u-boot-brain/arch/arm/cpu/armv7/vf610/generic.c
Stefan Agner d7255e8ddb ARM: vf610: use strcpy for soc environment variable
To create the soc environment variable we concatenate two strings
on the stack. So far, strcat has been used for the first string as
well as for the second string. Since the variable on the stack is
not initialized, the first strcat may not start using the first
entry in the character array. This then could lead to an buffer
overflow on the stack.

Signed-off-by: Stefan Agner <stefan.agner@toradex.com>
Acked-by: Marcel Ziswiler <marcel.ziswiler@toradex.com>
2016-10-07 15:56:52 +02:00

374 lines
7.4 KiB
C

/*
* Copyright 2013 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/crm_regs.h>
#include <asm/imx-common/sys_proto.h>
#include <netdev.h>
#ifdef CONFIG_FSL_ESDHC
#include <fsl_esdhc.h>
#endif
#ifdef CONFIG_FSL_ESDHC
DECLARE_GLOBAL_DATA_PTR;
#endif
static char soc_type[] = "xx0";
#ifdef CONFIG_MXC_OCOTP
void enable_ocotp_clk(unsigned char enable)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 reg;
reg = readl(&ccm->ccgr6);
if (enable)
reg |= CCM_CCGR6_OCOTP_CTRL_MASK;
else
reg &= ~CCM_CCGR6_OCOTP_CTRL_MASK;
writel(reg, &ccm->ccgr6);
}
#endif
static u32 get_mcu_main_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_ccsr, ccm_cacrr, armclk_div;
u32 sysclk_sel, pll_pfd_sel = 0;
u32 freq = 0;
ccm_ccsr = readl(&ccm->ccsr);
sysclk_sel = ccm_ccsr & CCM_CCSR_SYS_CLK_SEL_MASK;
sysclk_sel >>= CCM_CCSR_SYS_CLK_SEL_OFFSET;
ccm_cacrr = readl(&ccm->cacrr);
armclk_div = ccm_cacrr & CCM_CACRR_ARM_CLK_DIV_MASK;
armclk_div >>= CCM_CACRR_ARM_CLK_DIV_OFFSET;
armclk_div += 1;
switch (sysclk_sel) {
case 0:
freq = FASE_CLK_FREQ;
break;
case 1:
freq = SLOW_CLK_FREQ;
break;
case 2:
pll_pfd_sel = ccm_ccsr & CCM_CCSR_PLL2_PFD_CLK_SEL_MASK;
pll_pfd_sel >>= CCM_CCSR_PLL2_PFD_CLK_SEL_OFFSET;
if (pll_pfd_sel == 0)
freq = PLL2_MAIN_FREQ;
else if (pll_pfd_sel == 1)
freq = PLL2_PFD1_FREQ;
else if (pll_pfd_sel == 2)
freq = PLL2_PFD2_FREQ;
else if (pll_pfd_sel == 3)
freq = PLL2_PFD3_FREQ;
else if (pll_pfd_sel == 4)
freq = PLL2_PFD4_FREQ;
break;
case 3:
freq = PLL2_MAIN_FREQ;
break;
case 4:
pll_pfd_sel = ccm_ccsr & CCM_CCSR_PLL1_PFD_CLK_SEL_MASK;
pll_pfd_sel >>= CCM_CCSR_PLL1_PFD_CLK_SEL_OFFSET;
if (pll_pfd_sel == 0)
freq = PLL1_MAIN_FREQ;
else if (pll_pfd_sel == 1)
freq = PLL1_PFD1_FREQ;
else if (pll_pfd_sel == 2)
freq = PLL1_PFD2_FREQ;
else if (pll_pfd_sel == 3)
freq = PLL1_PFD3_FREQ;
else if (pll_pfd_sel == 4)
freq = PLL1_PFD4_FREQ;
break;
case 5:
freq = PLL3_MAIN_FREQ;
break;
default:
printf("unsupported system clock select\n");
}
return freq / armclk_div;
}
static u32 get_bus_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_cacrr, busclk_div;
ccm_cacrr = readl(&ccm->cacrr);
busclk_div = ccm_cacrr & CCM_CACRR_BUS_CLK_DIV_MASK;
busclk_div >>= CCM_CACRR_BUS_CLK_DIV_OFFSET;
busclk_div += 1;
return get_mcu_main_clk() / busclk_div;
}
static u32 get_ipg_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_cacrr, ipgclk_div;
ccm_cacrr = readl(&ccm->cacrr);
ipgclk_div = ccm_cacrr & CCM_CACRR_IPG_CLK_DIV_MASK;
ipgclk_div >>= CCM_CACRR_IPG_CLK_DIV_OFFSET;
ipgclk_div += 1;
return get_bus_clk() / ipgclk_div;
}
static u32 get_uart_clk(void)
{
return get_ipg_clk();
}
static u32 get_sdhc_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_cscmr1, ccm_cscdr2, sdhc_clk_sel, sdhc_clk_div;
u32 freq = 0;
ccm_cscmr1 = readl(&ccm->cscmr1);
sdhc_clk_sel = ccm_cscmr1 & CCM_CSCMR1_ESDHC1_CLK_SEL_MASK;
sdhc_clk_sel >>= CCM_CSCMR1_ESDHC1_CLK_SEL_OFFSET;
ccm_cscdr2 = readl(&ccm->cscdr2);
sdhc_clk_div = ccm_cscdr2 & CCM_CSCDR2_ESDHC1_CLK_DIV_MASK;
sdhc_clk_div >>= CCM_CSCDR2_ESDHC1_CLK_DIV_OFFSET;
sdhc_clk_div += 1;
switch (sdhc_clk_sel) {
case 0:
freq = PLL3_MAIN_FREQ;
break;
case 1:
freq = PLL3_PFD3_FREQ;
break;
case 2:
freq = PLL1_PFD3_FREQ;
break;
case 3:
freq = get_bus_clk();
break;
}
return freq / sdhc_clk_div;
}
u32 get_fec_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_cscmr2, rmii_clk_sel;
u32 freq = 0;
ccm_cscmr2 = readl(&ccm->cscmr2);
rmii_clk_sel = ccm_cscmr2 & CCM_CSCMR2_RMII_CLK_SEL_MASK;
rmii_clk_sel >>= CCM_CSCMR2_RMII_CLK_SEL_OFFSET;
switch (rmii_clk_sel) {
case 0:
freq = ENET_EXTERNAL_CLK;
break;
case 1:
freq = AUDIO_EXTERNAL_CLK;
break;
case 2:
freq = PLL5_MAIN_FREQ;
break;
case 3:
freq = PLL5_MAIN_FREQ / 2;
break;
}
return freq;
}
static u32 get_i2c_clk(void)
{
return get_ipg_clk();
}
static u32 get_dspi_clk(void)
{
return get_ipg_clk();
}
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_mcu_main_clk();
case MXC_BUS_CLK:
return get_bus_clk();
case MXC_IPG_CLK:
return get_ipg_clk();
case MXC_UART_CLK:
return get_uart_clk();
case MXC_ESDHC_CLK:
return get_sdhc_clk();
case MXC_FEC_CLK:
return get_fec_clk();
case MXC_I2C_CLK:
return get_i2c_clk();
case MXC_DSPI_CLK:
return get_dspi_clk();
default:
break;
}
return -1;
}
/* Dump some core clocks */
int do_vf610_showclocks(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
printf("\n");
printf("cpu clock : %8d MHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000);
printf("bus clock : %8d MHz\n", mxc_get_clock(MXC_BUS_CLK) / 1000000);
printf("ipg clock : %8d MHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000000);
return 0;
}
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_vf610_showclocks,
"display clocks",
""
);
#ifdef CONFIG_FEC_MXC
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[4];
struct fuse_bank4_regs *fuse =
(struct fuse_bank4_regs *)bank->fuse_regs;
u32 value = readl(&fuse->mac_addr0);
mac[0] = (value >> 8);
mac[1] = value;
value = readl(&fuse->mac_addr1);
mac[2] = value >> 24;
mac[3] = value >> 16;
mac[4] = value >> 8;
mac[5] = value;
}
#endif
u32 get_cpu_rev(void)
{
return MXC_CPU_VF610 << 12;
}
#if defined(CONFIG_DISPLAY_CPUINFO)
static char *get_reset_cause(void)
{
u32 cause;
struct src *src_regs = (struct src *)SRC_BASE_ADDR;
cause = readl(&src_regs->srsr);
writel(cause, &src_regs->srsr);
if (cause & SRC_SRSR_POR_RST)
return "POWER ON RESET";
else if (cause & SRC_SRSR_WDOG_A5)
return "WDOG A5";
else if (cause & SRC_SRSR_WDOG_M4)
return "WDOG M4";
else if (cause & SRC_SRSR_JTAG_RST)
return "JTAG HIGH-Z";
else if (cause & SRC_SRSR_SW_RST)
return "SW RESET";
else if (cause & SRC_SRSR_RESETB)
return "EXTERNAL RESET";
else
return "unknown reset";
}
int print_cpuinfo(void)
{
printf("CPU: Freescale Vybrid VF%s at %d MHz\n",
soc_type, mxc_get_clock(MXC_ARM_CLK) / 1000000);
printf("Reset cause: %s\n", get_reset_cause());
return 0;
}
#endif
int arch_cpu_init(void)
{
struct mscm *mscm = (struct mscm *)MSCM_BASE_ADDR;
soc_type[0] = mscm->cpxcount ? '6' : '5'; /*Dual Core => VF6x0 */
soc_type[1] = mscm->cpxcfg1 ? '1' : '0'; /* L2 Cache => VFx10 */
return 0;
}
#ifdef CONFIG_ARCH_MISC_INIT
int arch_misc_init(void)
{
char soc[6];
strcpy(soc, "vf");
strcat(soc, soc_type);
setenv("soc", soc);
return 0;
}
#endif
int cpu_eth_init(bd_t *bis)
{
int rc = -ENODEV;
#if defined(CONFIG_FEC_MXC)
rc = fecmxc_initialize(bis);
#endif
return rc;
}
#ifdef CONFIG_FSL_ESDHC
int cpu_mmc_init(bd_t *bis)
{
return fsl_esdhc_mmc_init(bis);
}
#endif
int get_clocks(void)
{
#ifdef CONFIG_FSL_ESDHC
gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
#endif
return 0;
}
#ifndef CONFIG_SYS_DCACHE_OFF
void enable_caches(void)
{
#if defined(CONFIG_SYS_ARM_CACHE_WRITETHROUGH)
enum dcache_option option = DCACHE_WRITETHROUGH;
#else
enum dcache_option option = DCACHE_WRITEBACK;
#endif
dcache_enable();
icache_enable();
/* Enable caching on OCRAM */
mmu_set_region_dcache_behaviour(IRAM_BASE_ADDR, IRAM_SIZE, option);
}
#endif