u-boot-brain/include/dm/read.h
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

634 lines
18 KiB
C

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Function to read values from the device tree node attached to a udevice.
*
* Copyright (c) 2017 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*/
#ifndef _DM_READ_H
#define _DM_READ_H
#include <dm/fdtaddr.h>
#include <dm/ofnode.h>
#include <dm/uclass.h>
struct resource;
#if CONFIG_IS_ENABLED(OF_LIVE)
static inline const struct device_node *dev_np(struct udevice *dev)
{
return ofnode_to_np(dev->node);
}
#else
static inline const struct device_node *dev_np(struct udevice *dev)
{
return NULL;
}
#endif
/**
* dev_ofnode() - get the DT node reference associated with a udevice
*
* @dev: device to check
* @return reference of the the device's DT node
*/
static inline ofnode dev_ofnode(struct udevice *dev)
{
return dev->node;
}
static inline bool dev_of_valid(struct udevice *dev)
{
return ofnode_valid(dev_ofnode(dev));
}
#ifndef CONFIG_DM_DEV_READ_INLINE
/**
* dev_read_u32() - read a 32-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* @return 0 if OK, -ve on error
*/
int dev_read_u32(struct udevice *dev, const char *propname, u32 *outp);
/**
* dev_read_u32_default() - read a 32-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* @return property value, or @def if not found
*/
int dev_read_u32_default(struct udevice *dev, const char *propname, int def);
/**
* dev_read_string() - Read a string from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read
* @return string from property value, or NULL if there is no such property
*/
const char *dev_read_string(struct udevice *dev, const char *propname);
/**
* dev_read_bool() - read a boolean value from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of property to read
* @return true if property is present (meaning true), false if not present
*/
bool dev_read_bool(struct udevice *dev, const char *propname);
/**
* dev_read_subnode() - find a named subnode of a device
*
* @dev: device whose DT node contains the subnode
* @subnode_name: name of subnode to find
* @return reference to subnode (which can be invalid if there is no such
* subnode)
*/
ofnode dev_read_subnode(struct udevice *dev, const char *subbnode_name);
/**
* dev_read_size() - read the size of a property
*
* @dev: device to check
* @propname: property to check
* @return size of property if present, or -EINVAL if not
*/
int dev_read_size(struct udevice *dev, const char *propname);
/**
* dev_read_addr_index() - Get the indexed reg property of a device
*
* @dev: Device to read from
* @index: the 'reg' property can hold a list of <addr, size> pairs
* and @index is used to select which one is required
*
* @return address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_index(struct udevice *dev, int index);
/**
* dev_read_addr() - Get the reg property of a device
*
* @dev: Device to read from
*
* @return address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr(struct udevice *dev);
/**
* dev_read_addr_ptr() - Get the reg property of a device
* as a pointer
*
* @dev: Device to read from
*
* @return pointer or NULL if not found
*/
void *dev_read_addr_ptr(struct udevice *dev);
/**
* dev_read_addr_size() - get address and size from a device property
*
* This does no address translation. It simply reads an property that contains
* an address and a size value, one after the other.
*
* @dev: Device to read from
* @propname: property to read
* @sizep: place to put size value (on success)
* @return address value, or FDT_ADDR_T_NONE on error
*/
fdt_addr_t dev_read_addr_size(struct udevice *dev, const char *propname,
fdt_size_t *sizep);
/**
* dev_read_name() - get the name of a device's node
*
* @node: valid node to look up
* @return name of node
*/
const char *dev_read_name(struct udevice *dev);
/**
* dev_read_stringlist_search() - find string in a string list and return index
*
* Note that it is possible for this function to succeed on property values
* that are not NUL-terminated. That's because the function will stop after
* finding the first occurrence of @string. This can for example happen with
* small-valued cell properties, such as #address-cells, when searching for
* the empty string.
*
* @dev: device to check
* @propname: name of the property containing the string list
* @string: string to look up in the string list
*
* @return:
* the index of the string in the list of strings
* -ENODATA if the property is not found
* -EINVAL on some other error
*/
int dev_read_stringlist_search(struct udevice *dev, const char *property,
const char *string);
/**
* dev_read_string_index() - obtain an indexed string from a string list
*
* @dev: device to examine
* @propname: name of the property containing the string list
* @index: index of the string to return
* @out: return location for the string
*
* @return:
* length of string, if found or -ve error value if not found
*/
int dev_read_string_index(struct udevice *dev, const char *propname, int index,
const char **outp);
/**
* dev_read_string_count() - find the number of strings in a string list
*
* @dev: device to examine
* @propname: name of the property containing the string list
* @return:
* number of strings in the list, or -ve error value if not found
*/
int dev_read_string_count(struct udevice *dev, const char *propname);
/**
* dev_read_phandle_with_args() - Find a node pointed by phandle in a list
*
* This function is useful to parse lists of phandles and their arguments.
* Returns 0 on success and fills out_args, on error returns appropriate
* errno value.
*
* Caller is responsible to call of_node_put() on the returned out_args->np
* pointer.
*
* Example:
*
* phandle1: node1 {
* #list-cells = <2>;
* }
*
* phandle2: node2 {
* #list-cells = <1>;
* }
*
* node3 {
* list = <&phandle1 1 2 &phandle2 3>;
* }
*
* To get a device_node of the `node2' node you may call this:
* dev_read_phandle_with_args(dev, "list", "#list-cells", 0, 1, &args);
*
* @dev: device whose node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @cells_count: Cell count to use if @cells_name is NULL
* @index: index of a phandle to parse out
* @out_args: optional pointer to output arguments structure (will be filled)
* @return 0 on success (with @out_args filled out if not NULL), -ENOENT if
* @list_name does not exist, -EINVAL if a phandle was not found,
* @cells_name could not be found, the arguments were truncated or there
* were too many arguments.
*/
int dev_read_phandle_with_args(struct udevice *dev, const char *list_name,
const char *cells_name, int cell_count,
int index,
struct ofnode_phandle_args *out_args);
/**
* dev_count_phandle_with_args() - Return phandle number in a list
*
* This function is usefull to get phandle number contained in a property list.
* For example, this allows to allocate the right amount of memory to keep
* clock's reference contained into the "clocks" property.
*
*
* @dev: device whose node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @Returns number of phandle found on success, on error returns appropriate
* errno value.
*/
int dev_count_phandle_with_args(struct udevice *dev, const char *list_name,
const char *cells_name);
/**
* dev_read_addr_cells() - Get the number of address cells for a device's node
*
* This walks back up the tree to find the closest #address-cells property
* which controls the given node.
*
* @dev: device to check
* @return number of address cells this node uses
*/
int dev_read_addr_cells(struct udevice *dev);
/**
* dev_read_size_cells() - Get the number of size cells for a device's node
*
* This walks back up the tree to find the closest #size-cells property
* which controls the given node.
*
* @dev: device to check
* @return number of size cells this node uses
*/
int dev_read_size_cells(struct udevice *dev);
/**
* dev_read_addr_cells() - Get the address cells property in a node
*
* This function matches fdt_address_cells().
*
* @dev: device to check
* @return number of address cells this node uses
*/
int dev_read_simple_addr_cells(struct udevice *dev);
/**
* dev_read_size_cells() - Get the size cells property in a node
*
* This function matches fdt_size_cells().
*
* @dev: device to check
* @return number of size cells this node uses
*/
int dev_read_simple_size_cells(struct udevice *dev);
/**
* dev_read_phandle() - Get the phandle from a device
*
* @dev: device to check
* @return phandle (1 or greater), or 0 if no phandle or other error
*/
int dev_read_phandle(struct udevice *dev);
/**
* dev_read_prop()- - read a property from a device's node
*
* @dev: device to check
* @propname: property to read
* @lenp: place to put length on success
* @return pointer to property, or NULL if not found
*/
const void *dev_read_prop(struct udevice *dev, const char *propname, int *lenp);
/**
* dev_read_alias_seq() - Get the alias sequence number of a node
*
* This works out whether a node is pointed to by an alias, and if so, the
* sequence number of that alias. Aliases are of the form <base><num> where
* <num> is the sequence number. For example spi2 would be sequence number 2.
*
* @dev: device to look up
* @devnump: set to the sequence number if one is found
* @return 0 if a sequence was found, -ve if not
*/
int dev_read_alias_seq(struct udevice *dev, int *devnump);
/**
* dev_read_u32_array() - Find and read an array of 32 bit integers
*
* Search for a property in a device node and read 32-bit value(s) from
* it.
*
* The out_values is modified only if a valid u32 value can be decoded.
*
* @dev: device to look up
* @propname: name of the property to read
* @out_values: pointer to return value, modified only if return value is 0
* @sz: number of array elements to read
* @return 0 on success, -EINVAL if the property does not exist, -ENODATA if
* property does not have a value, and -EOVERFLOW if the property data isn't
* large enough.
*/
int dev_read_u32_array(struct udevice *dev, const char *propname,
u32 *out_values, size_t sz);
/**
* dev_read_first_subnode() - find the first subnode of a device's node
*
* @dev: device to look up
* @return reference to the first subnode (which can be invalid if the device's
* node has no subnodes)
*/
ofnode dev_read_first_subnode(struct udevice *dev);
/**
* ofnode_next_subnode() - find the next sibling of a subnode
*
* @node: valid reference to previous node (sibling)
* @return reference to the next subnode (which can be invalid if the node
* has no more siblings)
*/
ofnode dev_read_next_subnode(ofnode node);
/**
* dev_read_u8_array_ptr() - find an 8-bit array
*
* Look up a device's node property and return a pointer to its contents as a
* byte array of given length. The property must have at least enough data
* for the array (count bytes). It may have more, but this will be ignored.
* The data is not copied.
*
* @dev: device to look up
* @propname: name of property to find
* @sz: number of array elements
* @return pointer to byte array if found, or NULL if the property is not
* found or there is not enough data
*/
const uint8_t *dev_read_u8_array_ptr(struct udevice *dev, const char *propname,
size_t sz);
/**
* dev_read_enabled() - check whether a node is enabled
*
* This looks for a 'status' property. If this exists, then returns 1 if
* the status is 'ok' and 0 otherwise. If there is no status property,
* it returns 1 on the assumption that anything mentioned should be enabled
* by default.
*
* @dev: device to examine
* @return integer value 0 (not enabled) or 1 (enabled)
*/
int dev_read_enabled(struct udevice *dev);
/**
* dev_read_resource() - obtain an indexed resource from a device.
*
* @dev: device to examine
* @index index of the resource to retrieve (0 = first)
* @res returns the resource
* @return 0 if ok, negative on error
*/
int dev_read_resource(struct udevice *dev, uint index, struct resource *res);
/**
* dev_read_resource_byname() - obtain a named resource from a device.
*
* @dev: device to examine
* @name: name of the resource to retrieve
* @res: returns the resource
* @return 0 if ok, negative on error
*/
int dev_read_resource_byname(struct udevice *dev, const char *name,
struct resource *res);
/**
* dev_translate_address() - Tranlate a device-tree address
*
* Translate an address from the device-tree into a CPU physical address. This
* function walks up the tree and applies the various bus mappings along the
* way.
*
* @dev: device giving the context in which to translate the address
* @in_addr: pointer to the address to translate
* @return the translated address; OF_BAD_ADDR on error
*/
u64 dev_translate_address(struct udevice *dev, const fdt32_t *in_addr);
#else /* CONFIG_DM_DEV_READ_INLINE is enabled */
static inline int dev_read_u32(struct udevice *dev,
const char *propname, u32 *outp)
{
return ofnode_read_u32(dev_ofnode(dev), propname, outp);
}
static inline int dev_read_u32_default(struct udevice *dev,
const char *propname, int def)
{
return ofnode_read_u32_default(dev_ofnode(dev), propname, def);
}
static inline const char *dev_read_string(struct udevice *dev,
const char *propname)
{
return ofnode_read_string(dev_ofnode(dev), propname);
}
static inline bool dev_read_bool(struct udevice *dev, const char *propname)
{
return ofnode_read_bool(dev_ofnode(dev), propname);
}
static inline ofnode dev_read_subnode(struct udevice *dev,
const char *subbnode_name)
{
return ofnode_find_subnode(dev_ofnode(dev), subbnode_name);
}
static inline int dev_read_size(struct udevice *dev, const char *propname)
{
return ofnode_read_size(dev_ofnode(dev), propname);
}
static inline fdt_addr_t dev_read_addr_index(struct udevice *dev, int index)
{
return devfdt_get_addr_index(dev, index);
}
static inline fdt_addr_t dev_read_addr(struct udevice *dev)
{
return devfdt_get_addr(dev);
}
static inline void *dev_read_addr_ptr(struct udevice *dev)
{
return devfdt_get_addr_ptr(dev);
}
static inline fdt_addr_t dev_read_addr_size(struct udevice *dev,
const char *propname,
fdt_size_t *sizep)
{
return ofnode_get_addr_size(dev_ofnode(dev), propname, sizep);
}
static inline const char *dev_read_name(struct udevice *dev)
{
return ofnode_get_name(dev_ofnode(dev));
}
static inline int dev_read_stringlist_search(struct udevice *dev,
const char *propname,
const char *string)
{
return ofnode_stringlist_search(dev_ofnode(dev), propname, string);
}
static inline int dev_read_string_index(struct udevice *dev,
const char *propname, int index,
const char **outp)
{
return ofnode_read_string_index(dev_ofnode(dev), propname, index, outp);
}
static inline int dev_read_string_count(struct udevice *dev,
const char *propname)
{
return ofnode_read_string_count(dev_ofnode(dev), propname);
}
static inline int dev_read_phandle_with_args(struct udevice *dev,
const char *list_name, const char *cells_name, int cell_count,
int index, struct ofnode_phandle_args *out_args)
{
return ofnode_parse_phandle_with_args(dev_ofnode(dev), list_name,
cells_name, cell_count, index,
out_args);
}
static inline int dev_count_phandle_with_args(struct udevice *dev,
const char *list_name, const char *cells_name)
{
return ofnode_count_phandle_with_args(dev_ofnode(dev), list_name,
cells_name);
}
static inline int dev_read_addr_cells(struct udevice *dev)
{
/* NOTE: this call should walk up the parent stack */
return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_size_cells(struct udevice *dev)
{
/* NOTE: this call should walk up the parent stack */
return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_simple_addr_cells(struct udevice *dev)
{
return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_simple_size_cells(struct udevice *dev)
{
return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_phandle(struct udevice *dev)
{
return fdt_get_phandle(gd->fdt_blob, dev_of_offset(dev));
}
static inline const void *dev_read_prop(struct udevice *dev,
const char *propname, int *lenp)
{
return ofnode_get_property(dev_ofnode(dev), propname, lenp);
}
static inline int dev_read_alias_seq(struct udevice *dev, int *devnump)
{
return fdtdec_get_alias_seq(gd->fdt_blob, dev->uclass->uc_drv->name,
dev_of_offset(dev), devnump);
}
static inline int dev_read_u32_array(struct udevice *dev, const char *propname,
u32 *out_values, size_t sz)
{
return ofnode_read_u32_array(dev_ofnode(dev), propname, out_values, sz);
}
static inline ofnode dev_read_first_subnode(struct udevice *dev)
{
return ofnode_first_subnode(dev_ofnode(dev));
}
static inline ofnode dev_read_next_subnode(ofnode node)
{
return ofnode_next_subnode(node);
}
static inline const uint8_t *dev_read_u8_array_ptr(struct udevice *dev,
const char *propname, size_t sz)
{
return ofnode_read_u8_array_ptr(dev_ofnode(dev), propname, sz);
}
static inline int dev_read_enabled(struct udevice *dev)
{
return fdtdec_get_is_enabled(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_resource(struct udevice *dev, uint index,
struct resource *res)
{
return ofnode_read_resource(dev_ofnode(dev), index, res);
}
static inline int dev_read_resource_byname(struct udevice *dev,
const char *name,
struct resource *res)
{
return ofnode_read_resource_byname(dev_ofnode(dev), name, res);
}
static inline u64 dev_translate_address(struct udevice *dev, const fdt32_t *in_addr)
{
return ofnode_translate_address(dev_ofnode(dev), in_addr);
}
#endif /* CONFIG_DM_DEV_READ_INLINE */
/**
* dev_for_each_subnode() - Helper function to iterate through subnodes
*
* This creates a for() loop which works through the subnodes in a device's
* device-tree node.
*
* @subnode: ofnode holding the current subnode
* @dev: device to use for interation (struct udevice *)
*/
#define dev_for_each_subnode(subnode, dev) \
for (subnode = dev_read_first_subnode(dev); \
ofnode_valid(subnode); \
subnode = ofnode_next_subnode(subnode))
#endif