u-boot-brain/include/nand.h
William Juul cfa460adfd Update MTD to that of Linux 2.6.22.1
A lot changed in the Linux MTD code, since it was last ported from
Linux to U-Boot. This patch takes U-Boot NAND support to the level
of Linux 2.6.22.1 and will enable support for very large NAND devices
(4KB pages) and ease the compatibility between U-Boot and Linux
filesystems.

This patch is tested on two custom boards with PPC and ARM
processors running YAFFS in U-Boot and Linux using gcc-4.1.2
cross compilers.

MAKEALL ppc/arm has some issues:
 * DOC/OneNand/nand_spl is not building (I have not tried porting
   these parts, and since I do not have any HW and I am not familiar
   with this code/HW I think its best left to someone else.)

Except for the issues mentioned above, I have ported all drivers
necessary to run MAKEALL ppc/arm without errors and warnings. Many
drivers were trivial to port, but some were not so trivial. The
following drivers must be examined carefully and maybe rewritten to
some degree:
 cpu/ppc4xx/ndfc.c
 cpu/arm926ejs/davinci/nand.c
 board/delta/nand.c
 board/zylonite/nand.c

Signed-off-by: William Juul <william.juul@tandberg.com>
Signed-off-by: Stig Olsen <stig.olsen@tandberg.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
2008-08-12 11:31:15 -05:00

130 lines
3.9 KiB
C

/*
* (C) Copyright 2005
* 2N Telekomunikace, a.s. <www.2n.cz>
* Ladislav Michl <michl@2n.cz>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#ifndef _NAND_H_
#define _NAND_H_
extern void nand_init(void);
#ifndef CFG_NAND_LEGACY
#include <linux/mtd/compat.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
typedef struct mtd_info nand_info_t;
extern int nand_curr_device;
extern nand_info_t nand_info[];
static inline int nand_read(nand_info_t *info, off_t ofs, size_t *len, u_char *buf)
{
return info->read(info, ofs, *len, (size_t *)len, buf);
}
static inline int nand_write(nand_info_t *info, off_t ofs, size_t *len, u_char *buf)
{
return info->write(info, ofs, *len, (size_t *)len, buf);
}
static inline int nand_block_isbad(nand_info_t *info, off_t ofs)
{
return info->block_isbad(info, ofs);
}
static inline int nand_erase(nand_info_t *info, off_t off, size_t size)
{
struct erase_info instr;
instr.mtd = info;
instr.addr = off;
instr.len = size;
instr.callback = 0;
return info->erase(info, &instr);
}
/*****************************************************************************
* declarations from nand_util.c
****************************************************************************/
struct nand_write_options {
u_char *buffer; /* memory block containing image to write */
ulong length; /* number of bytes to write */
ulong offset; /* start address in NAND */
int quiet; /* don't display progress messages */
int autoplace; /* if true use auto oob layout */
int forcejffs2; /* force jffs2 oob layout */
int forceyaffs; /* force yaffs oob layout */
int noecc; /* write without ecc */
int writeoob; /* image contains oob data */
int pad; /* pad to page size */
int blockalign; /* 1|2|4 set multiple of eraseblocks
* to align to */
};
typedef struct nand_write_options nand_write_options_t;
typedef struct mtd_oob_ops mtd_oob_ops_t;
struct nand_read_options {
u_char *buffer; /* memory block in which read image is written*/
ulong length; /* number of bytes to read */
ulong offset; /* start address in NAND */
int quiet; /* don't display progress messages */
int readoob; /* put oob data in image */
};
typedef struct nand_read_options nand_read_options_t;
struct nand_erase_options {
ulong length; /* number of bytes to erase */
ulong offset; /* first address in NAND to erase */
int quiet; /* don't display progress messages */
int jffs2; /* if true: format for jffs2 usage
* (write appropriate cleanmarker blocks) */
int scrub; /* if true, really clean NAND by erasing
* bad blocks (UNSAFE) */
};
typedef struct nand_erase_options nand_erase_options_t;
int nand_write_opts(nand_info_t *mtd, loff_t to, mtd_oob_ops_t *ops);
int nand_read_opts(nand_info_t *meminfo, const nand_read_options_t *opts);
int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts);
#define NAND_LOCK_STATUS_TIGHT 0x01
#define NAND_LOCK_STATUS_LOCK 0x02
#define NAND_LOCK_STATUS_UNLOCK 0x04
int nand_lock( nand_info_t *meminfo, int tight );
int nand_unlock( nand_info_t *meminfo, ulong start, ulong length );
int nand_get_lock_status(nand_info_t *meminfo, ulong offset);
#ifdef CFG_NAND_SELECT_DEVICE
void board_nand_select_device(struct nand_chip *nand, int chip);
#endif
#endif /* !CFG_NAND_LEGACY */
#endif