u-boot-brain/drivers/core/regmap.c
Pratyush Yadav d8babb9598 regmap: Allow devices to specify regmap range start and size in config
Some devices need to calculate the regmap base address at runtime. This
makes it impossible to use device tree to get the regmap base. Instead,
allow devices to specify it in the regmap config. This will create a
regmap with a single range that corresponds to the start and size given
by the driver.

Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-30 11:55:22 -04:00

550 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2015 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <log.h>
#include <linux/libfdt.h>
#include <malloc.h>
#include <mapmem.h>
#include <regmap.h>
#include <asm/io.h>
#include <dm/of_addr.h>
#include <dm/devres.h>
#include <linux/ioport.h>
#include <linux/compat.h>
#include <linux/err.h>
DECLARE_GLOBAL_DATA_PTR;
/**
* regmap_alloc() - Allocate a regmap with a given number of ranges.
*
* @count: Number of ranges to be allocated for the regmap.
*
* The default regmap width is set to REGMAP_SIZE_32. Callers can override it
* if they need.
*
* Return: A pointer to the newly allocated regmap, or NULL on error.
*/
static struct regmap *regmap_alloc(int count)
{
struct regmap *map;
size_t size = sizeof(*map) + sizeof(map->ranges[0]) * count;
map = calloc(1, size);
if (!map)
return NULL;
map->range_count = count;
map->width = REGMAP_SIZE_32;
return map;
}
#if CONFIG_IS_ENABLED(OF_PLATDATA)
int regmap_init_mem_platdata(struct udevice *dev, fdt_val_t *reg, int count,
struct regmap **mapp)
{
struct regmap_range *range;
struct regmap *map;
map = regmap_alloc(count);
if (!map)
return -ENOMEM;
for (range = map->ranges; count > 0; reg += 2, range++, count--) {
range->start = *reg;
range->size = reg[1];
}
*mapp = map;
return 0;
}
#else
/**
* init_range() - Initialize a single range of a regmap
* @node: Device node that will use the map in question
* @range: Pointer to a regmap_range structure that will be initialized
* @addr_len: The length of the addr parts of the reg property
* @size_len: The length of the size parts of the reg property
* @index: The index of the range to initialize
*
* This function will read the necessary 'reg' information from the device tree
* (the 'addr' part, and the 'length' part), and initialize the range in
* quesion.
*
* Return: 0 if OK, -ve on error
*/
static int init_range(ofnode node, struct regmap_range *range, int addr_len,
int size_len, int index)
{
fdt_size_t sz;
struct resource r;
if (of_live_active()) {
int ret;
ret = of_address_to_resource(ofnode_to_np(node),
index, &r);
if (ret) {
debug("%s: Could not read resource of range %d (ret = %d)\n",
ofnode_get_name(node), index, ret);
return ret;
}
range->start = r.start;
range->size = r.end - r.start + 1;
} else {
int offset = ofnode_to_offset(node);
range->start = fdtdec_get_addr_size_fixed(gd->fdt_blob, offset,
"reg", index,
addr_len, size_len,
&sz, true);
if (range->start == FDT_ADDR_T_NONE) {
debug("%s: Could not read start of range %d\n",
ofnode_get_name(node), index);
return -EINVAL;
}
range->size = sz;
}
return 0;
}
int regmap_init_mem_index(ofnode node, struct regmap **mapp, int index)
{
struct regmap *map;
int addr_len, size_len;
int ret;
addr_len = ofnode_read_simple_addr_cells(ofnode_get_parent(node));
if (addr_len < 0) {
debug("%s: Error while reading the addr length (ret = %d)\n",
ofnode_get_name(node), addr_len);
return addr_len;
}
size_len = ofnode_read_simple_size_cells(ofnode_get_parent(node));
if (size_len < 0) {
debug("%s: Error while reading the size length: (ret = %d)\n",
ofnode_get_name(node), size_len);
return size_len;
}
map = regmap_alloc(1);
if (!map)
return -ENOMEM;
ret = init_range(node, map->ranges, addr_len, size_len, index);
if (ret)
goto err;
if (ofnode_read_bool(node, "little-endian"))
map->endianness = REGMAP_LITTLE_ENDIAN;
else if (ofnode_read_bool(node, "big-endian"))
map->endianness = REGMAP_BIG_ENDIAN;
else if (ofnode_read_bool(node, "native-endian"))
map->endianness = REGMAP_NATIVE_ENDIAN;
else /* Default: native endianness */
map->endianness = REGMAP_NATIVE_ENDIAN;
*mapp = map;
return 0;
err:
regmap_uninit(map);
return ret;
}
int regmap_init_mem_range(ofnode node, ulong r_start, ulong r_size,
struct regmap **mapp)
{
struct regmap *map;
struct regmap_range *range;
map = regmap_alloc(1);
if (!map)
return -ENOMEM;
range = &map->ranges[0];
range->start = r_start;
range->size = r_size;
if (ofnode_read_bool(node, "little-endian"))
map->endianness = REGMAP_LITTLE_ENDIAN;
else if (ofnode_read_bool(node, "big-endian"))
map->endianness = REGMAP_BIG_ENDIAN;
else if (ofnode_read_bool(node, "native-endian"))
map->endianness = REGMAP_NATIVE_ENDIAN;
else /* Default: native endianness */
map->endianness = REGMAP_NATIVE_ENDIAN;
*mapp = map;
return 0;
}
int regmap_init_mem(ofnode node, struct regmap **mapp)
{
struct regmap_range *range;
struct regmap *map;
int count;
int addr_len, size_len, both_len;
int len;
int index;
int ret;
addr_len = ofnode_read_simple_addr_cells(ofnode_get_parent(node));
if (addr_len < 0) {
debug("%s: Error while reading the addr length (ret = %d)\n",
ofnode_get_name(node), addr_len);
return addr_len;
}
size_len = ofnode_read_simple_size_cells(ofnode_get_parent(node));
if (size_len < 0) {
debug("%s: Error while reading the size length: (ret = %d)\n",
ofnode_get_name(node), size_len);
return size_len;
}
both_len = addr_len + size_len;
if (!both_len) {
debug("%s: Both addr and size length are zero\n",
ofnode_get_name(node));
return -EINVAL;
}
len = ofnode_read_size(node, "reg");
if (len < 0) {
debug("%s: Error while reading reg size (ret = %d)\n",
ofnode_get_name(node), len);
return len;
}
len /= sizeof(fdt32_t);
count = len / both_len;
if (!count) {
debug("%s: Not enough data in reg property\n",
ofnode_get_name(node));
return -EINVAL;
}
map = regmap_alloc(count);
if (!map)
return -ENOMEM;
for (range = map->ranges, index = 0; count > 0;
count--, range++, index++) {
ret = init_range(node, range, addr_len, size_len, index);
if (ret)
goto err;
}
if (ofnode_read_bool(node, "little-endian"))
map->endianness = REGMAP_LITTLE_ENDIAN;
else if (ofnode_read_bool(node, "big-endian"))
map->endianness = REGMAP_BIG_ENDIAN;
else if (ofnode_read_bool(node, "native-endian"))
map->endianness = REGMAP_NATIVE_ENDIAN;
else /* Default: native endianness */
map->endianness = REGMAP_NATIVE_ENDIAN;
*mapp = map;
return 0;
err:
regmap_uninit(map);
return ret;
}
static void devm_regmap_release(struct udevice *dev, void *res)
{
regmap_uninit(*(struct regmap **)res);
}
struct regmap *devm_regmap_init(struct udevice *dev,
const struct regmap_bus *bus,
void *bus_context,
const struct regmap_config *config)
{
int rc;
struct regmap **mapp, *map;
mapp = devres_alloc(devm_regmap_release, sizeof(struct regmap *),
__GFP_ZERO);
if (unlikely(!mapp))
return ERR_PTR(-ENOMEM);
if (config && config->r_size != 0)
rc = regmap_init_mem_range(dev_ofnode(dev), config->r_start,
config->r_size, mapp);
else
rc = regmap_init_mem(dev_ofnode(dev), mapp);
if (rc)
return ERR_PTR(rc);
map = *mapp;
if (config) {
map->width = config->width;
map->reg_offset_shift = config->reg_offset_shift;
}
devres_add(dev, mapp);
return *mapp;
}
#endif
void *regmap_get_range(struct regmap *map, unsigned int range_num)
{
struct regmap_range *range;
if (range_num >= map->range_count)
return NULL;
range = &map->ranges[range_num];
return map_sysmem(range->start, range->size);
}
int regmap_uninit(struct regmap *map)
{
free(map);
return 0;
}
static inline u8 __read_8(u8 *addr, enum regmap_endianness_t endianness)
{
return readb(addr);
}
static inline u16 __read_16(u16 *addr, enum regmap_endianness_t endianness)
{
switch (endianness) {
case REGMAP_LITTLE_ENDIAN:
return in_le16(addr);
case REGMAP_BIG_ENDIAN:
return in_be16(addr);
case REGMAP_NATIVE_ENDIAN:
return readw(addr);
}
return readw(addr);
}
static inline u32 __read_32(u32 *addr, enum regmap_endianness_t endianness)
{
switch (endianness) {
case REGMAP_LITTLE_ENDIAN:
return in_le32(addr);
case REGMAP_BIG_ENDIAN:
return in_be32(addr);
case REGMAP_NATIVE_ENDIAN:
return readl(addr);
}
return readl(addr);
}
#if defined(in_le64) && defined(in_be64) && defined(readq)
static inline u64 __read_64(u64 *addr, enum regmap_endianness_t endianness)
{
switch (endianness) {
case REGMAP_LITTLE_ENDIAN:
return in_le64(addr);
case REGMAP_BIG_ENDIAN:
return in_be64(addr);
case REGMAP_NATIVE_ENDIAN:
return readq(addr);
}
return readq(addr);
}
#endif
int regmap_raw_read_range(struct regmap *map, uint range_num, uint offset,
void *valp, size_t val_len)
{
struct regmap_range *range;
void *ptr;
if (range_num >= map->range_count) {
debug("%s: range index %d larger than range count\n",
__func__, range_num);
return -ERANGE;
}
range = &map->ranges[range_num];
offset <<= map->reg_offset_shift;
if (offset + val_len > range->size) {
debug("%s: offset/size combination invalid\n", __func__);
return -ERANGE;
}
ptr = map_physmem(range->start + offset, val_len, MAP_NOCACHE);
switch (val_len) {
case REGMAP_SIZE_8:
*((u8 *)valp) = __read_8(ptr, map->endianness);
break;
case REGMAP_SIZE_16:
*((u16 *)valp) = __read_16(ptr, map->endianness);
break;
case REGMAP_SIZE_32:
*((u32 *)valp) = __read_32(ptr, map->endianness);
break;
#if defined(in_le64) && defined(in_be64) && defined(readq)
case REGMAP_SIZE_64:
*((u64 *)valp) = __read_64(ptr, map->endianness);
break;
#endif
default:
debug("%s: regmap size %zu unknown\n", __func__, val_len);
return -EINVAL;
}
return 0;
}
int regmap_raw_read(struct regmap *map, uint offset, void *valp, size_t val_len)
{
return regmap_raw_read_range(map, 0, offset, valp, val_len);
}
int regmap_read(struct regmap *map, uint offset, uint *valp)
{
return regmap_raw_read(map, offset, valp, map->width);
}
static inline void __write_8(u8 *addr, const u8 *val,
enum regmap_endianness_t endianness)
{
writeb(*val, addr);
}
static inline void __write_16(u16 *addr, const u16 *val,
enum regmap_endianness_t endianness)
{
switch (endianness) {
case REGMAP_NATIVE_ENDIAN:
writew(*val, addr);
break;
case REGMAP_LITTLE_ENDIAN:
out_le16(addr, *val);
break;
case REGMAP_BIG_ENDIAN:
out_be16(addr, *val);
break;
}
}
static inline void __write_32(u32 *addr, const u32 *val,
enum regmap_endianness_t endianness)
{
switch (endianness) {
case REGMAP_NATIVE_ENDIAN:
writel(*val, addr);
break;
case REGMAP_LITTLE_ENDIAN:
out_le32(addr, *val);
break;
case REGMAP_BIG_ENDIAN:
out_be32(addr, *val);
break;
}
}
#if defined(out_le64) && defined(out_be64) && defined(writeq)
static inline void __write_64(u64 *addr, const u64 *val,
enum regmap_endianness_t endianness)
{
switch (endianness) {
case REGMAP_NATIVE_ENDIAN:
writeq(*val, addr);
break;
case REGMAP_LITTLE_ENDIAN:
out_le64(addr, *val);
break;
case REGMAP_BIG_ENDIAN:
out_be64(addr, *val);
break;
}
}
#endif
int regmap_raw_write_range(struct regmap *map, uint range_num, uint offset,
const void *val, size_t val_len)
{
struct regmap_range *range;
void *ptr;
if (range_num >= map->range_count) {
debug("%s: range index %d larger than range count\n",
__func__, range_num);
return -ERANGE;
}
range = &map->ranges[range_num];
offset <<= map->reg_offset_shift;
if (offset + val_len > range->size) {
debug("%s: offset/size combination invalid\n", __func__);
return -ERANGE;
}
ptr = map_physmem(range->start + offset, val_len, MAP_NOCACHE);
switch (val_len) {
case REGMAP_SIZE_8:
__write_8(ptr, val, map->endianness);
break;
case REGMAP_SIZE_16:
__write_16(ptr, val, map->endianness);
break;
case REGMAP_SIZE_32:
__write_32(ptr, val, map->endianness);
break;
#if defined(out_le64) && defined(out_be64) && defined(writeq)
case REGMAP_SIZE_64:
__write_64(ptr, val, map->endianness);
break;
#endif
default:
debug("%s: regmap size %zu unknown\n", __func__, val_len);
return -EINVAL;
}
return 0;
}
int regmap_raw_write(struct regmap *map, uint offset, const void *val,
size_t val_len)
{
return regmap_raw_write_range(map, 0, offset, val, val_len);
}
int regmap_write(struct regmap *map, uint offset, uint val)
{
return regmap_raw_write(map, offset, &val, map->width);
}
int regmap_update_bits(struct regmap *map, uint offset, uint mask, uint val)
{
uint reg;
int ret;
ret = regmap_read(map, offset, &reg);
if (ret)
return ret;
reg &= ~mask;
return regmap_write(map, offset, reg | (val & mask));
}