u-boot-brain/arch/arm/mach-imx/mx6/clock.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

1488 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <div64.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
enum pll_clocks {
PLL_SYS, /* System PLL */
PLL_BUS, /* System Bus PLL*/
PLL_USBOTG, /* OTG USB PLL */
PLL_ENET, /* ENET PLL */
PLL_AUDIO, /* AUDIO PLL */
PLL_VIDEO, /* VIDEO PLL */
};
struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
#ifdef CONFIG_MXC_OCOTP
void enable_ocotp_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR2);
if (enable)
reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
else
reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
__raw_writel(reg, &imx_ccm->CCGR2);
}
#endif
#ifdef CONFIG_NAND_MXS
void setup_gpmi_io_clk(u32 cfg)
{
/* Disable clocks per ERR007177 from MX6 errata */
clrbits_le32(&imx_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
#if defined(CONFIG_MX6SX)
clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
clrsetbits_le32(&imx_ccm->cs2cdr,
MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
cfg);
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
#else
clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
clrsetbits_le32(&imx_ccm->cs2cdr,
MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
cfg);
setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
#endif
setbits_le32(&imx_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
}
#endif
void enable_usboh3_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR6);
if (enable)
reg |= MXC_CCM_CCGR6_USBOH3_MASK;
else
reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
__raw_writel(reg, &imx_ccm->CCGR6);
}
#if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
void enable_enet_clk(unsigned char enable)
{
u32 mask, *addr;
if (is_mx6ull()) {
mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK;
addr = &imx_ccm->CCGR0;
} else if (is_mx6ul()) {
mask = MXC_CCM_CCGR3_ENET_MASK;
addr = &imx_ccm->CCGR3;
} else {
mask = MXC_CCM_CCGR1_ENET_MASK;
addr = &imx_ccm->CCGR1;
}
if (enable)
setbits_le32(addr, mask);
else
clrbits_le32(addr, mask);
}
#endif
#ifdef CONFIG_MXC_UART
void enable_uart_clk(unsigned char enable)
{
u32 mask;
if (is_mx6ul() || is_mx6ull())
mask = MXC_CCM_CCGR5_UART_MASK;
else
mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
if (enable)
setbits_le32(&imx_ccm->CCGR5, mask);
else
clrbits_le32(&imx_ccm->CCGR5, mask);
}
#endif
#ifdef CONFIG_MMC
int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
{
u32 mask;
if (bus_num > 3)
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
if (enable)
setbits_le32(&imx_ccm->CCGR6, mask);
else
clrbits_le32(&imx_ccm->CCGR6, mask);
return 0;
}
#endif
#ifdef CONFIG_SYS_I2C_MXC
/* i2c_num can be from 0 - 3 */
int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
{
u32 reg;
u32 mask;
u32 *addr;
if (i2c_num > 3)
return -EINVAL;
if (i2c_num < 3) {
mask = MXC_CCM_CCGR_CG_MASK
<< (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
+ (i2c_num << 1));
reg = __raw_readl(&imx_ccm->CCGR2);
if (enable)
reg |= mask;
else
reg &= ~mask;
__raw_writel(reg, &imx_ccm->CCGR2);
} else {
if (is_mx6sll())
return -EINVAL;
if (is_mx6sx() || is_mx6ul() || is_mx6ull()) {
mask = MXC_CCM_CCGR6_I2C4_MASK;
addr = &imx_ccm->CCGR6;
} else {
mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
addr = &imx_ccm->CCGR1;
}
reg = __raw_readl(addr);
if (enable)
reg |= mask;
else
reg &= ~mask;
__raw_writel(reg, addr);
}
return 0;
}
#endif
/* spi_num can be from 0 - SPI_MAX_NUM */
int enable_spi_clk(unsigned char enable, unsigned spi_num)
{
u32 reg;
u32 mask;
if (spi_num > SPI_MAX_NUM)
return -EINVAL;
mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
reg = __raw_readl(&imx_ccm->CCGR1);
if (enable)
reg |= mask;
else
reg &= ~mask;
__raw_writel(reg, &imx_ccm->CCGR1);
return 0;
}
static u32 decode_pll(enum pll_clocks pll, u32 infreq)
{
u32 div, test_div, pll_num, pll_denom;
switch (pll) {
case PLL_SYS:
div = __raw_readl(&imx_ccm->analog_pll_sys);
div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
return (infreq * div) >> 1;
case PLL_BUS:
div = __raw_readl(&imx_ccm->analog_pll_528);
div &= BM_ANADIG_PLL_528_DIV_SELECT;
return infreq * (20 + (div << 1));
case PLL_USBOTG:
div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
return infreq * (20 + (div << 1));
case PLL_ENET:
div = __raw_readl(&imx_ccm->analog_pll_enet);
div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
return 25000000 * (div + (div >> 1) + 1);
case PLL_AUDIO:
div = __raw_readl(&imx_ccm->analog_pll_audio);
if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
return 0;
/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
return MXC_HCLK;
pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
if (test_div == 3) {
debug("Error test_div\n");
return 0;
}
test_div = 1 << (2 - test_div);
return infreq * (div + pll_num / pll_denom) / test_div;
case PLL_VIDEO:
div = __raw_readl(&imx_ccm->analog_pll_video);
if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
return 0;
/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
return MXC_HCLK;
pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
if (test_div == 3) {
debug("Error test_div\n");
return 0;
}
test_div = 1 << (2 - test_div);
return infreq * (div + pll_num / pll_denom) / test_div;
default:
return 0;
}
/* NOTREACHED */
}
static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
{
u32 div;
u64 freq;
switch (pll) {
case PLL_BUS:
if (!is_mx6ul() && !is_mx6ull()) {
if (pfd_num == 3) {
/* No PFD3 on PLL2 */
return 0;
}
}
div = __raw_readl(&imx_ccm->analog_pfd_528);
freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
break;
case PLL_USBOTG:
div = __raw_readl(&imx_ccm->analog_pfd_480);
freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
break;
default:
/* No PFD on other PLL */
return 0;
}
return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
ANATOP_PFD_FRAC_SHIFT(pfd_num));
}
static u32 get_mcu_main_clk(void)
{
u32 reg, freq;
reg = __raw_readl(&imx_ccm->cacrr);
reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
freq = decode_pll(PLL_SYS, MXC_HCLK);
return freq / (reg + 1);
}
u32 get_periph_clk(void)
{
u32 reg, div = 0, freq = 0;
reg = __raw_readl(&imx_ccm->cbcdr);
if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
reg = __raw_readl(&imx_ccm->cbcmr);
reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
switch (reg) {
case 0:
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
break;
case 1:
case 2:
freq = MXC_HCLK;
break;
default:
break;
}
} else {
reg = __raw_readl(&imx_ccm->cbcmr);
reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
switch (reg) {
case 0:
freq = decode_pll(PLL_BUS, MXC_HCLK);
break;
case 1:
freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 2:
freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
case 3:
/* static / 2 divider */
freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
break;
default:
break;
}
}
return freq / (div + 1);
}
static u32 get_ipg_clk(void)
{
u32 reg, ipg_podf;
reg = __raw_readl(&imx_ccm->cbcdr);
reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
return get_ahb_clk() / (ipg_podf + 1);
}
static u32 get_ipg_per_clk(void)
{
u32 reg, perclk_podf;
reg = __raw_readl(&imx_ccm->cscmr1);
if (is_mx6sll() || is_mx6sl() || is_mx6sx() ||
is_mx6dqp() || is_mx6ul() || is_mx6ull()) {
if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
return MXC_HCLK; /* OSC 24Mhz */
}
perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
return get_ipg_clk() / (perclk_podf + 1);
}
static u32 get_uart_clk(void)
{
u32 reg, uart_podf;
u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
reg = __raw_readl(&imx_ccm->cscdr1);
if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() ||
is_mx6sll() || is_mx6ull()) {
if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
freq = MXC_HCLK;
}
reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
return freq / (uart_podf + 1);
}
static u32 get_cspi_clk(void)
{
u32 reg, cspi_podf;
reg = __raw_readl(&imx_ccm->cscdr2);
cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() ||
is_mx6sll() || is_mx6ull()) {
if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
return MXC_HCLK / (cspi_podf + 1);
}
return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
}
static u32 get_axi_clk(void)
{
u32 root_freq, axi_podf;
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
else
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
} else
root_freq = get_periph_clk();
return root_freq / (axi_podf + 1);
}
static u32 get_emi_slow_clk(void)
{
u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
cscmr1 = __raw_readl(&imx_ccm->cscmr1);
emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
switch (emi_clk_sel) {
case 0:
root_freq = get_axi_clk();
break;
case 1:
root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
break;
case 2:
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 3:
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
}
return root_freq / (emi_slow_podf + 1);
}
static u32 get_mmdc_ch0_clk(void)
{
u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() ||
is_mx6sll()) {
podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
if (is_mx6sl()) {
if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
freq = MXC_HCLK;
else
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
} else {
if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
freq = decode_pll(PLL_BUS, MXC_HCLK);
else
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
}
} else {
per2_clk2_podf = 0;
switch ((cbcmr &
MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
case 0:
freq = decode_pll(PLL_BUS, MXC_HCLK);
break;
case 1:
freq = mxc_get_pll_pfd(PLL_BUS, 2);
break;
case 2:
freq = mxc_get_pll_pfd(PLL_BUS, 0);
break;
case 3:
if (is_mx6sl()) {
freq = mxc_get_pll_pfd(PLL_BUS, 2) >> 1;
break;
}
pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
switch (pmu_misc2_audio_div) {
case 0:
case 2:
pmu_misc2_audio_div = 1;
break;
case 1:
pmu_misc2_audio_div = 2;
break;
case 3:
pmu_misc2_audio_div = 4;
break;
}
freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
pmu_misc2_audio_div;
break;
}
}
return freq / (podf + 1) / (per2_clk2_podf + 1);
} else {
podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
return get_periph_clk() / (podf + 1);
}
}
#if defined(CONFIG_VIDEO_MXS)
static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
u32 post_div)
{
u32 reg = 0;
ulong start;
debug("pll5 div = %d, num = %d, denom = %d\n",
pll_div, pll_num, pll_denom);
/* Power up PLL5 video */
writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
BM_ANADIG_PLL_VIDEO_BYPASS |
BM_ANADIG_PLL_VIDEO_DIV_SELECT |
BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
&imx_ccm->analog_pll_video_clr);
/* Set div, num and denom */
switch (post_div) {
case 1:
writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
&imx_ccm->analog_pll_video_set);
break;
case 2:
writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
&imx_ccm->analog_pll_video_set);
break;
case 4:
writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
&imx_ccm->analog_pll_video_set);
break;
default:
puts("Wrong test_div!\n");
return -EINVAL;
}
writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
&imx_ccm->analog_pll_video_num);
writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
&imx_ccm->analog_pll_video_denom);
/* Wait PLL5 lock */
start = get_timer(0); /* Get current timestamp */
do {
reg = readl(&imx_ccm->analog_pll_video);
if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
/* Enable PLL out */
writel(BM_ANADIG_PLL_VIDEO_ENABLE,
&imx_ccm->analog_pll_video_set);
return 0;
}
} while (get_timer(0) < (start + 10)); /* Wait 10ms */
puts("Lock PLL5 timeout\n");
return -ETIME;
}
/*
* 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
*
* 'freq' using KHz as unit, see driver/video/mxsfb.c.
*/
void mxs_set_lcdclk(u32 base_addr, u32 freq)
{
u32 reg = 0;
u32 hck = MXC_HCLK / 1000;
/* DIV_SELECT ranges from 27 to 54 */
u32 min = hck * 27;
u32 max = hck * 54;
u32 temp, best = 0;
u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
u32 pll_div, pll_num, pll_denom, post_div = 1;
debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() &&
!is_mx6sll()) {
debug("This chip not support lcd!\n");
return;
}
if (!is_mx6sl()) {
if (base_addr == LCDIF1_BASE_ADDR) {
reg = readl(&imx_ccm->cscdr2);
/* Can't change clocks when clock not from pre-mux */
if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
return;
}
}
if (is_mx6sx()) {
reg = readl(&imx_ccm->cscdr2);
/* Can't change clocks when clock not from pre-mux */
if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
return;
}
temp = freq * max_pred * max_postd;
if (temp < min) {
/*
* Register: PLL_VIDEO
* Bit Field: POST_DIV_SELECT
* 00 — Divide by 4.
* 01 — Divide by 2.
* 10 — Divide by 1.
* 11 — Reserved
* No need to check post_div(1)
*/
for (post_div = 2; post_div <= 4; post_div <<= 1) {
if ((temp * post_div) > min) {
freq *= post_div;
break;
}
}
if (post_div > 4) {
printf("Fail to set rate to %dkhz", freq);
return;
}
}
/* Choose the best pred and postd to match freq for lcd */
for (i = 1; i <= max_pred; i++) {
for (j = 1; j <= max_postd; j++) {
temp = freq * i * j;
if (temp > max || temp < min)
continue;
if (best == 0 || temp < best) {
best = temp;
pred = i;
postd = j;
}
}
}
if (best == 0) {
printf("Fail to set rate to %dKHz", freq);
return;
}
debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
pll_div = best / hck;
pll_denom = 1000000;
pll_num = (best - hck * pll_div) * pll_denom / hck;
/*
* pll_num
* (24MHz * (pll_div + --------- ))
* pll_denom
*freq KHz = --------------------------------
* post_div * pred * postd * 1000
*/
if (base_addr == LCDIF1_BASE_ADDR) {
if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
return;
enable_lcdif_clock(base_addr, 0);
if (!is_mx6sl()) {
/* Select pre-lcd clock to PLL5 and set pre divider */
clrsetbits_le32(&imx_ccm->cscdr2,
MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
(0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
((pred - 1) <<
MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
/* Set the post divider */
clrsetbits_le32(&imx_ccm->cbcmr,
MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
((postd - 1) <<
MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
} else {
/* Select pre-lcd clock to PLL5 and set pre divider */
clrsetbits_le32(&imx_ccm->cscdr2,
MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_MASK |
MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK,
(0x2 << MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_OFFSET) |
((pred - 1) <<
MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET));
/* Set the post divider */
clrsetbits_le32(&imx_ccm->cscmr1,
MXC_CCM_CSCMR1_LCDIF_PIX_PODF_MASK,
(((postd - 1)^0x6) <<
MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET));
}
enable_lcdif_clock(base_addr, 1);
} else if (is_mx6sx()) {
/* Setting LCDIF2 for i.MX6SX */
if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
return;
enable_lcdif_clock(base_addr, 0);
/* Select pre-lcd clock to PLL5 and set pre divider */
clrsetbits_le32(&imx_ccm->cscdr2,
MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
(0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
((pred - 1) <<
MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
/* Set the post divider */
clrsetbits_le32(&imx_ccm->cscmr1,
MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
((postd - 1) <<
MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
enable_lcdif_clock(base_addr, 1);
}
}
int enable_lcdif_clock(u32 base_addr, bool enable)
{
u32 reg = 0;
u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
if (is_mx6sx()) {
if ((base_addr != LCDIF1_BASE_ADDR) &&
(base_addr != LCDIF2_BASE_ADDR)) {
puts("Wrong LCD interface!\n");
return -EINVAL;
}
/* Set to pre-mux clock at default */
lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
(MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
MXC_CCM_CCGR3_DISP_AXI_MASK) :
(MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
MXC_CCM_CCGR3_DISP_AXI_MASK);
} else if (is_mx6ul() || is_mx6ull() || is_mx6sll()) {
if (base_addr != LCDIF1_BASE_ADDR) {
puts("Wrong LCD interface!\n");
return -EINVAL;
}
/* Set to pre-mux clock at default */
lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
lcdif_ccgr3_mask = MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
} else if (is_mx6sl()) {
if (base_addr != LCDIF1_BASE_ADDR) {
puts("Wrong LCD interface!\n");
return -EINVAL;
}
reg = readl(&imx_ccm->CCGR3);
reg &= ~(MXC_CCM_CCGR3_LCDIF_AXI_MASK |
MXC_CCM_CCGR3_LCDIF_PIX_MASK);
writel(reg, &imx_ccm->CCGR3);
if (enable) {
reg = readl(&imx_ccm->cscdr3);
reg &= ~MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_MASK;
reg |= 1 << MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_OFFSET;
writel(reg, &imx_ccm->cscdr3);
reg = readl(&imx_ccm->CCGR3);
reg |= MXC_CCM_CCGR3_LCDIF_AXI_MASK |
MXC_CCM_CCGR3_LCDIF_PIX_MASK;
writel(reg, &imx_ccm->CCGR3);
}
return 0;
} else {
return 0;
}
/* Gate LCDIF clock first */
reg = readl(&imx_ccm->CCGR3);
reg &= ~lcdif_ccgr3_mask;
writel(reg, &imx_ccm->CCGR3);
reg = readl(&imx_ccm->CCGR2);
reg &= ~MXC_CCM_CCGR2_LCD_MASK;
writel(reg, &imx_ccm->CCGR2);
if (enable) {
/* Select pre-mux */
reg = readl(&imx_ccm->cscdr2);
reg &= ~lcdif_clk_sel_mask;
writel(reg, &imx_ccm->cscdr2);
/* Enable the LCDIF pix clock */
reg = readl(&imx_ccm->CCGR3);
reg |= lcdif_ccgr3_mask;
writel(reg, &imx_ccm->CCGR3);
reg = readl(&imx_ccm->CCGR2);
reg |= MXC_CCM_CCGR2_LCD_MASK;
writel(reg, &imx_ccm->CCGR2);
}
return 0;
}
#endif
#ifdef CONFIG_FSL_QSPI
/* qspi_num can be from 0 - 1 */
void enable_qspi_clk(int qspi_num)
{
u32 reg = 0;
/* Enable QuadSPI clock */
switch (qspi_num) {
case 0:
/* disable the clock gate */
clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
/* set 50M : (50 = 396 / 2 / 4) */
reg = readl(&imx_ccm->cscmr1);
reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
(2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
writel(reg, &imx_ccm->cscmr1);
/* enable the clock gate */
setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
break;
case 1:
/*
* disable the clock gate
* QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
* disable both of them.
*/
clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
/* set 50M : (50 = 396 / 2 / 4) */
reg = readl(&imx_ccm->cs2cdr);
reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
writel(reg, &imx_ccm->cs2cdr);
/*enable the clock gate*/
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
break;
default:
break;
}
}
#endif
#ifdef CONFIG_FEC_MXC
int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
{
u32 reg = 0;
s32 timeout = 100000;
struct anatop_regs __iomem *anatop =
(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
if (freq < ENET_25MHZ || freq > ENET_125MHZ)
return -EINVAL;
reg = readl(&anatop->pll_enet);
if (fec_id == 0) {
reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
} else if (fec_id == 1) {
/* Only i.MX6SX/UL support ENET2 */
if (!(is_mx6sx() || is_mx6ul() || is_mx6ull()))
return -EINVAL;
reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
} else {
return -EINVAL;
}
if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
(!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
writel(reg, &anatop->pll_enet);
while (timeout--) {
if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
break;
}
if (timeout < 0)
return -ETIMEDOUT;
}
/* Enable FEC clock */
if (fec_id == 0)
reg |= BM_ANADIG_PLL_ENET_ENABLE;
else
reg |= BM_ANADIG_PLL_ENET2_ENABLE;
reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
writel(reg, &anatop->pll_enet);
#ifdef CONFIG_MX6SX
/* Disable enet system clcok before switching clock parent */
reg = readl(&imx_ccm->CCGR3);
reg &= ~MXC_CCM_CCGR3_ENET_MASK;
writel(reg, &imx_ccm->CCGR3);
/*
* Set enet ahb clock to 200MHz
* pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
*/
reg = readl(&imx_ccm->chsccdr);
reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
| MXC_CCM_CHSCCDR_ENET_PODF_MASK
| MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
/* PLL2 PFD2 */
reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
/* Div = 2*/
reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
writel(reg, &imx_ccm->chsccdr);
/* Enable enet system clock */
reg = readl(&imx_ccm->CCGR3);
reg |= MXC_CCM_CCGR3_ENET_MASK;
writel(reg, &imx_ccm->CCGR3);
#endif
return 0;
}
#endif
static u32 get_usdhc_clk(u32 port)
{
u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
if (is_mx6ul() || is_mx6ull()) {
if (port > 1)
return 0;
}
if (is_mx6sll()) {
if (port > 2)
return 0;
}
switch (port) {
case 0:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
break;
case 1:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
break;
case 2:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
break;
case 3:
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
break;
default:
break;
}
if (clk_sel)
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
else
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
return root_freq / (usdhc_podf + 1);
}
u32 imx_get_uartclk(void)
{
return get_uart_clk();
}
u32 imx_get_fecclk(void)
{
return mxc_get_clock(MXC_IPG_CLK);
}
#if defined(CONFIG_SATA) || defined(CONFIG_PCIE_IMX)
static int enable_enet_pll(uint32_t en)
{
struct mxc_ccm_reg *const imx_ccm
= (struct mxc_ccm_reg *) CCM_BASE_ADDR;
s32 timeout = 100000;
u32 reg = 0;
/* Enable PLLs */
reg = readl(&imx_ccm->analog_pll_enet);
reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
writel(reg, &imx_ccm->analog_pll_enet);
reg |= BM_ANADIG_PLL_SYS_ENABLE;
while (timeout--) {
if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
break;
}
if (timeout <= 0)
return -EIO;
reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
writel(reg, &imx_ccm->analog_pll_enet);
reg |= en;
writel(reg, &imx_ccm->analog_pll_enet);
return 0;
}
#endif
#ifdef CONFIG_SATA
static void ungate_sata_clock(void)
{
struct mxc_ccm_reg *const imx_ccm =
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* Enable SATA clock. */
setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
}
int enable_sata_clock(void)
{
ungate_sata_clock();
return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
}
void disable_sata_clock(void)
{
struct mxc_ccm_reg *const imx_ccm =
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
}
#endif
#ifdef CONFIG_PCIE_IMX
static void ungate_pcie_clock(void)
{
struct mxc_ccm_reg *const imx_ccm =
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* Enable PCIe clock. */
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
}
int enable_pcie_clock(void)
{
struct anatop_regs *anatop_regs =
(struct anatop_regs *)ANATOP_BASE_ADDR;
struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
u32 lvds1_clk_sel;
/*
* Here be dragons!
*
* The register ANATOP_MISC1 is not documented in the Freescale
* MX6RM. The register that is mapped in the ANATOP space and
* marked as ANATOP_MISC1 is actually documented in the PMU section
* of the datasheet as PMU_MISC1.
*
* Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
* mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
* for PCI express link that is clocked from the i.MX6.
*/
#define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12)
#define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10)
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb
if (is_mx6sx())
lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
else
lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
clrsetbits_le32(&anatop_regs->ana_misc1,
ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
/* PCIe reference clock sourced from AXI. */
clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
/* Party time! Ungate the clock to the PCIe. */
#ifdef CONFIG_SATA
ungate_sata_clock();
#endif
ungate_pcie_clock();
return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
BM_ANADIG_PLL_ENET_ENABLE_PCIE);
}
#endif
#ifdef CONFIG_SECURE_BOOT
void hab_caam_clock_enable(unsigned char enable)
{
u32 reg;
if (is_mx6ull() || is_mx6sll()) {
/* CG5, DCP clock */
reg = __raw_readl(&imx_ccm->CCGR0);
if (enable)
reg |= MXC_CCM_CCGR0_DCP_CLK_MASK;
else
reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK;
__raw_writel(reg, &imx_ccm->CCGR0);
} else {
/* CG4 ~ CG6, CAAM clocks */
reg = __raw_readl(&imx_ccm->CCGR0);
if (enable)
reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
else
reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
__raw_writel(reg, &imx_ccm->CCGR0);
}
/* EMI slow clk */
reg = __raw_readl(&imx_ccm->CCGR6);
if (enable)
reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
else
reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
__raw_writel(reg, &imx_ccm->CCGR6);
}
#endif
static void enable_pll3(void)
{
struct anatop_regs __iomem *anatop =
(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
/* make sure pll3 is enabled */
if ((readl(&anatop->usb1_pll_480_ctrl) &
BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
/* enable pll's power */
writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
&anatop->usb1_pll_480_ctrl_set);
writel(0x80, &anatop->ana_misc2_clr);
/* wait for pll lock */
while ((readl(&anatop->usb1_pll_480_ctrl) &
BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
;
/* disable bypass */
writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
&anatop->usb1_pll_480_ctrl_clr);
/* enable pll output */
writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
&anatop->usb1_pll_480_ctrl_set);
}
}
void enable_thermal_clk(void)
{
enable_pll3();
}
#ifdef CONFIG_MTD_NOR_FLASH
void enable_eim_clk(unsigned char enable)
{
u32 reg;
reg = __raw_readl(&imx_ccm->CCGR6);
if (enable)
reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
else
reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
__raw_writel(reg, &imx_ccm->CCGR6);
}
#endif
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_mcu_main_clk();
case MXC_PER_CLK:
return get_periph_clk();
case MXC_AHB_CLK:
return get_ahb_clk();
case MXC_IPG_CLK:
return get_ipg_clk();
case MXC_IPG_PERCLK:
case MXC_I2C_CLK:
return get_ipg_per_clk();
case MXC_UART_CLK:
return get_uart_clk();
case MXC_CSPI_CLK:
return get_cspi_clk();
case MXC_AXI_CLK:
return get_axi_clk();
case MXC_EMI_SLOW_CLK:
return get_emi_slow_clk();
case MXC_DDR_CLK:
return get_mmdc_ch0_clk();
case MXC_ESDHC_CLK:
return get_usdhc_clk(0);
case MXC_ESDHC2_CLK:
return get_usdhc_clk(1);
case MXC_ESDHC3_CLK:
return get_usdhc_clk(2);
case MXC_ESDHC4_CLK:
return get_usdhc_clk(3);
case MXC_SATA_CLK:
return get_ahb_clk();
default:
printf("Unsupported MXC CLK: %d\n", clk);
break;
}
return 0;
}
#ifndef CONFIG_SPL_BUILD
/*
* Dump some core clockes.
*/
int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
u32 freq;
freq = decode_pll(PLL_SYS, MXC_HCLK);
printf("PLL_SYS %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_BUS, MXC_HCLK);
printf("PLL_BUS %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
printf("PLL_OTG %8d MHz\n", freq / 1000000);
freq = decode_pll(PLL_ENET, MXC_HCLK);
printf("PLL_NET %8d MHz\n", freq / 1000000);
printf("\n");
printf("ARM %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000);
printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
#ifdef CONFIG_MXC_SPI
printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
#endif
printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
return 0;
}
#ifndef CONFIG_MX6SX
void enable_ipu_clock(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
int reg;
reg = readl(&mxc_ccm->CCGR3);
reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
writel(reg, &mxc_ccm->CCGR3);
if (is_mx6dqp()) {
setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
}
}
#endif
#if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \
defined(CONFIG_MX6S)
static void disable_ldb_di_clock_sources(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
int reg;
/* Make sure PFDs are disabled at boot. */
reg = readl(&mxc_ccm->analog_pfd_528);
/* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */
if (is_mx6sdl())
reg |= 0x80008080;
else
reg |= 0x80808080;
writel(reg, &mxc_ccm->analog_pfd_528);
/* Disable PLL3 PFDs */
reg = readl(&mxc_ccm->analog_pfd_480);
reg |= 0x80808080;
writel(reg, &mxc_ccm->analog_pfd_480);
/* Disable PLL5 */
reg = readl(&mxc_ccm->analog_pll_video);
reg &= ~(1 << 13);
writel(reg, &mxc_ccm->analog_pll_video);
}
static void enable_ldb_di_clock_sources(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
int reg;
reg = readl(&mxc_ccm->analog_pfd_528);
if (is_mx6sdl())
reg &= ~(0x80008080);
else
reg &= ~(0x80808080);
writel(reg, &mxc_ccm->analog_pfd_528);
reg = readl(&mxc_ccm->analog_pfd_480);
reg &= ~(0x80808080);
writel(reg, &mxc_ccm->analog_pfd_480);
}
/*
* Try call this function as early in the boot process as possible since the
* function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5.
*/
void select_ldb_di_clock_source(enum ldb_di_clock clk)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
int reg;
/*
* Need to follow a strict procedure when changing the LDB
* clock, else we can introduce a glitch. Things to keep in
* mind:
* 1. The current and new parent clocks must be disabled.
* 2. The default clock for ldb_dio_clk is mmdc_ch1 which has
* no CG bit.
* 3. In the RTL implementation of the LDB_DI_CLK_SEL mux
* the top four options are in one mux and the PLL3 option along
* with another option is in the second mux. There is third mux
* used to decide between the first and second mux.
* The code below switches the parent to the bottom mux first
* and then manipulates the top mux. This ensures that no glitch
* will enter the divider.
*
* Need to disable MMDC_CH1 clock manually as there is no CG bit
* for this clock. The only way to disable this clock is to move
* it to pll3_sw_clk and then to disable pll3_sw_clk
* Make sure periph2_clk2_sel is set to pll3_sw_clk
*/
/* Disable all ldb_di clock parents */
disable_ldb_di_clock_sources();
/* Set MMDC_CH1 mask bit */
reg = readl(&mxc_ccm->ccdr);
reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
writel(reg, &mxc_ccm->ccdr);
/* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */
reg = readl(&mxc_ccm->cbcmr);
reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL;
writel(reg, &mxc_ccm->cbcmr);
/*
* Set the periph2_clk_sel to the top mux so that
* mmdc_ch1 is from pll3_sw_clk.
*/
reg = readl(&mxc_ccm->cbcdr);
reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
writel(reg, &mxc_ccm->cbcdr);
/* Wait for the clock switch */
while (readl(&mxc_ccm->cdhipr))
;
/* Disable pll3_sw_clk by selecting bypass clock source */
reg = readl(&mxc_ccm->ccsr);
reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
writel(reg, &mxc_ccm->ccsr);
/* Set the ldb_di0_clk and ldb_di1_clk to 111b */
reg = readl(&mxc_ccm->cs2cdr);
reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
| (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
writel(reg, &mxc_ccm->cs2cdr);
/* Set the ldb_di0_clk and ldb_di1_clk to 100b */
reg = readl(&mxc_ccm->cs2cdr);
reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
| MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
| (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
writel(reg, &mxc_ccm->cs2cdr);
/* Set the ldb_di0_clk and ldb_di1_clk to desired source */
reg = readl(&mxc_ccm->cs2cdr);
reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
| MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
| (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
writel(reg, &mxc_ccm->cs2cdr);
/* Unbypass pll3_sw_clk */
reg = readl(&mxc_ccm->ccsr);
reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
writel(reg, &mxc_ccm->ccsr);
/*
* Set the periph2_clk_sel back to the bottom mux so that
* mmdc_ch1 is from its original parent.
*/
reg = readl(&mxc_ccm->cbcdr);
reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
writel(reg, &mxc_ccm->cbcdr);
/* Wait for the clock switch */
while (readl(&mxc_ccm->cdhipr))
;
/* Clear MMDC_CH1 mask bit */
reg = readl(&mxc_ccm->ccdr);
reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
writel(reg, &mxc_ccm->ccdr);
enable_ldb_di_clock_sources();
}
#endif
/***************************************************/
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
"display clocks",
""
);
#endif