u-boot-brain/drivers/misc/cros_ec.c
Simon Glass cc456bd7df dm: cros_ec: Convert the I2C tunnel code to use driver model
The Chrome OS EC supports tunnelling through to an I2C bus on the EC. This
currently uses a copy of the I2C command code and a special 'crosec'
sub-command.

With driver model we can define an I2C bus which tunnels through to the EC,
and use the normal 'i2c' command to access it. This simplifies the code and
removes some duplication.

Add an I2C driver which tunnels through to the EC. Adjust the EC code to
support binding child devices so that it can be set up. Adjust the existing
I2C xfer function to fit driver model better.

For now the old code remains to allow things to still work. It will be
removed in a later patch once the new flow is fully enabled.

Signed-off-by: Simon Glass <sjg@chromium.org>
2015-08-05 21:06:11 -06:00

1748 lines
43 KiB
C

/*
* Chromium OS cros_ec driver
*
* Copyright (c) 2012 The Chromium OS Authors.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*
* This is the interface to the Chrome OS EC. It provides keyboard functions,
* power control and battery management. Quite a few other functions are
* provided to enable the EC software to be updated, talk to the EC's I2C bus
* and store a small amount of data in a memory which persists while the EC
* is not reset.
*/
#include <common.h>
#include <command.h>
#include <dm.h>
#include <i2c.h>
#include <cros_ec.h>
#include <fdtdec.h>
#include <malloc.h>
#include <spi.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm-generic/gpio.h>
#include <dm/device-internal.h>
#include <dm/root.h>
#include <dm/uclass-internal.h>
#ifdef DEBUG_TRACE
#define debug_trace(fmt, b...) debug(fmt, #b)
#else
#define debug_trace(fmt, b...)
#endif
enum {
/* Timeout waiting for a flash erase command to complete */
CROS_EC_CMD_TIMEOUT_MS = 5000,
/* Timeout waiting for a synchronous hash to be recomputed */
CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
};
DECLARE_GLOBAL_DATA_PTR;
/* Note: depends on enum ec_current_image */
static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
{
#ifdef DEBUG
int i;
printf("%s: ", name);
if (cmd != -1)
printf("cmd=%#x: ", cmd);
for (i = 0; i < len; i++)
printf("%02x ", data[i]);
printf("\n");
#endif
}
/*
* Calculate a simple 8-bit checksum of a data block
*
* @param data Data block to checksum
* @param size Size of data block in bytes
* @return checksum value (0 to 255)
*/
int cros_ec_calc_checksum(const uint8_t *data, int size)
{
int csum, i;
for (i = csum = 0; i < size; i++)
csum += data[i];
return csum & 0xff;
}
/**
* Create a request packet for protocol version 3.
*
* The packet is stored in the device's internal output buffer.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @return packet size in bytes, or <0 if error.
*/
static int create_proto3_request(struct cros_ec_dev *dev,
int cmd, int cmd_version,
const void *dout, int dout_len)
{
struct ec_host_request *rq = (struct ec_host_request *)dev->dout;
int out_bytes = dout_len + sizeof(*rq);
/* Fail if output size is too big */
if (out_bytes > (int)sizeof(dev->dout)) {
debug("%s: Cannot send %d bytes\n", __func__, dout_len);
return -EC_RES_REQUEST_TRUNCATED;
}
/* Fill in request packet */
rq->struct_version = EC_HOST_REQUEST_VERSION;
rq->checksum = 0;
rq->command = cmd;
rq->command_version = cmd_version;
rq->reserved = 0;
rq->data_len = dout_len;
/* Copy data after header */
memcpy(rq + 1, dout, dout_len);
/* Write checksum field so the entire packet sums to 0 */
rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes));
cros_ec_dump_data("out", cmd, dev->dout, out_bytes);
/* Return size of request packet */
return out_bytes;
}
/**
* Prepare the device to receive a protocol version 3 response.
*
* @param dev CROS-EC device
* @param din_len Maximum size of response in bytes
* @return maximum expected number of bytes in response, or <0 if error.
*/
static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len)
{
int in_bytes = din_len + sizeof(struct ec_host_response);
/* Fail if input size is too big */
if (in_bytes > (int)sizeof(dev->din)) {
debug("%s: Cannot receive %d bytes\n", __func__, din_len);
return -EC_RES_RESPONSE_TOO_BIG;
}
/* Return expected size of response packet */
return in_bytes;
}
/**
* Handle a protocol version 3 response packet.
*
* The packet must already be stored in the device's internal input buffer.
*
* @param dev CROS-EC device
* @param dinp Returns pointer to response data
* @param din_len Maximum size of response in bytes
* @return number of bytes of response data, or <0 if error. Note that error
* codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
* overlap!)
*/
static int handle_proto3_response(struct cros_ec_dev *dev,
uint8_t **dinp, int din_len)
{
struct ec_host_response *rs = (struct ec_host_response *)dev->din;
int in_bytes;
int csum;
cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
/* Check input data */
if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
debug("%s: EC response version mismatch\n", __func__);
return -EC_RES_INVALID_RESPONSE;
}
if (rs->reserved) {
debug("%s: EC response reserved != 0\n", __func__);
return -EC_RES_INVALID_RESPONSE;
}
if (rs->data_len > din_len) {
debug("%s: EC returned too much data\n", __func__);
return -EC_RES_RESPONSE_TOO_BIG;
}
cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
/* Update in_bytes to actual data size */
in_bytes = sizeof(*rs) + rs->data_len;
/* Verify checksum */
csum = cros_ec_calc_checksum(dev->din, in_bytes);
if (csum) {
debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
csum);
return -EC_RES_INVALID_CHECKSUM;
}
/* Return error result, if any */
if (rs->result)
return -(int)rs->result;
/* If we're still here, set response data pointer and return length */
*dinp = (uint8_t *)(rs + 1);
return rs->data_len;
}
static int send_command_proto3(struct cros_ec_dev *dev,
int cmd, int cmd_version,
const void *dout, int dout_len,
uint8_t **dinp, int din_len)
{
struct dm_cros_ec_ops *ops;
int out_bytes, in_bytes;
int rv;
/* Create request packet */
out_bytes = create_proto3_request(dev, cmd, cmd_version,
dout, dout_len);
if (out_bytes < 0)
return out_bytes;
/* Prepare response buffer */
in_bytes = prepare_proto3_response_buffer(dev, din_len);
if (in_bytes < 0)
return in_bytes;
ops = dm_cros_ec_get_ops(dev->dev);
rv = ops->packet ? ops->packet(dev->dev, out_bytes, in_bytes) : -ENOSYS;
if (rv < 0)
return rv;
/* Process the response */
return handle_proto3_response(dev, dinp, din_len);
}
static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
const void *dout, int dout_len,
uint8_t **dinp, int din_len)
{
struct dm_cros_ec_ops *ops;
int ret = -1;
/* Handle protocol version 3 support */
if (dev->protocol_version == 3) {
return send_command_proto3(dev, cmd, cmd_version,
dout, dout_len, dinp, din_len);
}
ops = dm_cros_ec_get_ops(dev->dev);
ret = ops->command(dev->dev, cmd, cmd_version,
(const uint8_t *)dout, dout_len, dinp, din_len);
return ret;
}
/**
* Send a command to the CROS-EC device and return the reply.
*
* The device's internal input/output buffers are used.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @param dinp Response data (may be NULL If din_len=0).
* If not NULL, it will be updated to point to the data
* and will always be double word aligned (64-bits)
* @param din_len Maximum size of response in bytes
* @return number of bytes in response, or -ve on error
*/
static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
int din_len)
{
uint8_t *din = NULL;
int len;
len = send_command(dev, cmd, cmd_version, dout, dout_len,
&din, din_len);
/* If the command doesn't complete, wait a while */
if (len == -EC_RES_IN_PROGRESS) {
struct ec_response_get_comms_status *resp = NULL;
ulong start;
/* Wait for command to complete */
start = get_timer(0);
do {
int ret;
mdelay(50); /* Insert some reasonable delay */
ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
NULL, 0,
(uint8_t **)&resp, sizeof(*resp));
if (ret < 0)
return ret;
if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
debug("%s: Command %#02x timeout\n",
__func__, cmd);
return -EC_RES_TIMEOUT;
}
} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
/* OK it completed, so read the status response */
/* not sure why it was 0 for the last argument */
len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
NULL, 0, &din, din_len);
}
debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp,
dinp ? *dinp : NULL);
if (dinp) {
/* If we have any data to return, it must be 64bit-aligned */
assert(len <= 0 || !((uintptr_t)din & 7));
*dinp = din;
}
return len;
}
/**
* Send a command to the CROS-EC device and return the reply.
*
* The device's internal input/output buffers are used.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @param din Response data (may be NULL If din_len=0).
* It not NULL, it is a place for ec_command() to copy the
* data to.
* @param din_len Maximum size of response in bytes
* @return number of bytes in response, or -ve on error
*/
static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
const void *dout, int dout_len,
void *din, int din_len)
{
uint8_t *in_buffer;
int len;
assert((din_len == 0) || din);
len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
&in_buffer, din_len);
if (len > 0) {
/*
* If we were asked to put it somewhere, do so, otherwise just
* disregard the result.
*/
if (din && in_buffer) {
assert(len <= din_len);
memmove(din, in_buffer, len);
}
}
return len;
}
int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
{
if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
sizeof(scan->data)) != sizeof(scan->data))
return -1;
return 0;
}
int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
{
struct ec_response_get_version *r;
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
return -1;
if (maxlen > (int)sizeof(r->version_string_ro))
maxlen = sizeof(r->version_string_ro);
switch (r->current_image) {
case EC_IMAGE_RO:
memcpy(id, r->version_string_ro, maxlen);
break;
case EC_IMAGE_RW:
memcpy(id, r->version_string_rw, maxlen);
break;
default:
return -1;
}
id[maxlen - 1] = '\0';
return 0;
}
int cros_ec_read_version(struct cros_ec_dev *dev,
struct ec_response_get_version **versionp)
{
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
(uint8_t **)versionp, sizeof(**versionp))
!= sizeof(**versionp))
return -1;
return 0;
}
int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
{
if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
(uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
return -1;
return 0;
}
int cros_ec_read_current_image(struct cros_ec_dev *dev,
enum ec_current_image *image)
{
struct ec_response_get_version *r;
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
return -1;
*image = r->current_image;
return 0;
}
static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
struct ec_response_vboot_hash *hash)
{
struct ec_params_vboot_hash p;
ulong start;
start = get_timer(0);
while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
mdelay(50); /* Insert some reasonable delay */
p.cmd = EC_VBOOT_HASH_GET;
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
hash, sizeof(*hash)) < 0)
return -1;
if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
return -EC_RES_TIMEOUT;
}
}
return 0;
}
int cros_ec_read_hash(struct cros_ec_dev *dev,
struct ec_response_vboot_hash *hash)
{
struct ec_params_vboot_hash p;
int rv;
p.cmd = EC_VBOOT_HASH_GET;
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
hash, sizeof(*hash)) < 0)
return -1;
/* If the EC is busy calculating the hash, fidget until it's done. */
rv = cros_ec_wait_on_hash_done(dev, hash);
if (rv)
return rv;
/* If the hash is valid, we're done. Otherwise, we have to kick it off
* again and wait for it to complete. Note that we explicitly assume
* that hashing zero bytes is always wrong, even though that would
* produce a valid hash value. */
if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
return 0;
debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
__func__, hash->status, hash->size);
p.cmd = EC_VBOOT_HASH_START;
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
p.nonce_size = 0;
p.offset = EC_VBOOT_HASH_OFFSET_RW;
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
hash, sizeof(*hash)) < 0)
return -1;
rv = cros_ec_wait_on_hash_done(dev, hash);
if (rv)
return rv;
debug("%s: hash done\n", __func__);
return 0;
}
static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
{
struct ec_params_vboot_hash p;
struct ec_response_vboot_hash *hash;
/* We don't have an explict command for the EC to discard its current
* hash value, so we'll just tell it to calculate one that we know is
* wrong (we claim that hashing zero bytes is always invalid).
*/
p.cmd = EC_VBOOT_HASH_RECALC;
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
p.nonce_size = 0;
p.offset = 0;
p.size = 0;
debug("%s:\n", __func__);
if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
(uint8_t **)&hash, sizeof(*hash)) < 0)
return -1;
/* No need to wait for it to finish */
return 0;
}
int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
uint8_t flags)
{
struct ec_params_reboot_ec p;
p.cmd = cmd;
p.flags = flags;
if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
< 0)
return -1;
if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
/*
* EC reboot will take place immediately so delay to allow it
* to complete. Note that some reboot types (EC_REBOOT_COLD)
* will reboot the AP as well, in which case we won't actually
* get to this point.
*/
/*
* TODO(rspangler@chromium.org): Would be nice if we had a
* better way to determine when the reboot is complete. Could
* we poll a memory-mapped LPC value?
*/
udelay(50000);
}
return 0;
}
int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
{
/* no interrupt support : always poll */
if (!dm_gpio_is_valid(&dev->ec_int))
return -ENOENT;
return dm_gpio_get_value(&dev->ec_int);
}
int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info)
{
if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
sizeof(*info)) != sizeof(*info))
return -1;
return 0;
}
int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
{
struct ec_response_host_event_mask *resp;
/*
* Use the B copy of the event flags, because the main copy is already
* used by ACPI/SMI.
*/
if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
(uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
return -1;
if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
return -1;
*events_ptr = resp->mask;
return 0;
}
int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
{
struct ec_params_host_event_mask params;
params.mask = events;
/*
* Use the B copy of the event flags, so it affects the data returned
* by cros_ec_get_host_events().
*/
if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
&params, sizeof(params), NULL, 0) < 0)
return -1;
return 0;
}
int cros_ec_flash_protect(struct cros_ec_dev *dev,
uint32_t set_mask, uint32_t set_flags,
struct ec_response_flash_protect *resp)
{
struct ec_params_flash_protect params;
params.mask = set_mask;
params.flags = set_flags;
if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
&params, sizeof(params),
resp, sizeof(*resp)) != sizeof(*resp))
return -1;
return 0;
}
static int cros_ec_check_version(struct cros_ec_dev *dev)
{
struct ec_params_hello req;
struct ec_response_hello *resp;
struct dm_cros_ec_ops *ops;
int ret;
ops = dm_cros_ec_get_ops(dev->dev);
if (ops->check_version) {
ret = ops->check_version(dev->dev);
if (ret)
return ret;
}
/*
* TODO(sjg@chromium.org).
* There is a strange oddity here with the EC. We could just ignore
* the response, i.e. pass the last two parameters as NULL and 0.
* In this case we won't read back very many bytes from the EC.
* On the I2C bus the EC gets upset about this and will try to send
* the bytes anyway. This means that we will have to wait for that
* to complete before continuing with a new EC command.
*
* This problem is probably unique to the I2C bus.
*
* So for now, just read all the data anyway.
*/
/* Try sending a version 3 packet */
dev->protocol_version = 3;
req.in_data = 0;
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
(uint8_t **)&resp, sizeof(*resp)) > 0) {
return 0;
}
/* Try sending a version 2 packet */
dev->protocol_version = 2;
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
(uint8_t **)&resp, sizeof(*resp)) > 0) {
return 0;
}
/*
* Fail if we're still here, since the EC doesn't understand any
* protcol version we speak. Version 1 interface without command
* version is no longer supported, and we don't know about any new
* protocol versions.
*/
dev->protocol_version = 0;
printf("%s: ERROR: old EC interface not supported\n", __func__);
return -1;
}
int cros_ec_test(struct cros_ec_dev *dev)
{
struct ec_params_hello req;
struct ec_response_hello *resp;
req.in_data = 0x12345678;
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
(uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
printf("ec_command_inptr() returned error\n");
return -1;
}
if (resp->out_data != req.in_data + 0x01020304) {
printf("Received invalid handshake %x\n", resp->out_data);
return -1;
}
return 0;
}
int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
uint32_t *offset, uint32_t *size)
{
struct ec_params_flash_region_info p;
struct ec_response_flash_region_info *r;
int ret;
p.region = region;
ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
EC_VER_FLASH_REGION_INFO,
&p, sizeof(p), (uint8_t **)&r, sizeof(*r));
if (ret != sizeof(*r))
return -1;
if (offset)
*offset = r->offset;
if (size)
*size = r->size;
return 0;
}
int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
{
struct ec_params_flash_erase p;
p.offset = offset;
p.size = size;
return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
NULL, 0);
}
/**
* Write a single block to the flash
*
* Write a block of data to the EC flash. The size must not exceed the flash
* write block size which you can obtain from cros_ec_flash_write_burst_size().
*
* The offset starts at 0. You can obtain the region information from
* cros_ec_flash_offset() to find out where to write for a particular region.
*
* Attempting to write to the region where the EC is currently running from
* will result in an error.
*
* @param dev CROS-EC device
* @param data Pointer to data buffer to write
* @param offset Offset within flash to write to.
* @param size Number of bytes to write
* @return 0 if ok, -1 on error
*/
static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
const uint8_t *data, uint32_t offset, uint32_t size)
{
struct ec_params_flash_write p;
p.offset = offset;
p.size = size;
assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE);
memcpy(&p + 1, data, p.size);
return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
&p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
}
/**
* Return optimal flash write burst size
*/
static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
{
return EC_FLASH_WRITE_VER0_SIZE;
}
/**
* Check if a block of data is erased (all 0xff)
*
* This function is useful when dealing with flash, for checking whether a
* data block is erased and thus does not need to be programmed.
*
* @param data Pointer to data to check (must be word-aligned)
* @param size Number of bytes to check (must be word-aligned)
* @return 0 if erased, non-zero if any word is not erased
*/
static int cros_ec_data_is_erased(const uint32_t *data, int size)
{
assert(!(size & 3));
size /= sizeof(uint32_t);
for (; size > 0; size -= 4, data++)
if (*data != -1U)
return 0;
return 1;
}
int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
uint32_t offset, uint32_t size)
{
uint32_t burst = cros_ec_flash_write_burst_size(dev);
uint32_t end, off;
int ret;
/*
* TODO: round up to the nearest multiple of write size. Can get away
* without that on link right now because its write size is 4 bytes.
*/
end = offset + size;
for (off = offset; off < end; off += burst, data += burst) {
uint32_t todo;
/* If the data is empty, there is no point in programming it */
todo = min(end - off, burst);
if (dev->optimise_flash_write &&
cros_ec_data_is_erased((uint32_t *)data, todo))
continue;
ret = cros_ec_flash_write_block(dev, data, off, todo);
if (ret)
return ret;
}
return 0;
}
/**
* Read a single block from the flash
*
* Read a block of data from the EC flash. The size must not exceed the flash
* write block size which you can obtain from cros_ec_flash_write_burst_size().
*
* The offset starts at 0. You can obtain the region information from
* cros_ec_flash_offset() to find out where to read for a particular region.
*
* @param dev CROS-EC device
* @param data Pointer to data buffer to read into
* @param offset Offset within flash to read from
* @param size Number of bytes to read
* @return 0 if ok, -1 on error
*/
static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
uint32_t offset, uint32_t size)
{
struct ec_params_flash_read p;
p.offset = offset;
p.size = size;
return ec_command(dev, EC_CMD_FLASH_READ, 0,
&p, sizeof(p), data, size) >= 0 ? 0 : -1;
}
int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
uint32_t size)
{
uint32_t burst = cros_ec_flash_write_burst_size(dev);
uint32_t end, off;
int ret;
end = offset + size;
for (off = offset; off < end; off += burst, data += burst) {
ret = cros_ec_flash_read_block(dev, data, off,
min(end - off, burst));
if (ret)
return ret;
}
return 0;
}
int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
const uint8_t *image, int image_size)
{
uint32_t rw_offset, rw_size;
int ret;
if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
return -1;
if (image_size > (int)rw_size)
return -1;
/* Invalidate the existing hash, just in case the AP reboots
* unexpectedly during the update. If that happened, the EC RW firmware
* would be invalid, but the EC would still have the original hash.
*/
ret = cros_ec_invalidate_hash(dev);
if (ret)
return ret;
/*
* Erase the entire RW section, so that the EC doesn't see any garbage
* past the new image if it's smaller than the current image.
*
* TODO: could optimize this to erase just the current image, since
* presumably everything past that is 0xff's. But would still need to
* round up to the nearest multiple of erase size.
*/
ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
if (ret)
return ret;
/* Write the image */
ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
if (ret)
return ret;
return 0;
}
int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
{
struct ec_params_vbnvcontext p;
int len;
p.op = EC_VBNV_CONTEXT_OP_READ;
len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
&p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
if (len < EC_VBNV_BLOCK_SIZE)
return -1;
return 0;
}
int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
{
struct ec_params_vbnvcontext p;
int len;
p.op = EC_VBNV_CONTEXT_OP_WRITE;
memcpy(p.block, block, sizeof(p.block));
len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
&p, sizeof(p), NULL, 0);
if (len < 0)
return -1;
return 0;
}
int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
{
struct ec_params_ldo_set params;
params.index = index;
params.state = state;
if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
&params, sizeof(params),
NULL, 0))
return -1;
return 0;
}
int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
{
struct ec_params_ldo_get params;
struct ec_response_ldo_get *resp;
params.index = index;
if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
&params, sizeof(params),
(uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
return -1;
*state = resp->state;
return 0;
}
int cros_ec_register(struct udevice *dev)
{
struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
const void *blob = gd->fdt_blob;
int node = dev->of_offset;
char id[MSG_BYTES];
cdev->dev = dev;
gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
GPIOD_IS_IN);
cdev->optimise_flash_write = fdtdec_get_bool(blob, node,
"optimise-flash-write");
if (cros_ec_check_version(cdev)) {
debug("%s: Could not detect CROS-EC version\n", __func__);
return -CROS_EC_ERR_CHECK_VERSION;
}
if (cros_ec_read_id(cdev, id, sizeof(id))) {
debug("%s: Could not read KBC ID\n", __func__);
return -CROS_EC_ERR_READ_ID;
}
/* Remember this device for use by the cros_ec command */
debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
cdev->protocol_version, id);
return 0;
}
int cros_ec_decode_region(int argc, char * const argv[])
{
if (argc > 0) {
if (0 == strcmp(*argv, "rw"))
return EC_FLASH_REGION_RW;
else if (0 == strcmp(*argv, "ro"))
return EC_FLASH_REGION_RO;
debug("%s: Invalid region '%s'\n", __func__, *argv);
} else {
debug("%s: Missing region parameter\n", __func__);
}
return -1;
}
int cros_ec_decode_ec_flash(const void *blob, int node,
struct fdt_cros_ec *config)
{
int flash_node;
flash_node = fdt_subnode_offset(blob, node, "flash");
if (flash_node < 0) {
debug("Failed to find flash node\n");
return -1;
}
if (fdtdec_read_fmap_entry(blob, flash_node, "flash",
&config->flash)) {
debug("Failed to decode flash node in chrome-ec'\n");
return -1;
}
config->flash_erase_value = fdtdec_get_int(blob, flash_node,
"erase-value", -1);
for (node = fdt_first_subnode(blob, flash_node); node >= 0;
node = fdt_next_subnode(blob, node)) {
const char *name = fdt_get_name(blob, node, NULL);
enum ec_flash_region region;
if (0 == strcmp(name, "ro")) {
region = EC_FLASH_REGION_RO;
} else if (0 == strcmp(name, "rw")) {
region = EC_FLASH_REGION_RW;
} else if (0 == strcmp(name, "wp-ro")) {
region = EC_FLASH_REGION_WP_RO;
} else {
debug("Unknown EC flash region name '%s'\n", name);
return -1;
}
if (fdtdec_read_fmap_entry(blob, node, "reg",
&config->region[region])) {
debug("Failed to decode flash region in chrome-ec'\n");
return -1;
}
}
return 0;
}
int cros_ec_i2c_xfer_old(struct cros_ec_dev *dev, uchar chip, uint addr,
int alen, uchar *buffer, int len, int is_read)
{
union {
struct ec_params_i2c_passthru p;
uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
} params;
union {
struct ec_response_i2c_passthru r;
uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
} response;
struct ec_params_i2c_passthru *p = &params.p;
struct ec_response_i2c_passthru *r = &response.r;
struct ec_params_i2c_passthru_msg *msg = p->msg;
uint8_t *pdata;
int read_len, write_len;
int size;
int rv;
p->port = 0;
if (alen != 1) {
printf("Unsupported address length %d\n", alen);
return -1;
}
if (is_read) {
read_len = len;
write_len = alen;
p->num_msgs = 2;
} else {
read_len = 0;
write_len = alen + len;
p->num_msgs = 1;
}
size = sizeof(*p) + p->num_msgs * sizeof(*msg);
if (size + write_len > sizeof(params)) {
puts("Params too large for buffer\n");
return -1;
}
if (sizeof(*r) + read_len > sizeof(response)) {
puts("Read length too big for buffer\n");
return -1;
}
/* Create a message to write the register address and optional data */
pdata = (uint8_t *)p + size;
msg->addr_flags = chip;
msg->len = write_len;
pdata[0] = addr;
if (!is_read)
memcpy(pdata + 1, buffer, len);
msg++;
if (read_len) {
msg->addr_flags = chip | EC_I2C_FLAG_READ;
msg->len = read_len;
}
rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len,
r, sizeof(*r) + read_len);
if (rv < 0)
return rv;
/* Parse response */
if (r->i2c_status & EC_I2C_STATUS_ERROR) {
printf("Transfer failed with status=0x%x\n", r->i2c_status);
return -1;
}
if (rv < sizeof(*r) + read_len) {
puts("Truncated read response\n");
return -1;
}
if (read_len)
memcpy(buffer, r->data, read_len);
return 0;
}
int cros_ec_i2c_tunnel(struct udevice *dev, struct i2c_msg *in, int nmsgs)
{
struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
union {
struct ec_params_i2c_passthru p;
uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
} params;
union {
struct ec_response_i2c_passthru r;
uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
} response;
struct ec_params_i2c_passthru *p = &params.p;
struct ec_response_i2c_passthru *r = &response.r;
struct ec_params_i2c_passthru_msg *msg;
uint8_t *pdata, *read_ptr = NULL;
int read_len;
int size;
int rv;
int i;
p->port = 0;
p->num_msgs = nmsgs;
size = sizeof(*p) + p->num_msgs * sizeof(*msg);
/* Create a message to write the register address and optional data */
pdata = (uint8_t *)p + size;
read_len = 0;
for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
bool is_read = in->flags & I2C_M_RD;
msg->addr_flags = in->addr;
msg->len = in->len;
if (is_read) {
msg->addr_flags |= EC_I2C_FLAG_READ;
read_len += in->len;
read_ptr = in->buf;
if (sizeof(*r) + read_len > sizeof(response)) {
puts("Read length too big for buffer\n");
return -1;
}
} else {
if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
puts("Params too large for buffer\n");
return -1;
}
memcpy(pdata, in->buf, in->len);
pdata += in->len;
}
}
rv = ec_command(cdev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
r, sizeof(*r) + read_len);
if (rv < 0)
return rv;
/* Parse response */
if (r->i2c_status & EC_I2C_STATUS_ERROR) {
printf("Transfer failed with status=0x%x\n", r->i2c_status);
return -1;
}
if (rv < sizeof(*r) + read_len) {
puts("Truncated read response\n");
return -1;
}
/* We only support a single read message for each transfer */
if (read_len)
memcpy(read_ptr, r->data, read_len);
return 0;
}
#ifdef CONFIG_CMD_CROS_EC
/**
* Perform a flash read or write command
*
* @param dev CROS-EC device to read/write
* @param is_write 1 do to a write, 0 to do a read
* @param argc Number of arguments
* @param argv Arguments (2 is region, 3 is address)
* @return 0 for ok, 1 for a usage error or -ve for ec command error
* (negative EC_RES_...)
*/
static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
char * const argv[])
{
uint32_t offset, size = -1U, region_size;
unsigned long addr;
char *endp;
int region;
int ret;
region = cros_ec_decode_region(argc - 2, argv + 2);
if (region == -1)
return 1;
if (argc < 4)
return 1;
addr = simple_strtoul(argv[3], &endp, 16);
if (*argv[3] == 0 || *endp != 0)
return 1;
if (argc > 4) {
size = simple_strtoul(argv[4], &endp, 16);
if (*argv[4] == 0 || *endp != 0)
return 1;
}
ret = cros_ec_flash_offset(dev, region, &offset, &region_size);
if (ret) {
debug("%s: Could not read region info\n", __func__);
return ret;
}
if (size == -1U)
size = region_size;
ret = is_write ?
cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
if (ret) {
debug("%s: Could not %s region\n", __func__,
is_write ? "write" : "read");
return ret;
}
return 0;
}
/**
* get_alen() - Small parser helper function to get address length
*
* Returns the address length.
*/
static uint get_alen(char *arg)
{
int j;
int alen;
alen = 1;
for (j = 0; j < 8; j++) {
if (arg[j] == '.') {
alen = arg[j+1] - '0';
break;
} else if (arg[j] == '\0') {
break;
}
}
return alen;
}
#define DISP_LINE_LEN 16
/*
* TODO(sjg@chromium.org): This code copied almost verbatim from cmd_i2c.c
* so we can remove it later.
*/
static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc,
char * const argv[])
{
u_char chip;
uint addr, alen, length = 0x10;
int j, nbytes, linebytes;
if (argc < 2)
return CMD_RET_USAGE;
if (1 || (flag & CMD_FLAG_REPEAT) == 0) {
/*
* New command specified.
*/
/*
* I2C chip address
*/
chip = simple_strtoul(argv[0], NULL, 16);
/*
* I2C data address within the chip. This can be 1 or
* 2 bytes long. Some day it might be 3 bytes long :-).
*/
addr = simple_strtoul(argv[1], NULL, 16);
alen = get_alen(argv[1]);
if (alen > 3)
return CMD_RET_USAGE;
/*
* If another parameter, it is the length to display.
* Length is the number of objects, not number of bytes.
*/
if (argc > 2)
length = simple_strtoul(argv[2], NULL, 16);
}
/*
* Print the lines.
*
* We buffer all read data, so we can make sure data is read only
* once.
*/
nbytes = length;
do {
unsigned char linebuf[DISP_LINE_LEN];
unsigned char *cp;
linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
if (cros_ec_i2c_xfer_old(dev, chip, addr, alen, linebuf,
linebytes, 1))
puts("Error reading the chip.\n");
else {
printf("%04x:", addr);
cp = linebuf;
for (j = 0; j < linebytes; j++) {
printf(" %02x", *cp++);
addr++;
}
puts(" ");
cp = linebuf;
for (j = 0; j < linebytes; j++) {
if ((*cp < 0x20) || (*cp > 0x7e))
puts(".");
else
printf("%c", *cp);
cp++;
}
putc('\n');
}
nbytes -= linebytes;
} while (nbytes > 0);
return 0;
}
static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc,
char * const argv[])
{
uchar chip;
ulong addr;
uint alen;
uchar byte;
int count;
if ((argc < 3) || (argc > 4))
return CMD_RET_USAGE;
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[0], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[1], NULL, 16);
alen = get_alen(argv[1]);
if (alen > 3)
return CMD_RET_USAGE;
/*
* Value to write is always specified.
*/
byte = simple_strtoul(argv[2], NULL, 16);
/*
* Optional count
*/
if (argc == 4)
count = simple_strtoul(argv[3], NULL, 16);
else
count = 1;
while (count-- > 0) {
if (cros_ec_i2c_xfer_old(dev, chip, addr++, alen, &byte, 1, 0))
puts("Error writing the chip.\n");
/*
* Wait for the write to complete. The write can take
* up to 10mSec (we allow a little more time).
*/
/*
* No write delay with FRAM devices.
*/
#if !defined(CONFIG_SYS_I2C_FRAM)
udelay(11000);
#endif
}
return 0;
}
/* Temporary code until we have driver model and can use the i2c command */
static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag,
int argc, char * const argv[])
{
const char *cmd;
if (argc < 1)
return CMD_RET_USAGE;
cmd = *argv++;
argc--;
if (0 == strcmp("md", cmd))
cros_ec_i2c_md(dev, flag, argc, argv);
else if (0 == strcmp("mw", cmd))
cros_ec_i2c_mw(dev, flag, argc, argv);
else
return CMD_RET_USAGE;
return 0;
}
static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
struct cros_ec_dev *dev;
struct udevice *udev;
const char *cmd;
int ret = 0;
if (argc < 2)
return CMD_RET_USAGE;
cmd = argv[1];
if (0 == strcmp("init", cmd)) {
/* Remove any existing device */
ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev);
if (!ret)
device_remove(udev);
ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
if (ret) {
printf("Could not init cros_ec device (err %d)\n", ret);
return 1;
}
return 0;
}
ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
if (ret) {
printf("Cannot get cros-ec device (err=%d)\n", ret);
return 1;
}
dev = dev_get_uclass_priv(udev);
if (0 == strcmp("id", cmd)) {
char id[MSG_BYTES];
if (cros_ec_read_id(dev, id, sizeof(id))) {
debug("%s: Could not read KBC ID\n", __func__);
return 1;
}
printf("%s\n", id);
} else if (0 == strcmp("info", cmd)) {
struct ec_response_mkbp_info info;
if (cros_ec_info(dev, &info)) {
debug("%s: Could not read KBC info\n", __func__);
return 1;
}
printf("rows = %u\n", info.rows);
printf("cols = %u\n", info.cols);
printf("switches = %#x\n", info.switches);
} else if (0 == strcmp("curimage", cmd)) {
enum ec_current_image image;
if (cros_ec_read_current_image(dev, &image)) {
debug("%s: Could not read KBC image\n", __func__);
return 1;
}
printf("%d\n", image);
} else if (0 == strcmp("hash", cmd)) {
struct ec_response_vboot_hash hash;
int i;
if (cros_ec_read_hash(dev, &hash)) {
debug("%s: Could not read KBC hash\n", __func__);
return 1;
}
if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
printf("type: SHA-256\n");
else
printf("type: %d\n", hash.hash_type);
printf("offset: 0x%08x\n", hash.offset);
printf("size: 0x%08x\n", hash.size);
printf("digest: ");
for (i = 0; i < hash.digest_size; i++)
printf("%02x", hash.hash_digest[i]);
printf("\n");
} else if (0 == strcmp("reboot", cmd)) {
int region;
enum ec_reboot_cmd cmd;
if (argc >= 3 && !strcmp(argv[2], "cold"))
cmd = EC_REBOOT_COLD;
else {
region = cros_ec_decode_region(argc - 2, argv + 2);
if (region == EC_FLASH_REGION_RO)
cmd = EC_REBOOT_JUMP_RO;
else if (region == EC_FLASH_REGION_RW)
cmd = EC_REBOOT_JUMP_RW;
else
return CMD_RET_USAGE;
}
if (cros_ec_reboot(dev, cmd, 0)) {
debug("%s: Could not reboot KBC\n", __func__);
return 1;
}
} else if (0 == strcmp("events", cmd)) {
uint32_t events;
if (cros_ec_get_host_events(dev, &events)) {
debug("%s: Could not read host events\n", __func__);
return 1;
}
printf("0x%08x\n", events);
} else if (0 == strcmp("clrevents", cmd)) {
uint32_t events = 0x7fffffff;
if (argc >= 3)
events = simple_strtol(argv[2], NULL, 0);
if (cros_ec_clear_host_events(dev, events)) {
debug("%s: Could not clear host events\n", __func__);
return 1;
}
} else if (0 == strcmp("read", cmd)) {
ret = do_read_write(dev, 0, argc, argv);
if (ret > 0)
return CMD_RET_USAGE;
} else if (0 == strcmp("write", cmd)) {
ret = do_read_write(dev, 1, argc, argv);
if (ret > 0)
return CMD_RET_USAGE;
} else if (0 == strcmp("erase", cmd)) {
int region = cros_ec_decode_region(argc - 2, argv + 2);
uint32_t offset, size;
if (region == -1)
return CMD_RET_USAGE;
if (cros_ec_flash_offset(dev, region, &offset, &size)) {
debug("%s: Could not read region info\n", __func__);
ret = -1;
} else {
ret = cros_ec_flash_erase(dev, offset, size);
if (ret) {
debug("%s: Could not erase region\n",
__func__);
}
}
} else if (0 == strcmp("regioninfo", cmd)) {
int region = cros_ec_decode_region(argc - 2, argv + 2);
uint32_t offset, size;
if (region == -1)
return CMD_RET_USAGE;
ret = cros_ec_flash_offset(dev, region, &offset, &size);
if (ret) {
debug("%s: Could not read region info\n", __func__);
} else {
printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
"RO" : "RW");
printf("Offset: %x\n", offset);
printf("Size: %x\n", size);
}
} else if (0 == strcmp("vbnvcontext", cmd)) {
uint8_t block[EC_VBNV_BLOCK_SIZE];
char buf[3];
int i, len;
unsigned long result;
if (argc <= 2) {
ret = cros_ec_read_vbnvcontext(dev, block);
if (!ret) {
printf("vbnv_block: ");
for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
printf("%02x", block[i]);
putc('\n');
}
} else {
/*
* TODO(clchiou): Move this to a utility function as
* cmd_spi might want to call it.
*/
memset(block, 0, EC_VBNV_BLOCK_SIZE);
len = strlen(argv[2]);
buf[2] = '\0';
for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
if (i * 2 >= len)
break;
buf[0] = argv[2][i * 2];
if (i * 2 + 1 >= len)
buf[1] = '0';
else
buf[1] = argv[2][i * 2 + 1];
strict_strtoul(buf, 16, &result);
block[i] = result;
}
ret = cros_ec_write_vbnvcontext(dev, block);
}
if (ret) {
debug("%s: Could not %s VbNvContext\n", __func__,
argc <= 2 ? "read" : "write");
}
} else if (0 == strcmp("test", cmd)) {
int result = cros_ec_test(dev);
if (result)
printf("Test failed with error %d\n", result);
else
puts("Test passed\n");
} else if (0 == strcmp("version", cmd)) {
struct ec_response_get_version *p;
char *build_string;
ret = cros_ec_read_version(dev, &p);
if (!ret) {
/* Print versions */
printf("RO version: %1.*s\n",
(int)sizeof(p->version_string_ro),
p->version_string_ro);
printf("RW version: %1.*s\n",
(int)sizeof(p->version_string_rw),
p->version_string_rw);
printf("Firmware copy: %s\n",
(p->current_image <
ARRAY_SIZE(ec_current_image_name) ?
ec_current_image_name[p->current_image] :
"?"));
ret = cros_ec_read_build_info(dev, &build_string);
if (!ret)
printf("Build info: %s\n", build_string);
}
} else if (0 == strcmp("ldo", cmd)) {
uint8_t index, state;
char *endp;
if (argc < 3)
return CMD_RET_USAGE;
index = simple_strtoul(argv[2], &endp, 10);
if (*argv[2] == 0 || *endp != 0)
return CMD_RET_USAGE;
if (argc > 3) {
state = simple_strtoul(argv[3], &endp, 10);
if (*argv[3] == 0 || *endp != 0)
return CMD_RET_USAGE;
ret = cros_ec_set_ldo(dev, index, state);
} else {
ret = cros_ec_get_ldo(dev, index, &state);
if (!ret) {
printf("LDO%d: %s\n", index,
state == EC_LDO_STATE_ON ?
"on" : "off");
}
}
if (ret) {
debug("%s: Could not access LDO%d\n", __func__, index);
return ret;
}
} else if (0 == strcmp("i2c", cmd)) {
ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2);
} else {
return CMD_RET_USAGE;
}
if (ret < 0) {
printf("Error: CROS-EC command failed (error %d)\n", ret);
ret = 1;
}
return ret;
}
int cros_ec_post_bind(struct udevice *dev)
{
/* Scan for available EC devices (e.g. I2C tunnel) */
return dm_scan_fdt_node(dev, gd->fdt_blob, dev->of_offset, false);
}
U_BOOT_CMD(
crosec, 6, 1, do_cros_ec,
"CROS-EC utility command",
"init Re-init CROS-EC (done on startup automatically)\n"
"crosec id Read CROS-EC ID\n"
"crosec info Read CROS-EC info\n"
"crosec curimage Read CROS-EC current image\n"
"crosec hash Read CROS-EC hash\n"
"crosec reboot [rw | ro | cold] Reboot CROS-EC\n"
"crosec events Read CROS-EC host events\n"
"crosec clrevents [mask] Clear CROS-EC host events\n"
"crosec regioninfo <ro|rw> Read image info\n"
"crosec erase <ro|rw> Erase EC image\n"
"crosec read <ro|rw> <addr> [<size>] Read EC image\n"
"crosec write <ro|rw> <addr> [<size>] Write EC image\n"
"crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n"
"crosec ldo <idx> [<state>] Switch/Read LDO state\n"
"crosec test run tests on cros_ec\n"
"crosec version Read CROS-EC version\n"
"crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n"
"crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)"
);
#endif
UCLASS_DRIVER(cros_ec) = {
.id = UCLASS_CROS_EC,
.name = "cros_ec",
.per_device_auto_alloc_size = sizeof(struct cros_ec_dev),
.post_bind = cros_ec_post_bind,
};