u-boot-brain/arch/arm/cpu/arm926ejs/armada100/timer.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

194 lines
4.6 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2010
* Marvell Semiconductor <www.marvell.com>
* Written-by: Prafulla Wadaskar <prafulla@marvell.com>
* Contributor: Mahavir Jain <mjain@marvell.com>
*/
#include <common.h>
#include <asm/arch/cpu.h>
#include <asm/arch/armada100.h>
/*
* Timer registers
* Refer Section A.6 in Datasheet
*/
struct armd1tmr_registers {
u32 clk_ctrl; /* Timer clk control reg */
u32 match[9]; /* Timer match registers */
u32 count[3]; /* Timer count registers */
u32 status[3];
u32 ie[3];
u32 preload[3]; /* Timer preload value */
u32 preload_ctrl[3];
u32 wdt_match_en;
u32 wdt_match_r;
u32 wdt_val;
u32 wdt_sts;
u32 icr[3];
u32 wdt_icr;
u32 cer; /* Timer count enable reg */
u32 cmr;
u32 ilr[3];
u32 wcr;
u32 wfar;
u32 wsar;
u32 cvwr;
};
#define TIMER 0 /* Use TIMER 0 */
/* Each timer has 3 match registers */
#define MATCH_CMP(x) ((3 * TIMER) + x)
#define TIMER_LOAD_VAL 0xffffffff
#define COUNT_RD_REQ 0x1
DECLARE_GLOBAL_DATA_PTR;
/* Using gd->arch.tbu from timestamp and gd->arch.tbl for lastdec */
/* For preventing risk of instability in reading counter value,
* first set read request to register cvwr and then read same
* register after it captures counter value.
*/
ulong read_timer(void)
{
struct armd1tmr_registers *armd1timers =
(struct armd1tmr_registers *) ARMD1_TIMER_BASE;
volatile int loop=100;
writel(COUNT_RD_REQ, &armd1timers->cvwr);
while (loop--);
return(readl(&armd1timers->cvwr));
}
ulong get_timer_masked(void)
{
ulong now = read_timer();
if (now >= gd->arch.tbl) {
/* normal mode */
gd->arch.tbu += now - gd->arch.tbl;
} else {
/* we have an overflow ... */
gd->arch.tbu += now + TIMER_LOAD_VAL - gd->arch.tbl;
}
gd->arch.tbl = now;
return gd->arch.tbu;
}
ulong get_timer(ulong base)
{
return ((get_timer_masked() / (CONFIG_SYS_HZ_CLOCK / 1000)) -
base);
}
void __udelay(unsigned long usec)
{
ulong delayticks;
ulong endtime;
delayticks = (usec * (CONFIG_SYS_HZ_CLOCK / 1000000));
endtime = get_timer_masked() + delayticks;
while (get_timer_masked() < endtime);
}
/*
* init the Timer
*/
int timer_init(void)
{
struct armd1apb1_registers *apb1clkres =
(struct armd1apb1_registers *) ARMD1_APBC1_BASE;
struct armd1tmr_registers *armd1timers =
(struct armd1tmr_registers *) ARMD1_TIMER_BASE;
/* Enable Timer clock at 3.25 MHZ */
writel(APBC_APBCLK | APBC_FNCLK | APBC_FNCLKSEL(3), &apb1clkres->timers);
/* load value into timer */
writel(0x0, &armd1timers->clk_ctrl);
/* Use Timer 0 Match Resiger 0 */
writel(TIMER_LOAD_VAL, &armd1timers->match[MATCH_CMP(0)]);
/* Preload value is 0 */
writel(0x0, &armd1timers->preload[TIMER]);
/* Enable match comparator 0 for Timer 0 */
writel(0x1, &armd1timers->preload_ctrl[TIMER]);
/* Enable timer 0 */
writel(0x1, &armd1timers->cer);
/* init the gd->arch.tbu and gd->arch.tbl value */
gd->arch.tbl = read_timer();
gd->arch.tbu = 0;
return 0;
}
#define MPMU_APRR_WDTR (1<<4)
#define TMR_WFAR 0xbaba /* WDT Register First key */
#define TMP_WSAR 0xeb10 /* WDT Register Second key */
/*
* This function uses internal Watchdog Timer
* based reset mechanism.
* Steps to write watchdog registers (protected access)
* 1. Write key value to TMR_WFAR reg.
* 2. Write key value to TMP_WSAR reg.
* 3. Perform write operation.
*/
void reset_cpu (unsigned long ignored)
{
struct armd1mpmu_registers *mpmu =
(struct armd1mpmu_registers *) ARMD1_MPMU_BASE;
struct armd1tmr_registers *armd1timers =
(struct armd1tmr_registers *) ARMD1_TIMER_BASE;
u32 val;
/* negate hardware reset to the WDT after system reset */
val = readl(&mpmu->aprr);
val = val | MPMU_APRR_WDTR;
writel(val, &mpmu->aprr);
/* reset/enable WDT clock */
writel(APBC_APBCLK | APBC_FNCLK | APBC_RST, &mpmu->wdtpcr);
readl(&mpmu->wdtpcr);
writel(APBC_APBCLK | APBC_FNCLK, &mpmu->wdtpcr);
readl(&mpmu->wdtpcr);
/* clear previous WDT status */
writel(TMR_WFAR, &armd1timers->wfar);
writel(TMP_WSAR, &armd1timers->wsar);
writel(0, &armd1timers->wdt_sts);
/* set match counter */
writel(TMR_WFAR, &armd1timers->wfar);
writel(TMP_WSAR, &armd1timers->wsar);
writel(0xf, &armd1timers->wdt_match_r);
/* enable WDT reset */
writel(TMR_WFAR, &armd1timers->wfar);
writel(TMP_WSAR, &armd1timers->wsar);
writel(0x3, &armd1timers->wdt_match_en);
while(1);
}
/*
* This function is derived from PowerPC code (read timebase as long long).
* On ARM it just returns the timer value.
*/
unsigned long long get_ticks(void)
{
return get_timer(0);
}
/*
* This function is derived from PowerPC code (timebase clock frequency).
* On ARM it returns the number of timer ticks per second.
*/
ulong get_tbclk (void)
{
return (ulong)CONFIG_SYS_HZ;
}