u-boot-brain/arch/arm/cpu/armv8/cache_v8.c
Sergey Temerkhanov 94f7ff36e5 armv8: New MMU setup code allowing to use 48+ bits PA/VA
This patch adds code which sets up 2-level page tables on ARM64 thus
extending available VA space. CPUs implementing 64k translation
granule are able to use direct PA-VA mapping of the whole 48 bit
address space.
It also adds the ability to reset the SCTRL register at the very beginning
of execution to avoid interference from stale mappings set up by early
firmware/loaders/etc.

Signed-off-by: Sergey Temerkhanov <s.temerkhanov@gmail.com>
Signed-off-by: Radha Mohan Chintakuntla <rchintakuntla@cavium.com>
2016-01-19 22:25:36 +00:00

342 lines
6.8 KiB
C

/*
* (C) Copyright 2013
* David Feng <fenghua@phytium.com.cn>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_SYS_DCACHE_OFF
#ifdef CONFIG_SYS_FULL_VA
static void set_ptl1_entry(u64 index, u64 ptl2_entry)
{
u64 *pgd = (u64 *)gd->arch.tlb_addr;
u64 value;
value = ptl2_entry | PTL1_TYPE_TABLE;
pgd[index] = value;
}
static void set_ptl2_block(u64 ptl1, u64 bfn, u64 address, u64 memory_attrs)
{
u64 *pmd = (u64 *)ptl1;
u64 value;
value = address | PTL2_TYPE_BLOCK | PTL2_BLOCK_AF;
value |= memory_attrs;
pmd[bfn] = value;
}
static struct mm_region mem_map[] = CONFIG_SYS_MEM_MAP;
#define PTL1_ENTRIES CONFIG_SYS_PTL1_ENTRIES
#define PTL2_ENTRIES CONFIG_SYS_PTL2_ENTRIES
static void setup_pgtables(void)
{
int l1_e, l2_e;
unsigned long pmd = 0;
unsigned long address;
/* Setup the PMD pointers */
for (l1_e = 0; l1_e < CONFIG_SYS_MEM_MAP_SIZE; l1_e++) {
gd->arch.pmd_addr[l1_e] = gd->arch.tlb_addr +
PTL1_ENTRIES * sizeof(u64);
gd->arch.pmd_addr[l1_e] += PTL2_ENTRIES * sizeof(u64) * l1_e;
gd->arch.pmd_addr[l1_e] = ALIGN(gd->arch.pmd_addr[l1_e],
0x10000UL);
}
/* Setup the page tables */
for (l1_e = 0; l1_e < PTL1_ENTRIES; l1_e++) {
if (mem_map[pmd].base ==
(uintptr_t)l1_e << PTL2_BITS) {
set_ptl1_entry(l1_e, gd->arch.pmd_addr[pmd]);
for (l2_e = 0; l2_e < PTL2_ENTRIES; l2_e++) {
address = mem_map[pmd].base
+ (uintptr_t)l2_e * BLOCK_SIZE;
set_ptl2_block(gd->arch.pmd_addr[pmd], l2_e,
address, mem_map[pmd].attrs);
}
pmd++;
} else {
set_ptl1_entry(l1_e, 0);
}
}
}
#else
inline void set_pgtable_section(u64 *page_table, u64 index, u64 section,
u64 memory_type, u64 attribute)
{
u64 value;
value = section | PMD_TYPE_SECT | PMD_SECT_AF;
value |= PMD_ATTRINDX(memory_type);
value |= attribute;
page_table[index] = value;
}
inline void set_pgtable_table(u64 *page_table, u64 index, u64 *table_addr)
{
u64 value;
value = (u64)table_addr | PMD_TYPE_TABLE;
page_table[index] = value;
}
#endif
/* to activate the MMU we need to set up virtual memory */
__weak void mmu_setup(void)
{
#ifndef CONFIG_SYS_FULL_VA
bd_t *bd = gd->bd;
u64 *page_table = (u64 *)gd->arch.tlb_addr, i, j;
#endif
int el;
#ifdef CONFIG_SYS_FULL_VA
unsigned long coreid = read_mpidr() & CONFIG_COREID_MASK;
/* Set up page tables only on BSP */
if (coreid == BSP_COREID)
setup_pgtables();
#else
/* Setup an identity-mapping for all spaces */
for (i = 0; i < (PGTABLE_SIZE >> 3); i++) {
set_pgtable_section(page_table, i, i << SECTION_SHIFT,
MT_DEVICE_NGNRNE, PMD_SECT_NON_SHARE);
}
/* Setup an identity-mapping for all RAM space */
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
ulong start = bd->bi_dram[i].start;
ulong end = bd->bi_dram[i].start + bd->bi_dram[i].size;
for (j = start >> SECTION_SHIFT;
j < end >> SECTION_SHIFT; j++) {
set_pgtable_section(page_table, j, j << SECTION_SHIFT,
MT_NORMAL, PMD_SECT_NON_SHARE);
}
}
#endif
/* load TTBR0 */
el = current_el();
if (el == 1) {
set_ttbr_tcr_mair(el, gd->arch.tlb_addr,
TCR_EL1_RSVD | TCR_FLAGS | TCR_EL1_IPS_BITS,
MEMORY_ATTRIBUTES);
} else if (el == 2) {
set_ttbr_tcr_mair(el, gd->arch.tlb_addr,
TCR_EL2_RSVD | TCR_FLAGS | TCR_EL2_IPS_BITS,
MEMORY_ATTRIBUTES);
} else {
set_ttbr_tcr_mair(el, gd->arch.tlb_addr,
TCR_EL3_RSVD | TCR_FLAGS | TCR_EL3_IPS_BITS,
MEMORY_ATTRIBUTES);
}
/* enable the mmu */
set_sctlr(get_sctlr() | CR_M);
}
/*
* Performs a invalidation of the entire data cache at all levels
*/
void invalidate_dcache_all(void)
{
__asm_invalidate_dcache_all();
}
/*
* Performs a clean & invalidation of the entire data cache at all levels.
* This function needs to be inline to avoid using stack.
* __asm_flush_l3_cache return status of timeout
*/
inline void flush_dcache_all(void)
{
int ret;
__asm_flush_dcache_all();
ret = __asm_flush_l3_cache();
if (ret)
debug("flushing dcache returns 0x%x\n", ret);
else
debug("flushing dcache successfully.\n");
}
/*
* Invalidates range in all levels of D-cache/unified cache
*/
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
__asm_flush_dcache_range(start, stop);
}
/*
* Flush range(clean & invalidate) from all levels of D-cache/unified cache
*/
void flush_dcache_range(unsigned long start, unsigned long stop)
{
__asm_flush_dcache_range(start, stop);
}
void dcache_enable(void)
{
/* The data cache is not active unless the mmu is enabled */
if (!(get_sctlr() & CR_M)) {
invalidate_dcache_all();
__asm_invalidate_tlb_all();
mmu_setup();
}
set_sctlr(get_sctlr() | CR_C);
}
void dcache_disable(void)
{
uint32_t sctlr;
sctlr = get_sctlr();
/* if cache isn't enabled no need to disable */
if (!(sctlr & CR_C))
return;
set_sctlr(sctlr & ~(CR_C|CR_M));
flush_dcache_all();
__asm_invalidate_tlb_all();
}
int dcache_status(void)
{
return (get_sctlr() & CR_C) != 0;
}
u64 *__weak arch_get_page_table(void) {
puts("No page table offset defined\n");
return NULL;
}
#ifndef CONFIG_SYS_FULL_VA
void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
enum dcache_option option)
{
u64 *page_table = arch_get_page_table();
u64 upto, end;
if (page_table == NULL)
return;
end = ALIGN(start + size, (1 << MMU_SECTION_SHIFT)) >>
MMU_SECTION_SHIFT;
start = start >> MMU_SECTION_SHIFT;
for (upto = start; upto < end; upto++) {
page_table[upto] &= ~PMD_ATTRINDX_MASK;
page_table[upto] |= PMD_ATTRINDX(option);
}
asm volatile("dsb sy");
__asm_invalidate_tlb_all();
asm volatile("dsb sy");
asm volatile("isb");
start = start << MMU_SECTION_SHIFT;
end = end << MMU_SECTION_SHIFT;
flush_dcache_range(start, end);
asm volatile("dsb sy");
}
#endif
#else /* CONFIG_SYS_DCACHE_OFF */
void invalidate_dcache_all(void)
{
}
void flush_dcache_all(void)
{
}
void dcache_enable(void)
{
}
void dcache_disable(void)
{
}
int dcache_status(void)
{
return 0;
}
void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
enum dcache_option option)
{
}
#endif /* CONFIG_SYS_DCACHE_OFF */
#ifndef CONFIG_SYS_ICACHE_OFF
void icache_enable(void)
{
__asm_invalidate_icache_all();
set_sctlr(get_sctlr() | CR_I);
}
void icache_disable(void)
{
set_sctlr(get_sctlr() & ~CR_I);
}
int icache_status(void)
{
return (get_sctlr() & CR_I) != 0;
}
void invalidate_icache_all(void)
{
__asm_invalidate_icache_all();
}
#else /* CONFIG_SYS_ICACHE_OFF */
void icache_enable(void)
{
}
void icache_disable(void)
{
}
int icache_status(void)
{
return 0;
}
void invalidate_icache_all(void)
{
}
#endif /* CONFIG_SYS_ICACHE_OFF */
/*
* Enable dCache & iCache, whether cache is actually enabled
* depend on CONFIG_SYS_DCACHE_OFF and CONFIG_SYS_ICACHE_OFF
*/
void __weak enable_caches(void)
{
icache_enable();
dcache_enable();
}