u-boot-brain/drivers/spi/uniphier_spi.c
Simon Glass caa4daa2ae dm: treewide: Rename 'platdata' variables to just 'plat'
We use 'priv' for private data but often use 'platdata' for platform data.
We can't really use 'pdata' since that is ambiguous (it could mean private
or platform data).

Rename some of the latter variables to end with 'plat' for consistency.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-13 16:51:08 -07:00

419 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* uniphier_spi.c - Socionext UniPhier SPI driver
* Copyright 2019 Socionext, Inc.
*/
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <log.h>
#include <time.h>
#include <dm/device_compat.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <spi.h>
#include <wait_bit.h>
DECLARE_GLOBAL_DATA_PTR;
#define SSI_CTL 0x00
#define SSI_CTL_EN BIT(0)
#define SSI_CKS 0x04
#define SSI_CKS_CKRAT_MASK GENMASK(7, 0)
#define SSI_CKS_CKPHS BIT(14)
#define SSI_CKS_CKINIT BIT(13)
#define SSI_CKS_CKDLY BIT(12)
#define SSI_TXWDS 0x08
#define SSI_TXWDS_WDLEN_MASK GENMASK(13, 8)
#define SSI_TXWDS_TDTF_MASK GENMASK(7, 6)
#define SSI_TXWDS_DTLEN_MASK GENMASK(5, 0)
#define SSI_RXWDS 0x0c
#define SSI_RXWDS_RDTF_MASK GENMASK(7, 6)
#define SSI_RXWDS_DTLEN_MASK GENMASK(5, 0)
#define SSI_FPS 0x10
#define SSI_FPS_FSPOL BIT(15)
#define SSI_FPS_FSTRT BIT(14)
#define SSI_SR 0x14
#define SSI_SR_BUSY BIT(7)
#define SSI_SR_TNF BIT(5)
#define SSI_SR_RNE BIT(0)
#define SSI_IE 0x18
#define SSI_IC 0x1c
#define SSI_IC_TCIC BIT(4)
#define SSI_IC_RCIC BIT(3)
#define SSI_IC_RORIC BIT(0)
#define SSI_FC 0x20
#define SSI_FC_TXFFL BIT(12)
#define SSI_FC_TXFTH_MASK GENMASK(11, 8)
#define SSI_FC_RXFFL BIT(4)
#define SSI_FC_RXFTH_MASK GENMASK(3, 0)
#define SSI_XDR 0x24 /* TXDR for write, RXDR for read */
#define SSI_FIFO_DEPTH 8U
#define SSI_REG_TIMEOUT (CONFIG_SYS_HZ / 100) /* 10 ms */
#define SSI_XFER_TIMEOUT (CONFIG_SYS_HZ) /* 1 sec */
#define SSI_CLK 50000000 /* internal I/O clock: 50MHz */
struct uniphier_spi_platdata {
void __iomem *base;
u32 frequency; /* input frequency */
u32 speed_hz;
uint deactivate_delay_us; /* Delay to wait after deactivate */
uint activate_delay_us; /* Delay to wait after activate */
};
struct uniphier_spi_priv {
void __iomem *base;
u8 mode;
u8 fifo_depth;
u8 bits_per_word;
ulong last_transaction_us; /* Time of last transaction end */
};
static void uniphier_spi_enable(struct uniphier_spi_priv *priv, int enable)
{
u32 val;
val = readl(priv->base + SSI_CTL);
if (enable)
val |= SSI_CTL_EN;
else
val &= ~SSI_CTL_EN;
writel(val, priv->base + SSI_CTL);
}
static void uniphier_spi_regdump(struct uniphier_spi_priv *priv)
{
pr_debug("CTL %08x\n", readl(priv->base + SSI_CTL));
pr_debug("CKS %08x\n", readl(priv->base + SSI_CKS));
pr_debug("TXWDS %08x\n", readl(priv->base + SSI_TXWDS));
pr_debug("RXWDS %08x\n", readl(priv->base + SSI_RXWDS));
pr_debug("FPS %08x\n", readl(priv->base + SSI_FPS));
pr_debug("SR %08x\n", readl(priv->base + SSI_SR));
pr_debug("IE %08x\n", readl(priv->base + SSI_IE));
pr_debug("IC %08x\n", readl(priv->base + SSI_IC));
pr_debug("FC %08x\n", readl(priv->base + SSI_FC));
pr_debug("XDR %08x\n", readl(priv->base + SSI_XDR));
}
static void spi_cs_activate(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_platdata *plat = bus->plat;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
ulong delay_us; /* The delay completed so far */
u32 val;
/* If it's too soon to do another transaction, wait */
if (plat->deactivate_delay_us && priv->last_transaction_us) {
delay_us = timer_get_us() - priv->last_transaction_us;
if (delay_us < plat->deactivate_delay_us)
udelay(plat->deactivate_delay_us - delay_us);
}
val = readl(priv->base + SSI_FPS);
if (priv->mode & SPI_CS_HIGH)
val |= SSI_FPS_FSPOL;
else
val &= ~SSI_FPS_FSPOL;
writel(val, priv->base + SSI_FPS);
if (plat->activate_delay_us)
udelay(plat->activate_delay_us);
}
static void spi_cs_deactivate(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_platdata *plat = bus->plat;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
u32 val;
val = readl(priv->base + SSI_FPS);
if (priv->mode & SPI_CS_HIGH)
val &= ~SSI_FPS_FSPOL;
else
val |= SSI_FPS_FSPOL;
writel(val, priv->base + SSI_FPS);
/* Remember time of this transaction so we can honour the bus delay */
if (plat->deactivate_delay_us)
priv->last_transaction_us = timer_get_us();
}
static int uniphier_spi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
u32 val, size;
uniphier_spi_enable(priv, false);
/* disable interrupts */
writel(0, priv->base + SSI_IE);
/* bits_per_word */
size = priv->bits_per_word;
val = readl(priv->base + SSI_TXWDS);
val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
writel(val, priv->base + SSI_TXWDS);
val = readl(priv->base + SSI_RXWDS);
val &= ~SSI_RXWDS_DTLEN_MASK;
val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
writel(val, priv->base + SSI_RXWDS);
/* reset FIFOs */
val = SSI_FC_TXFFL | SSI_FC_RXFFL;
writel(val, priv->base + SSI_FC);
/* FIFO threthold */
val = readl(priv->base + SSI_FC);
val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
val |= FIELD_PREP(SSI_FC_TXFTH_MASK, priv->fifo_depth);
val |= FIELD_PREP(SSI_FC_RXFTH_MASK, priv->fifo_depth);
writel(val, priv->base + SSI_FC);
/* clear interrupts */
writel(SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC,
priv->base + SSI_IC);
uniphier_spi_enable(priv, true);
return 0;
}
static int uniphier_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
uniphier_spi_enable(priv, false);
return 0;
}
static int uniphier_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
const u8 *tx_buf = dout;
u8 *rx_buf = din, buf;
u32 len = bitlen / 8;
u32 tx_len, rx_len;
u32 ts, status;
int ret = 0;
if (bitlen % 8) {
dev_err(dev, "Non byte aligned SPI transfer\n");
return -EINVAL;
}
if (flags & SPI_XFER_BEGIN)
spi_cs_activate(dev);
uniphier_spi_enable(priv, true);
ts = get_timer(0);
tx_len = len;
rx_len = len;
uniphier_spi_regdump(priv);
while (tx_len || rx_len) {
ret = wait_for_bit_le32(priv->base + SSI_SR, SSI_SR_BUSY, false,
SSI_REG_TIMEOUT * 1000, false);
if (ret) {
if (ret == -ETIMEDOUT)
dev_err(dev, "access timeout\n");
break;
}
status = readl(priv->base + SSI_SR);
/* write the data into TX */
if (tx_len && (status & SSI_SR_TNF)) {
buf = tx_buf ? *tx_buf++ : 0;
writel(buf, priv->base + SSI_XDR);
tx_len--;
}
/* read the data from RX */
if (rx_len && (status & SSI_SR_RNE)) {
buf = readl(priv->base + SSI_XDR);
if (rx_buf)
*rx_buf++ = buf;
rx_len--;
}
if (get_timer(ts) >= SSI_XFER_TIMEOUT) {
dev_err(dev, "transfer timeout\n");
ret = -ETIMEDOUT;
break;
}
}
if (flags & SPI_XFER_END)
spi_cs_deactivate(dev);
uniphier_spi_enable(priv, false);
return ret;
}
static int uniphier_spi_set_speed(struct udevice *bus, uint speed)
{
struct uniphier_spi_platdata *plat = bus->plat;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
u32 val, ckdiv;
if (speed > plat->frequency)
speed = plat->frequency;
/* baudrate */
ckdiv = DIV_ROUND_UP(SSI_CLK, speed);
ckdiv = round_up(ckdiv, 2);
val = readl(priv->base + SSI_CKS);
val &= ~SSI_CKS_CKRAT_MASK;
val |= ckdiv & SSI_CKS_CKRAT_MASK;
writel(val, priv->base + SSI_CKS);
return 0;
}
static int uniphier_spi_set_mode(struct udevice *bus, uint mode)
{
struct uniphier_spi_priv *priv = dev_get_priv(bus);
u32 val1, val2;
/*
* clock setting
* CKPHS capture timing. 0:rising edge, 1:falling edge
* CKINIT clock initial level. 0:low, 1:high
* CKDLY clock delay. 0:no delay, 1:delay depending on FSTRT
* (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
*
* frame setting
* FSPOL frame signal porarity. 0: low, 1: high
* FSTRT start frame timing
* 0: rising edge of clock, 1: falling edge of clock
*/
val1 = readl(priv->base + SSI_CKS);
val2 = readl(priv->base + SSI_FPS);
switch (mode & (SPI_CPOL | SPI_CPHA)) {
case SPI_MODE_0:
/* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
val1 |= SSI_CKS_CKPHS | SSI_CKS_CKDLY;
val1 &= ~SSI_CKS_CKINIT;
val2 &= ~SSI_FPS_FSTRT;
break;
case SPI_MODE_1:
/* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
val1 &= ~(SSI_CKS_CKPHS | SSI_CKS_CKINIT | SSI_CKS_CKDLY);
val2 |= SSI_FPS_FSTRT;
break;
case SPI_MODE_2:
/* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
val1 |= SSI_CKS_CKINIT | SSI_CKS_CKDLY;
val1 &= ~SSI_CKS_CKPHS;
val2 |= SSI_FPS_FSTRT;
break;
case SPI_MODE_3:
/* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
val1 |= SSI_CKS_CKPHS | SSI_CKS_CKINIT;
val1 &= ~SSI_CKS_CKDLY;
val2 &= ~SSI_FPS_FSTRT;
break;
}
writel(val1, priv->base + SSI_CKS);
writel(val2, priv->base + SSI_FPS);
/* format */
val1 = readl(priv->base + SSI_TXWDS);
val2 = readl(priv->base + SSI_RXWDS);
if (mode & SPI_LSB_FIRST) {
val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
val2 |= FIELD_PREP(SSI_RXWDS_RDTF_MASK, 1);
}
writel(val1, priv->base + SSI_TXWDS);
writel(val2, priv->base + SSI_RXWDS);
priv->mode = mode;
return 0;
}
static int uniphier_spi_ofdata_to_platdata(struct udevice *bus)
{
struct uniphier_spi_platdata *plat = bus->plat;
const void *blob = gd->fdt_blob;
int node = dev_of_offset(bus);
plat->base = dev_read_addr_ptr(bus);
plat->frequency =
fdtdec_get_int(blob, node, "spi-max-frequency", 12500000);
plat->deactivate_delay_us =
fdtdec_get_int(blob, node, "spi-deactivate-delay", 0);
plat->activate_delay_us =
fdtdec_get_int(blob, node, "spi-activate-delay", 0);
plat->speed_hz = plat->frequency / 2;
return 0;
}
static int uniphier_spi_probe(struct udevice *bus)
{
struct uniphier_spi_platdata *plat = dev_get_platdata(bus);
struct uniphier_spi_priv *priv = dev_get_priv(bus);
priv->base = plat->base;
priv->fifo_depth = SSI_FIFO_DEPTH;
priv->bits_per_word = 8;
return 0;
}
static const struct dm_spi_ops uniphier_spi_ops = {
.claim_bus = uniphier_spi_claim_bus,
.release_bus = uniphier_spi_release_bus,
.xfer = uniphier_spi_xfer,
.set_speed = uniphier_spi_set_speed,
.set_mode = uniphier_spi_set_mode,
};
static const struct udevice_id uniphier_spi_ids[] = {
{ .compatible = "socionext,uniphier-scssi" },
{ /* Sentinel */ }
};
U_BOOT_DRIVER(uniphier_spi) = {
.name = "uniphier_spi",
.id = UCLASS_SPI,
.of_match = uniphier_spi_ids,
.ops = &uniphier_spi_ops,
.ofdata_to_platdata = uniphier_spi_ofdata_to_platdata,
.plat_auto = sizeof(struct uniphier_spi_platdata),
.priv_auto = sizeof(struct uniphier_spi_priv),
.probe = uniphier_spi_probe,
};