x509_free_certificate(cert);
efi_sigstore_free(db);
efi_sigstore_free(dbx);
pkcs7_free_message(msg);
free(regs);
free(new_efi);
return ret;
}
#else
static bool efi_image_authenticate(void *efi, size_t efi_size)
{
return true;
}
#endif /* CONFIG_EFI_SECURE_BOOT */
/**
* efi_load_pe() - relocate EFI binary
*
* This function loads all sections from a PE binary into a newly reserved
* piece of memory. On success the entry point is returned as handle->entry.
*
* @handle: loaded image handle
* @efi: pointer to the EFI binary
* @efi_size: size of @efi binary
* @loaded_image_info: loaded image protocol
* Return: status code
*/
efi_status_t efi_load_pe(struct efi_loaded_image_obj *handle,
void *efi, size_t efi_size,
struct efi_loaded_image *loaded_image_info)
{
IMAGE_NT_HEADERS32 *nt;
IMAGE_DOS_HEADER *dos;
IMAGE_SECTION_HEADER *sections;
int num_sections;
void *efi_reloc;
int i;
const IMAGE_BASE_RELOCATION *rel;
unsigned long rel_size;
int rel_idx = IMAGE_DIRECTORY_ENTRY_BASERELOC;
uint64_t image_base;
unsigned long virt_size = 0;
int supported = 0;
efi_status_t ret;
/* Sanity check for a file header */
if (efi_size < sizeof(*dos)) {
printf("%s: Truncated DOS Header\n", __func__);
ret = EFI_LOAD_ERROR;
goto err;
}
dos = efi;
if (dos->e_magic != IMAGE_DOS_SIGNATURE) {
printf("%s: Invalid DOS Signature\n", __func__);
ret = EFI_LOAD_ERROR;
goto err;
}
/*
* Check if the image section header fits into the file. Knowing that at
* least one section header follows we only need to check for the length
* of the 64bit header which is longer than the 32bit header.
*/
if (efi_size < dos->e_lfanew + sizeof(IMAGE_NT_HEADERS64)) {
printf("%s: Invalid offset for Extended Header\n", __func__);
ret = EFI_LOAD_ERROR;
goto err;
}
nt = (void *) ((char *)efi + dos->e_lfanew);
if (nt->Signature != IMAGE_NT_SIGNATURE) {
printf("%s: Invalid NT Signature\n", __func__);
ret = EFI_LOAD_ERROR;
goto err;
}
for (i = 0; machines[i]; i++)
if (machines[i] == nt->FileHeader.Machine) {
supported = 1;
break;
}
if (!supported) {
printf("%s: Machine type 0x%04x is not supported\n",
__func__, nt->FileHeader.Machine);
ret = EFI_LOAD_ERROR;
goto err;
}
num_sections = nt->FileHeader.NumberOfSections;
sections = (void *)&nt->OptionalHeader +
nt->FileHeader.SizeOfOptionalHeader;
if (efi_size < ((void *)sections + sizeof(sections[0]) * num_sections
- efi)) {
printf("%s: Invalid number of sections: %d\n",
__func__, num_sections);
ret = EFI_LOAD_ERROR;
goto err;
}
/* Authenticate an image */
if (efi_image_authenticate(efi, efi_size))
handle->auth_status = EFI_IMAGE_AUTH_PASSED;
else
handle->auth_status = EFI_IMAGE_AUTH_FAILED;
/* Calculate upper virtual address boundary */
for (i = num_sections - 1; i >= 0; i--) {
IMAGE_SECTION_HEADER *sec = &sections[i];
virt_size = max_t(unsigned long, virt_size,
sec->VirtualAddress + sec->Misc.VirtualSize);
}
/* Read 32/64bit specific header bits */
if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
IMAGE_NT_HEADERS64 *nt64 = (void *)nt;
IMAGE_OPTIONAL_HEADER64 *opt = &nt64->OptionalHeader;
image_base = opt->ImageBase;
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
handle->image_type = opt->Subsystem;
efi_reloc = efi_alloc(virt_size,
loaded_image_info->image_code_type);
if (!efi_reloc) {
printf("%s: Could not allocate %lu bytes\n",
__func__, virt_size);
ret = EFI_OUT_OF_RESOURCES;
goto err;
}
handle->entry = efi_reloc + opt->AddressOfEntryPoint;
rel_size = opt->DataDirectory[rel_idx].Size;
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
virt_size = ALIGN(virt_size, opt->SectionAlignment);
} else if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
IMAGE_OPTIONAL_HEADER32 *opt = &nt->OptionalHeader;
image_base = opt->ImageBase;
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
handle->image_type = opt->Subsystem;
efi_reloc = efi_alloc(virt_size,
loaded_image_info->image_code_type);
if (!efi_reloc) {
printf("%s: Could not allocate %lu bytes\n",
__func__, virt_size);
ret = EFI_OUT_OF_RESOURCES;
goto err;
}
handle->entry = efi_reloc + opt->AddressOfEntryPoint;
rel_size = opt->DataDirectory[rel_idx].Size;
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
virt_size = ALIGN(virt_size, opt->SectionAlignment);
} else {
printf("%s: Invalid optional header magic %x\n", __func__,
nt->OptionalHeader.Magic);
ret = EFI_LOAD_ERROR;
goto err;
}
/* Copy PE headers */
memcpy(efi_reloc, efi,
sizeof(*dos)
+ sizeof(*nt)
+ nt->FileHeader.SizeOfOptionalHeader
+ num_sections * sizeof(IMAGE_SECTION_HEADER));
/* Load sections into RAM */
for (i = num_sections - 1; i >= 0; i--) {
IMAGE_SECTION_HEADER *sec = &sections[i];
memset(efi_reloc + sec->VirtualAddress, 0,
sec->Misc.VirtualSize);
memcpy(efi_reloc + sec->VirtualAddress,
efi + sec->PointerToRawData,
sec->SizeOfRawData);
}
/* Run through relocations */
if (efi_loader_relocate(rel, rel_size, efi_reloc,
(unsigned long)image_base) != EFI_SUCCESS) {
efi_free_pages((uintptr_t) efi_reloc,
(virt_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT);
ret = EFI_LOAD_ERROR;
goto err;
}
/* Flush cache */
flush_cache((ulong)efi_reloc,
ALIGN(virt_size, EFI_CACHELINE_SIZE));
invalidate_icache_all();
/* Populate the loaded image interface bits */
loaded_image_info->image_base = efi_reloc;
loaded_image_info->image_size = virt_size;
if (handle->auth_status == EFI_IMAGE_AUTH_PASSED)
return EFI_SUCCESS;
else
return EFI_SECURITY_VIOLATION;
err:
return ret;
}