u-boot-brain/board/samsung/odroid/odroid.c
Przemyslaw Marczak ca2b933a38 odroid: enable driver model pmic/regulator API and MAX77686 drivers
This change enables the configs required to init and setup max77686
regulator driver, using the new driver model pmic and regulator API.
And also changes the old pmic framework calls to the new ones.

This commits enables:
- CONFIG_ERRNO_STR
- CONFIG_DM_PMIC
- CONFIG_DM_PMIC_CMD
- CONFIG_DM_PMIC_MAX77686
- CONFIG_DM_REGULATOR
- CONFIG_DM_REGULATOR_CMD
- CONFIG_DM_REGULATOR_MAX77686

And removes the unused:
- CONFIG_DM_I2C_COMPAT
- CONFIG_POWER
- CONFIG_POWER_I2C
- CONFIG_POWER_MAX77686

Signed-off-by: Przemyslaw Marczak <p.marczak@samsung.com>
Acked-by: Simon Glass <sjg@chromium.org>
2015-05-14 19:58:34 -06:00

518 lines
14 KiB
C

/*
* Copyright (C) 2014 Samsung Electronics
* Przemyslaw Marczak <p.marczak@samsung.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/power.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/gpio.h>
#include <asm/arch/cpu.h>
#include <dm.h>
#include <power/pmic.h>
#include <power/regulator.h>
#include <power/max77686_pmic.h>
#include <errno.h>
#include <mmc.h>
#include <usb.h>
#include <usb/s3c_udc.h>
#include <samsung/misc.h>
#include "setup.h"
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_BOARD_TYPES
/* Odroid board types */
enum {
ODROID_TYPE_U3,
ODROID_TYPE_X2,
ODROID_TYPES,
};
static const char *mmc_regulators[] = {
"VDDQ_EMMC_1.8V",
"VDDQ_EMMC_2.8V",
"TFLASH_2.8V",
};
void set_board_type(void)
{
/* Set GPA1 pin 1 to HI - enable XCL205 output */
writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
/* Set GPC1 pin 2 to IN - check XCL205 output state */
writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
/* XCL205 - needs some latch time */
sdelay(200000);
/* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
gd->board_type = ODROID_TYPE_X2;
else
gd->board_type = ODROID_TYPE_U3;
}
const char *get_board_type(void)
{
const char *board_type[] = {"u3", "x2"};
return board_type[gd->board_type];
}
#endif
#ifdef CONFIG_SET_DFU_ALT_INFO
char *get_dfu_alt_system(char *interface, char *devstr)
{
return getenv("dfu_alt_system");
}
char *get_dfu_alt_boot(char *interface, char *devstr)
{
struct mmc *mmc;
char *alt_boot;
int dev_num;
dev_num = simple_strtoul(devstr, NULL, 10);
mmc = find_mmc_device(dev_num);
if (!mmc)
return NULL;
if (mmc_init(mmc))
return NULL;
alt_boot = IS_SD(mmc) ? CONFIG_DFU_ALT_BOOT_SD :
CONFIG_DFU_ALT_BOOT_EMMC;
return alt_boot;
}
#endif
static void board_clock_init(void)
{
unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
samsung_get_base_clock();
/*
* CMU_CPU clocks src to MPLL
* Bit values: 0 ; 1
* MUX_APLL_SEL: FIN_PLL ; FOUT_APLL
* MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL
* MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C
* MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL
*/
clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
MUX_MPLL_USER_SEL_C(1);
clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
/* Wait for mux change */
while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
continue;
/* Set APLL to 1000MHz */
clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
/* Wait for PLL to be locked */
while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
continue;
/* Set CMU_CPU clocks src to APLL */
set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
MUX_MPLL_USER_SEL_C(1);
clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
/* Wait for mux change */
while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
continue;
set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
APLL_RATIO(0) | CORE2_RATIO(0);
/*
* Set dividers for MOUTcore = 1000 MHz
* coreout = MOUT / (ratio + 1) = 1000 MHz (0)
* corem0 = armclk / (ratio + 1) = 333 MHz (2)
* corem1 = armclk / (ratio + 1) = 166 MHz (5)
* periph = armclk / (ratio + 1) = 1000 MHz (0)
* atbout = MOUT / (ratio + 1) = 200 MHz (4)
* pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
* sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
* core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
*/
clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
APLL_RATIO(7) | CORE2_RATIO(7);
clrsetbits_le32(&clk->div_cpu0, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
continue;
/*
* For MOUThpm = 1000 MHz (MOUTapll)
* doutcopy = MOUThpm / (ratio + 1) = 200 (4)
* sclkhpm = doutcopy / (ratio + 1) = 200 (4)
* cores_out = armclk / (ratio + 1) = 200 (4)
*/
clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
clrsetbits_le32(&clk->div_cpu1, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
continue;
/*
* Set CMU_DMC clocks src to APLL
* Bit values: 0 ; 1
* MUX_C2C_SEL: SCLKMPLL ; SCLKAPLL
* MUX_DMC_BUS_SEL: SCLKMPLL ; SCLKAPLL
* MUX_DPHY_SEL: SCLKMPLL ; SCLKAPLL
* MUX_MPLL_SEL: FINPLL ; MOUT_MPLL_FOUT
* MUX_PWI_SEL: 0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
* MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
* MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
* MUX_G2D_ACP_SEL: OUT_ACP0 ; OUT_ACP1
*/
clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
/* Wait for mux change */
while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
continue;
/* Set MPLL to 800MHz */
set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
/* Wait for PLL to be locked */
while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
continue;
/* Switch back CMU_DMC mux */
set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
/* Wait for mux change */
while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
continue;
/* CLK_DIV_DMC0 */
clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
/*
* For:
* MOUTdmc = 800 MHz
* MOUTdphy = 800 MHz
*
* aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
* pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
* sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
* sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
* aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
* aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
*/
set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
clrsetbits_le32(&clk->div_dmc0, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
continue;
/* CLK_DIV_DMC1 */
clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
/*
* For:
* MOUTg2d = 800 MHz
* MOUTc2c = 800 Mhz
* MOUTpwi = 108 MHz
*
* sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
* sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
* aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
* sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
*/
set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
clrsetbits_le32(&clk->div_dmc1, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
continue;
/* CLK_SRC_PERIL0 */
clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
UART3_SEL(15) | UART4_SEL(15);
/*
* Set CLK_SRC_PERIL0 clocks src to MPLL
* src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
* 5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
* 8(SCLK_VPLL)
*
* Set all to SCLK_MPLL_USER_T
*/
set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
UART4_SEL(6);
clrsetbits_le32(&clk->src_peril0, clr, set);
/* CLK_DIV_PERIL0 */
clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
UART3_RATIO(15) | UART4_RATIO(15);
/*
* For MOUTuart0-4: 800MHz
*
* SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
*/
set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
UART3_RATIO(7) | UART4_RATIO(7);
clrsetbits_le32(&clk->div_peril0, clr, set);
while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
continue;
/* CLK_DIV_FSYS1 */
clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
MMC1_PRE_RATIO(255);
/*
* For MOUTmmc0-3 = 800 MHz (MPLL)
*
* DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
* sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
* DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
* sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
*/
set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
MMC1_PRE_RATIO(1);
clrsetbits_le32(&clk->div_fsys1, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
continue;
/* CLK_DIV_FSYS2 */
clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
MMC3_PRE_RATIO(255);
/*
* For MOUTmmc0-3 = 800 MHz (MPLL)
*
* DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
* sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
* DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
* sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
*/
set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
MMC3_PRE_RATIO(1);
clrsetbits_le32(&clk->div_fsys2, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
continue;
/* CLK_DIV_FSYS3 */
clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
/*
* For MOUTmmc4 = 800 MHz (MPLL)
*
* DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
* sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
*/
set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
clrsetbits_le32(&clk->div_fsys3, clr, set);
/* Wait for divider ready status */
while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
continue;
return;
}
static void board_gpio_init(void)
{
/* eMMC Reset Pin */
gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
/* Enable FAN (Odroid U3) */
gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
/* OTG Vbus output (Odroid U3+) */
gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
/* OTG INT (Odroid U3+) */
gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
gpio_direction_input(EXYNOS4X12_GPIO_X31);
/* Blue LED (Odroid X2/U2/U3) */
gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
#ifdef CONFIG_CMD_USB
/* USB3503A Reference frequency */
gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
/* USB3503A Connect */
gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
/* USB3503A Reset */
gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
#endif
}
int exynos_early_init_f(void)
{
board_clock_init();
return 0;
}
int exynos_init(void)
{
board_gpio_init();
return 0;
}
int exynos_power_init(void)
{
int list_count = ARRAY_SIZE(mmc_regulators);
if (regulator_list_autoset(mmc_regulators, list_count, NULL, true))
error("Unable to init all mmc regulators");
return 0;
}
#ifdef CONFIG_USB_GADGET
static int s5pc210_phy_control(int on)
{
struct udevice *dev;
int ret;
ret = regulator_by_platname("VDD_UOTG_3.0V", &dev);
if (ret) {
error("Regulator get error: %d", ret);
return ret;
}
if (on)
return regulator_set_mode(dev, OPMODE_ON);
else
return regulator_set_mode(dev, OPMODE_LPM);
}
struct s3c_plat_otg_data s5pc210_otg_data = {
.phy_control = s5pc210_phy_control,
.regs_phy = EXYNOS4X12_USBPHY_BASE,
.regs_otg = EXYNOS4X12_USBOTG_BASE,
.usb_phy_ctrl = EXYNOS4X12_USBPHY_CONTROL,
.usb_flags = PHY0_SLEEP,
};
#endif
#if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
int board_usb_init(int index, enum usb_init_type init)
{
#ifdef CONFIG_CMD_USB
struct udevice *dev;
int ret;
/* Set Ref freq 0 => 24MHz, 1 => 26MHz*/
/* Odroid Us have it at 24MHz, Odroid Xs at 26MHz */
if (gd->board_type == ODROID_TYPE_U3)
gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
else
gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
/* Disconnect, Reset, Connect */
gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
/* Power off and on BUCK8 for LAN9730 */
debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
ret = regulator_by_platname("VCC_P3V3_2.85V", &dev);
if (ret) {
error("Regulator get error: %d", ret);
return ret;
}
ret = regulator_set_enable(dev, true);
if (ret) {
error("Regulator %s enable setting error: %d", dev->name, ret);
return ret;
}
ret = regulator_set_value(dev, 750000);
if (ret) {
error("Regulator %s value setting error: %d", dev->name, ret);
return ret;
}
ret = regulator_set_value(dev, 3300000);
if (ret) {
error("Regulator %s value setting error: %d", dev->name, ret);
return ret;
}
#endif
debug("USB_udc_probe\n");
return s3c_udc_probe(&s5pc210_otg_data);
}
#endif