u-boot-brain/drivers/mtd/nand/denali.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

1368 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2014 Panasonic Corporation
* Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
* Copyright (C) 2009-2010, Intel Corporation and its suppliers.
*/
#include <dm.h>
#include <nand.h>
#include <linux/bitfield.h>
#include <linux/dma-direction.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include "denali.h"
static dma_addr_t dma_map_single(void *dev, void *ptr, size_t size,
enum dma_data_direction dir)
{
unsigned long addr = (unsigned long)ptr;
if (dir == DMA_FROM_DEVICE)
invalidate_dcache_range(addr, addr + size);
else
flush_dcache_range(addr, addr + size);
return addr;
}
static void dma_unmap_single(void *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dir != DMA_TO_DEVICE)
invalidate_dcache_range(addr, addr + size);
}
static int dma_mapping_error(void *dev, dma_addr_t addr)
{
return 0;
}
#define DENALI_NAND_NAME "denali-nand"
/* for Indexed Addressing */
#define DENALI_INDEXED_CTRL 0x00
#define DENALI_INDEXED_DATA 0x10
#define DENALI_MAP00 (0 << 26) /* direct access to buffer */
#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
#define DENALI_MAP10 (2 << 26) /* high-level control plane */
#define DENALI_MAP11 (3 << 26) /* direct controller access */
/* MAP11 access cycle type */
#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */
#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */
#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */
/* MAP10 commands */
#define DENALI_ERASE 0x01
#define DENALI_BANK(denali) ((denali)->active_bank << 24)
#define DENALI_INVALID_BANK -1
#define DENALI_NR_BANKS 4
/*
* The bus interface clock, clk_x, is phase aligned with the core clock. The
* clk_x is an integral multiple N of the core clk. The value N is configured
* at IP delivery time, and its available value is 4, 5, or 6. We need to align
* to the largest value to make it work with any possible configuration.
*/
#define DENALI_CLK_X_MULT 6
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
/*
* Direct Addressing - the slave address forms the control information (command
* type, bank, block, and page address). The slave data is the actual data to
* be transferred. This mode requires 28 bits of address region allocated.
*/
static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
{
return ioread32(denali->host + addr);
}
static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
u32 data)
{
iowrite32(data, denali->host + addr);
}
/*
* Indexed Addressing - address translation module intervenes in passing the
* control information. This mode reduces the required address range. The
* control information and transferred data are latched by the registers in
* the translation module.
*/
static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
{
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
return ioread32(denali->host + DENALI_INDEXED_DATA);
}
static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
u32 data)
{
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
iowrite32(data, denali->host + DENALI_INDEXED_DATA);
}
/*
* Use the configuration feature register to determine the maximum number of
* banks that the hardware supports.
*/
static void denali_detect_max_banks(struct denali_nand_info *denali)
{
uint32_t features = ioread32(denali->reg + FEATURES);
denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
/* the encoding changed from rev 5.0 to 5.1 */
if (denali->revision < 0x0501)
denali->max_banks <<= 1;
}
static void __maybe_unused denali_enable_irq(struct denali_nand_info *denali)
{
int i;
for (i = 0; i < DENALI_NR_BANKS; i++)
iowrite32(U32_MAX, denali->reg + INTR_EN(i));
iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
}
static void __maybe_unused denali_disable_irq(struct denali_nand_info *denali)
{
int i;
for (i = 0; i < DENALI_NR_BANKS; i++)
iowrite32(0, denali->reg + INTR_EN(i));
iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
}
static void denali_clear_irq(struct denali_nand_info *denali,
int bank, uint32_t irq_status)
{
/* write one to clear bits */
iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
}
static void denali_clear_irq_all(struct denali_nand_info *denali)
{
int i;
for (i = 0; i < DENALI_NR_BANKS; i++)
denali_clear_irq(denali, i, U32_MAX);
}
static void __denali_check_irq(struct denali_nand_info *denali)
{
uint32_t irq_status;
int i;
for (i = 0; i < DENALI_NR_BANKS; i++) {
irq_status = ioread32(denali->reg + INTR_STATUS(i));
denali_clear_irq(denali, i, irq_status);
if (i != denali->active_bank)
continue;
denali->irq_status |= irq_status;
}
}
static void denali_reset_irq(struct denali_nand_info *denali)
{
denali->irq_status = 0;
denali->irq_mask = 0;
}
static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
uint32_t irq_mask)
{
unsigned long time_left = 1000000;
while (time_left) {
__denali_check_irq(denali);
if (irq_mask & denali->irq_status)
return denali->irq_status;
udelay(1);
time_left--;
}
if (!time_left) {
dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
irq_mask);
return 0;
}
return denali->irq_status;
}
static uint32_t denali_check_irq(struct denali_nand_info *denali)
{
__denali_check_irq(denali);
return denali->irq_status;
}
static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
int i;
for (i = 0; i < len; i++)
buf[i] = denali->host_read(denali, addr);
}
static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
int i;
for (i = 0; i < len; i++)
denali->host_write(denali, addr, buf[i]);
}
static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
uint16_t *buf16 = (uint16_t *)buf;
int i;
for (i = 0; i < len / 2; i++)
buf16[i] = denali->host_read(denali, addr);
}
static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
int len)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
const uint16_t *buf16 = (const uint16_t *)buf;
int i;
for (i = 0; i < len / 2; i++)
denali->host_write(denali, addr, buf16[i]);
}
static uint8_t denali_read_byte(struct mtd_info *mtd)
{
uint8_t byte;
denali_read_buf(mtd, &byte, 1);
return byte;
}
static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
{
denali_write_buf(mtd, &byte, 1);
}
static uint16_t denali_read_word(struct mtd_info *mtd)
{
uint16_t word;
denali_read_buf16(mtd, (uint8_t *)&word, 2);
return word;
}
static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t type;
if (ctrl & NAND_CLE)
type = DENALI_MAP11_CMD;
else if (ctrl & NAND_ALE)
type = DENALI_MAP11_ADDR;
else
return;
/*
* Some commands are followed by chip->dev_ready or chip->waitfunc.
* irq_status must be cleared here to catch the R/B# interrupt later.
*/
if (ctrl & NAND_CTRL_CHANGE)
denali_reset_irq(denali);
denali->host_write(denali, DENALI_BANK(denali) | type, dat);
}
static int denali_dev_ready(struct mtd_info *mtd)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
return !!(denali_check_irq(denali) & INTR__INT_ACT);
}
static int denali_check_erased_page(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
unsigned long uncor_ecc_flags,
unsigned int max_bitflips)
{
uint8_t *ecc_code = chip->buffers->ecccode;
int ecc_steps = chip->ecc.steps;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
int i, ret, stat;
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
for (i = 0; i < ecc_steps; i++) {
if (!(uncor_ecc_flags & BIT(i)))
continue;
stat = nand_check_erased_ecc_chunk(buf, ecc_size,
ecc_code, ecc_bytes,
NULL, 0,
chip->ecc.strength);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
buf += ecc_size;
ecc_code += ecc_bytes;
}
return max_bitflips;
}
static int denali_hw_ecc_fixup(struct mtd_info *mtd,
struct denali_nand_info *denali,
unsigned long *uncor_ecc_flags)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int bank = denali->active_bank;
uint32_t ecc_cor;
unsigned int max_bitflips;
ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
/*
* This flag is set when uncorrectable error occurs at least in
* one ECC sector. We can not know "how many sectors", or
* "which sector(s)". We need erase-page check for all sectors.
*/
*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
return 0;
}
max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
/*
* The register holds the maximum of per-sector corrected bitflips.
* This is suitable for the return value of the ->read_page() callback.
* Unfortunately, we can not know the total number of corrected bits in
* the page. Increase the stats by max_bitflips. (compromised solution)
*/
mtd->ecc_stats.corrected += max_bitflips;
return max_bitflips;
}
static int denali_sw_ecc_fixup(struct mtd_info *mtd,
struct denali_nand_info *denali,
unsigned long *uncor_ecc_flags, uint8_t *buf)
{
unsigned int ecc_size = denali->nand.ecc.size;
unsigned int bitflips = 0;
unsigned int max_bitflips = 0;
uint32_t err_addr, err_cor_info;
unsigned int err_byte, err_sector, err_device;
uint8_t err_cor_value;
unsigned int prev_sector = 0;
uint32_t irq_status;
denali_reset_irq(denali);
do {
err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
err_cor_info);
err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
err_cor_info);
/* reset the bitflip counter when crossing ECC sector */
if (err_sector != prev_sector)
bitflips = 0;
if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
/*
* Check later if this is a real ECC error, or
* an erased sector.
*/
*uncor_ecc_flags |= BIT(err_sector);
} else if (err_byte < ecc_size) {
/*
* If err_byte is larger than ecc_size, means error
* happened in OOB, so we ignore it. It's no need for
* us to correct it err_device is represented the NAND
* error bits are happened in if there are more than
* one NAND connected.
*/
int offset;
unsigned int flips_in_byte;
offset = (err_sector * ecc_size + err_byte) *
denali->devs_per_cs + err_device;
/* correct the ECC error */
flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
buf[offset] ^= err_cor_value;
mtd->ecc_stats.corrected += flips_in_byte;
bitflips += flips_in_byte;
max_bitflips = max(max_bitflips, bitflips);
}
prev_sector = err_sector;
} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
/*
* Once handle all ECC errors, controller will trigger an
* ECC_TRANSACTION_DONE interrupt.
*/
irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
return -EIO;
return max_bitflips;
}
static void denali_setup_dma64(struct denali_nand_info *denali,
dma_addr_t dma_addr, int page, int write)
{
uint32_t mode;
const int page_count = 1;
mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
/* DMA is a three step process */
/*
* 1. setup transfer type, interrupt when complete,
* burst len = 64 bytes, the number of pages
*/
denali->host_write(denali, mode,
0x01002000 | (64 << 16) | (write << 8) | page_count);
/* 2. set memory low address */
denali->host_write(denali, mode, lower_32_bits(dma_addr));
/* 3. set memory high address */
denali->host_write(denali, mode, upper_32_bits(dma_addr));
}
static void denali_setup_dma32(struct denali_nand_info *denali,
dma_addr_t dma_addr, int page, int write)
{
uint32_t mode;
const int page_count = 1;
mode = DENALI_MAP10 | DENALI_BANK(denali);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
denali->host_write(denali, mode | page,
0x2000 | (write << 8) | page_count);
/* 2. set memory high address bits 23:8 */
denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes */
denali->host_write(denali, mode | 0x14000, 0x2400);
}
static int denali_pio_read(struct denali_nand_info *denali, void *buf,
size_t size, int page, int raw)
{
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
uint32_t *buf32 = (uint32_t *)buf;
uint32_t irq_status, ecc_err_mask;
int i;
if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
ecc_err_mask = INTR__ECC_UNCOR_ERR;
else
ecc_err_mask = INTR__ECC_ERR;
denali_reset_irq(denali);
for (i = 0; i < size / 4; i++)
*buf32++ = denali->host_read(denali, addr);
irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
if (!(irq_status & INTR__PAGE_XFER_INC))
return -EIO;
if (irq_status & INTR__ERASED_PAGE)
memset(buf, 0xff, size);
return irq_status & ecc_err_mask ? -EBADMSG : 0;
}
static int denali_pio_write(struct denali_nand_info *denali,
const void *buf, size_t size, int page, int raw)
{
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
const uint32_t *buf32 = (uint32_t *)buf;
uint32_t irq_status;
int i;
denali_reset_irq(denali);
for (i = 0; i < size / 4; i++)
denali->host_write(denali, addr, *buf32++);
irq_status = denali_wait_for_irq(denali,
INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
if (!(irq_status & INTR__PROGRAM_COMP))
return -EIO;
return 0;
}
static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
size_t size, int page, int raw, int write)
{
if (write)
return denali_pio_write(denali, buf, size, page, raw);
else
return denali_pio_read(denali, buf, size, page, raw);
}
static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
size_t size, int page, int raw, int write)
{
dma_addr_t dma_addr;
uint32_t irq_mask, irq_status, ecc_err_mask;
enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
int ret = 0;
dma_addr = dma_map_single(denali->dev, buf, size, dir);
if (dma_mapping_error(denali->dev, dma_addr)) {
dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
return denali_pio_xfer(denali, buf, size, page, raw, write);
}
if (write) {
/*
* INTR__PROGRAM_COMP is never asserted for the DMA transfer.
* We can use INTR__DMA_CMD_COMP instead. This flag is asserted
* when the page program is completed.
*/
irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
ecc_err_mask = 0;
} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
irq_mask = INTR__DMA_CMD_COMP;
ecc_err_mask = INTR__ECC_UNCOR_ERR;
} else {
irq_mask = INTR__DMA_CMD_COMP;
ecc_err_mask = INTR__ECC_ERR;
}
iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
denali_reset_irq(denali);
denali->setup_dma(denali, dma_addr, page, write);
irq_status = denali_wait_for_irq(denali, irq_mask);
if (!(irq_status & INTR__DMA_CMD_COMP))
ret = -EIO;
else if (irq_status & ecc_err_mask)
ret = -EBADMSG;
iowrite32(0, denali->reg + DMA_ENABLE);
dma_unmap_single(denali->dev, dma_addr, size, dir);
if (irq_status & INTR__ERASED_PAGE)
memset(buf, 0xff, size);
return ret;
}
static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
size_t size, int page, int raw, int write)
{
iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
denali->reg + TRANSFER_SPARE_REG);
if (denali->dma_avail)
return denali_dma_xfer(denali, buf, size, page, raw, write);
else
return denali_pio_xfer(denali, buf, size, page, raw, write);
}
static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
int page, int write)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
int writesize = mtd->writesize;
int oobsize = mtd->oobsize;
uint8_t *bufpoi = chip->oob_poi;
int ecc_steps = chip->ecc.steps;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
int oob_skip = denali->oob_skip_bytes;
size_t size = writesize + oobsize;
int i, pos, len;
/* BBM at the beginning of the OOB area */
chip->cmdfunc(mtd, start_cmd, writesize, page);
if (write)
chip->write_buf(mtd, bufpoi, oob_skip);
else
chip->read_buf(mtd, bufpoi, oob_skip);
bufpoi += oob_skip;
/* OOB ECC */
for (i = 0; i < ecc_steps; i++) {
pos = ecc_size + i * (ecc_size + ecc_bytes);
len = ecc_bytes;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
chip->cmdfunc(mtd, rnd_cmd, pos, -1);
if (write)
chip->write_buf(mtd, bufpoi, len);
else
chip->read_buf(mtd, bufpoi, len);
bufpoi += len;
if (len < ecc_bytes) {
len = ecc_bytes - len;
chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
if (write)
chip->write_buf(mtd, bufpoi, len);
else
chip->read_buf(mtd, bufpoi, len);
bufpoi += len;
}
}
/* OOB free */
len = oobsize - (bufpoi - chip->oob_poi);
chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
if (write)
chip->write_buf(mtd, bufpoi, len);
else
chip->read_buf(mtd, bufpoi, len);
}
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
int writesize = mtd->writesize;
int oobsize = mtd->oobsize;
int ecc_steps = chip->ecc.steps;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
void *tmp_buf = denali->buf;
int oob_skip = denali->oob_skip_bytes;
size_t size = writesize + oobsize;
int ret, i, pos, len;
ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
if (ret)
return ret;
/* Arrange the buffer for syndrome payload/ecc layout */
if (buf) {
for (i = 0; i < ecc_steps; i++) {
pos = i * (ecc_size + ecc_bytes);
len = ecc_size;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(buf, tmp_buf + pos, len);
buf += len;
if (len < ecc_size) {
len = ecc_size - len;
memcpy(buf, tmp_buf + writesize + oob_skip,
len);
buf += len;
}
}
}
if (oob_required) {
uint8_t *oob = chip->oob_poi;
/* BBM at the beginning of the OOB area */
memcpy(oob, tmp_buf + writesize, oob_skip);
oob += oob_skip;
/* OOB ECC */
for (i = 0; i < ecc_steps; i++) {
pos = ecc_size + i * (ecc_size + ecc_bytes);
len = ecc_bytes;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(oob, tmp_buf + pos, len);
oob += len;
if (len < ecc_bytes) {
len = ecc_bytes - len;
memcpy(oob, tmp_buf + writesize + oob_skip,
len);
oob += len;
}
}
/* OOB free */
len = oobsize - (oob - chip->oob_poi);
memcpy(oob, tmp_buf + size - len, len);
}
return 0;
}
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
denali_oob_xfer(mtd, chip, page, 0);
return 0;
}
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
int status;
denali_reset_irq(denali);
denali_oob_xfer(mtd, chip, page, 1);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
unsigned long uncor_ecc_flags = 0;
int stat = 0;
int ret;
ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
if (ret && ret != -EBADMSG)
return ret;
if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
else if (ret == -EBADMSG)
stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
if (stat < 0)
return stat;
if (uncor_ecc_flags) {
ret = denali_read_oob(mtd, chip, page);
if (ret)
return ret;
stat = denali_check_erased_page(mtd, chip, buf,
uncor_ecc_flags, stat);
}
return stat;
}
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
int writesize = mtd->writesize;
int oobsize = mtd->oobsize;
int ecc_steps = chip->ecc.steps;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
void *tmp_buf = denali->buf;
int oob_skip = denali->oob_skip_bytes;
size_t size = writesize + oobsize;
int i, pos, len;
/*
* Fill the buffer with 0xff first except the full page transfer.
* This simplifies the logic.
*/
if (!buf || !oob_required)
memset(tmp_buf, 0xff, size);
/* Arrange the buffer for syndrome payload/ecc layout */
if (buf) {
for (i = 0; i < ecc_steps; i++) {
pos = i * (ecc_size + ecc_bytes);
len = ecc_size;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(tmp_buf + pos, buf, len);
buf += len;
if (len < ecc_size) {
len = ecc_size - len;
memcpy(tmp_buf + writesize + oob_skip, buf,
len);
buf += len;
}
}
}
if (oob_required) {
const uint8_t *oob = chip->oob_poi;
/* BBM at the beginning of the OOB area */
memcpy(tmp_buf + writesize, oob, oob_skip);
oob += oob_skip;
/* OOB ECC */
for (i = 0; i < ecc_steps; i++) {
pos = ecc_size + i * (ecc_size + ecc_bytes);
len = ecc_bytes;
if (pos >= writesize)
pos += oob_skip;
else if (pos + len > writesize)
len = writesize - pos;
memcpy(tmp_buf + pos, oob, len);
oob += len;
if (len < ecc_bytes) {
len = ecc_bytes - len;
memcpy(tmp_buf + writesize + oob_skip, oob,
len);
oob += len;
}
}
/* OOB free */
len = oobsize - (oob - chip->oob_poi);
memcpy(tmp_buf + size - len, oob, len);
}
return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
}
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
return denali_data_xfer(denali, (void *)buf, mtd->writesize,
page, 0, 1);
}
static void denali_select_chip(struct mtd_info *mtd, int chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
denali->active_bank = chip;
}
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status;
/* R/B# pin transitioned from low to high? */
irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
}
static int denali_erase(struct mtd_info *mtd, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status;
denali_reset_irq(denali);
denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
DENALI_ERASE);
/* wait for erase to complete or failure to occur */
irq_status = denali_wait_for_irq(denali,
INTR__ERASE_COMP | INTR__ERASE_FAIL);
return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
}
static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
const struct nand_data_interface *conf)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
const struct nand_sdr_timings *timings;
unsigned long t_clk;
int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
int addr_2_data_mask;
uint32_t tmp;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return PTR_ERR(timings);
/* clk_x period in picoseconds */
t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
if (!t_clk)
return -EINVAL;
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
/* tREA -> ACC_CLKS */
acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
tmp = ioread32(denali->reg + ACC_CLKS);
tmp &= ~ACC_CLKS__VALUE;
tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
iowrite32(tmp, denali->reg + ACC_CLKS);
/* tRWH -> RE_2_WE */
re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
tmp = ioread32(denali->reg + RE_2_WE);
tmp &= ~RE_2_WE__VALUE;
tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
iowrite32(tmp, denali->reg + RE_2_WE);
/* tRHZ -> RE_2_RE */
re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
tmp = ioread32(denali->reg + RE_2_RE);
tmp &= ~RE_2_RE__VALUE;
tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
iowrite32(tmp, denali->reg + RE_2_RE);
/*
* tCCS, tWHR -> WE_2_RE
*
* With WE_2_RE properly set, the Denali controller automatically takes
* care of the delay; the driver need not set NAND_WAIT_TCCS.
*/
we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min),
t_clk);
we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
/* tADL -> ADDR_2_DATA */
/* for older versions, ADDR_2_DATA is only 6 bit wide */
addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
if (denali->revision < 0x0501)
addr_2_data_mask >>= 1;
addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
/* tREH, tWH -> RDWR_EN_HI_CNT */
rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
t_clk);
rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
tmp &= ~RDWR_EN_HI_CNT__VALUE;
tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
/* tRP, tWP -> RDWR_EN_LO_CNT */
rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
t_clk);
rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
t_clk);
rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
tmp &= ~RDWR_EN_LO_CNT__VALUE;
tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
/* tCS, tCEA -> CS_SETUP_CNT */
cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
0);
cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
tmp = ioread32(denali->reg + CS_SETUP_CNT);
tmp &= ~CS_SETUP_CNT__VALUE;
tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
iowrite32(tmp, denali->reg + CS_SETUP_CNT);
return 0;
}
static void denali_reset_banks(struct denali_nand_info *denali)
{
u32 irq_status;
int i;
for (i = 0; i < denali->max_banks; i++) {
denali->active_bank = i;
denali_reset_irq(denali);
iowrite32(DEVICE_RESET__BANK(i),
denali->reg + DEVICE_RESET);
irq_status = denali_wait_for_irq(denali,
INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
if (!(irq_status & INTR__INT_ACT))
break;
}
dev_dbg(denali->dev, "%d chips connected\n", i);
denali->max_banks = i;
}
static void denali_hw_init(struct denali_nand_info *denali)
{
/*
* The REVISION register may not be reliable. Platforms are allowed to
* override it.
*/
if (!denali->revision)
denali->revision = swab16(ioread32(denali->reg + REVISION));
/*
* tell driver how many bit controller will skip before writing
* ECC code in OOB. This is normally used for bad block marker
*/
denali->oob_skip_bytes = CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES;
iowrite32(denali->oob_skip_bytes, denali->reg + SPARE_AREA_SKIP_BYTES);
denali_detect_max_banks(denali);
iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
}
int denali_calc_ecc_bytes(int step_size, int strength)
{
/* BCH code. Denali requires ecc.bytes to be multiple of 2 */
return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
}
EXPORT_SYMBOL(denali_calc_ecc_bytes);
static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
struct denali_nand_info *denali)
{
int oobavail = mtd->oobsize - denali->oob_skip_bytes;
int ret;
/*
* If .size and .strength are already set (usually by DT),
* check if they are supported by this controller.
*/
if (chip->ecc.size && chip->ecc.strength)
return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
/*
* We want .size and .strength closest to the chip's requirement
* unless NAND_ECC_MAXIMIZE is requested.
*/
if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
if (!ret)
return 0;
}
/* Max ECC strength is the last thing we can do */
return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
}
static struct nand_ecclayout nand_oob;
static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = denali->oob_skip_bytes;
oobregion->length = chip->ecc.total;
return 0;
}
static int denali_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
oobregion->length = mtd->oobsize - oobregion->offset;
return 0;
}
static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
.ecc = denali_ooblayout_ecc,
.free = denali_ooblayout_free,
};
static int denali_multidev_fixup(struct denali_nand_info *denali)
{
struct nand_chip *chip = &denali->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
/*
* Support for multi device:
* When the IP configuration is x16 capable and two x8 chips are
* connected in parallel, DEVICES_CONNECTED should be set to 2.
* In this case, the core framework knows nothing about this fact,
* so we should tell it the _logical_ pagesize and anything necessary.
*/
denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
/*
* On some SoCs, DEVICES_CONNECTED is not auto-detected.
* For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
*/
if (denali->devs_per_cs == 0) {
denali->devs_per_cs = 1;
iowrite32(1, denali->reg + DEVICES_CONNECTED);
}
if (denali->devs_per_cs == 1)
return 0;
if (denali->devs_per_cs != 2) {
dev_err(denali->dev, "unsupported number of devices %d\n",
denali->devs_per_cs);
return -EINVAL;
}
/* 2 chips in parallel */
mtd->size <<= 1;
mtd->erasesize <<= 1;
mtd->writesize <<= 1;
mtd->oobsize <<= 1;
chip->chipsize <<= 1;
chip->page_shift += 1;
chip->phys_erase_shift += 1;
chip->bbt_erase_shift += 1;
chip->chip_shift += 1;
chip->pagemask <<= 1;
chip->ecc.size <<= 1;
chip->ecc.bytes <<= 1;
chip->ecc.strength <<= 1;
denali->oob_skip_bytes <<= 1;
return 0;
}
int denali_init(struct denali_nand_info *denali)
{
struct nand_chip *chip = &denali->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
u32 features = ioread32(denali->reg + FEATURES);
int ret;
denali_hw_init(denali);
denali_clear_irq_all(denali);
denali_reset_banks(denali);
denali->active_bank = DENALI_INVALID_BANK;
chip->flash_node = dev_of_offset(denali->dev);
/* Fallback to the default name if DT did not give "label" property */
if (!mtd->name)
mtd->name = "denali-nand";
chip->select_chip = denali_select_chip;
chip->read_byte = denali_read_byte;
chip->write_byte = denali_write_byte;
chip->read_word = denali_read_word;
chip->cmd_ctrl = denali_cmd_ctrl;
chip->dev_ready = denali_dev_ready;
chip->waitfunc = denali_waitfunc;
if (features & FEATURES__INDEX_ADDR) {
denali->host_read = denali_indexed_read;
denali->host_write = denali_indexed_write;
} else {
denali->host_read = denali_direct_read;
denali->host_write = denali_direct_write;
}
/* clk rate info is needed for setup_data_interface */
if (denali->clk_x_rate)
chip->setup_data_interface = denali_setup_data_interface;
ret = nand_scan_ident(mtd, denali->max_banks, NULL);
if (ret)
return ret;
if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
denali->dma_avail = 1;
if (denali->dma_avail) {
chip->buf_align = 16;
if (denali->caps & DENALI_CAP_DMA_64BIT)
denali->setup_dma = denali_setup_dma64;
else
denali->setup_dma = denali_setup_dma32;
} else {
chip->buf_align = 4;
}
chip->options |= NAND_USE_BOUNCE_BUFFER;
chip->bbt_options |= NAND_BBT_USE_FLASH;
chip->bbt_options |= NAND_BBT_NO_OOB;
denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
/* no subpage writes on denali */
chip->options |= NAND_NO_SUBPAGE_WRITE;
ret = denali_ecc_setup(mtd, chip, denali);
if (ret) {
dev_err(denali->dev, "Failed to setup ECC settings.\n");
return ret;
}
dev_dbg(denali->dev,
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
denali->reg + ECC_CORRECTION);
iowrite32(mtd->erasesize / mtd->writesize,
denali->reg + PAGES_PER_BLOCK);
iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
denali->reg + DEVICE_WIDTH);
iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
denali->reg + TWO_ROW_ADDR_CYCLES);
iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
/* chip->ecc.steps is set by nand_scan_tail(); not available here */
iowrite32(mtd->writesize / chip->ecc.size,
denali->reg + CFG_NUM_DATA_BLOCKS);
mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
nand_oob.eccbytes = denali->nand.ecc.bytes;
denali->nand.ecc.layout = &nand_oob;
if (chip->options & NAND_BUSWIDTH_16) {
chip->read_buf = denali_read_buf16;
chip->write_buf = denali_write_buf16;
} else {
chip->read_buf = denali_read_buf;
chip->write_buf = denali_write_buf;
}
chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
chip->ecc.read_page = denali_read_page;
chip->ecc.read_page_raw = denali_read_page_raw;
chip->ecc.write_page = denali_write_page;
chip->ecc.write_page_raw = denali_write_page_raw;
chip->ecc.read_oob = denali_read_oob;
chip->ecc.write_oob = denali_write_oob;
chip->erase = denali_erase;
ret = denali_multidev_fixup(denali);
if (ret)
return ret;
/*
* This buffer is DMA-mapped by denali_{read,write}_page_raw. Do not
* use devm_kmalloc() because the memory allocated by devm_ does not
* guarantee DMA-safe alignment.
*/
denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
if (!denali->buf)
return -ENOMEM;
ret = nand_scan_tail(mtd);
if (ret)
goto free_buf;
ret = nand_register(0, mtd);
if (ret) {
dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
goto free_buf;
}
return 0;
free_buf:
kfree(denali->buf);
return ret;
}