u-boot-brain/drivers/ddr/altera/sequencer.c
Marek Vasut bce24efa1d ddr: altera: Internal rw_mgr_mem_calibrate_vfifo() cleanup part 1
This patch just adds an expanded documentation header to the
aforementioned function. This is needed to make it easier to
match the purpose of this function with the documentation.

No functional change.

Signed-off-by: Marek Vasut <marex@denx.de>
2015-08-08 14:14:16 +02:00

3770 lines
106 KiB
C

/*
* Copyright Altera Corporation (C) 2012-2015
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/sdram.h>
#include "sequencer.h"
#include "sequencer_auto.h"
#include "sequencer_auto_ac_init.h"
#include "sequencer_auto_inst_init.h"
#include "sequencer_defines.h"
static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
static struct socfpga_sdr_reg_file *sdr_reg_file =
(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
static struct socfpga_data_mgr *data_mgr =
(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
static struct socfpga_sdr_ctrl *sdr_ctrl =
(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
#define DELTA_D 1
/*
* In order to reduce ROM size, most of the selectable calibration steps are
* decided at compile time based on the user's calibration mode selection,
* as captured by the STATIC_CALIB_STEPS selection below.
*
* However, to support simulation-time selection of fast simulation mode, where
* we skip everything except the bare minimum, we need a few of the steps to
* be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
* check, which is based on the rtl-supplied value, or we dynamically compute
* the value to use based on the dynamically-chosen calibration mode
*/
#define DLEVEL 0
#define STATIC_IN_RTL_SIM 0
#define STATIC_SKIP_DELAY_LOOPS 0
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
STATIC_SKIP_DELAY_LOOPS)
/* calibration steps requested by the rtl */
uint16_t dyn_calib_steps;
/*
* To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
* instead of static, we use boolean logic to select between
* non-skip and skip values
*
* The mask is set to include all bits when not-skipping, but is
* zero when skipping
*/
uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
((non_skip_value) & skip_delay_mask)
struct gbl_type *gbl;
struct param_type *param;
uint32_t curr_shadow_reg;
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm,
uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
static void set_failing_group_stage(uint32_t group, uint32_t stage,
uint32_t substage)
{
/*
* Only set the global stage if there was not been any other
* failing group
*/
if (gbl->error_stage == CAL_STAGE_NIL) {
gbl->error_substage = substage;
gbl->error_stage = stage;
gbl->error_group = group;
}
}
static void reg_file_set_group(u16 set_group)
{
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
}
static void reg_file_set_stage(u8 set_stage)
{
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
}
static void reg_file_set_sub_stage(u8 set_sub_stage)
{
set_sub_stage &= 0xff;
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
}
/**
* phy_mgr_initialize() - Initialize PHY Manager
*
* Initialize PHY Manager.
*/
static void phy_mgr_initialize(void)
{
u32 ratio;
debug("%s:%d\n", __func__, __LINE__);
/* Calibration has control over path to memory */
/*
* In Hard PHY this is a 2-bit control:
* 0: AFI Mux Select
* 1: DDIO Mux Select
*/
writel(0x3, &phy_mgr_cfg->mux_sel);
/* USER memory clock is not stable we begin initialization */
writel(0, &phy_mgr_cfg->reset_mem_stbl);
/* USER calibration status all set to zero */
writel(0, &phy_mgr_cfg->cal_status);
writel(0, &phy_mgr_cfg->cal_debug_info);
/* Init params only if we do NOT skip calibration. */
if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
return;
ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
param->read_correct_mask_vg = (1 << ratio) - 1;
param->write_correct_mask_vg = (1 << ratio) - 1;
param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
ratio = RW_MGR_MEM_DATA_WIDTH /
RW_MGR_MEM_DATA_MASK_WIDTH;
param->dm_correct_mask = (1 << ratio) - 1;
}
/**
* set_rank_and_odt_mask() - Set Rank and ODT mask
* @rank: Rank mask
* @odt_mode: ODT mode, OFF or READ_WRITE
*
* Set Rank and ODT mask (On-Die Termination).
*/
static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
{
u32 odt_mask_0 = 0;
u32 odt_mask_1 = 0;
u32 cs_and_odt_mask;
if (odt_mode == RW_MGR_ODT_MODE_OFF) {
odt_mask_0 = 0x0;
odt_mask_1 = 0x0;
} else { /* RW_MGR_ODT_MODE_READ_WRITE */
switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
case 1: /* 1 Rank */
/* Read: ODT = 0 ; Write: ODT = 1 */
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
break;
case 2: /* 2 Ranks */
if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
/*
* - Dual-Slot , Single-Rank (1 CS per DIMM)
* OR
* - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
*
* Since MEM_NUMBER_OF_RANKS is 2, they
* are both single rank with 2 CS each
* (special for RDIMM).
*
* Read: Turn on ODT on the opposite rank
* Write: Turn on ODT on all ranks
*/
odt_mask_0 = 0x3 & ~(1 << rank);
odt_mask_1 = 0x3;
} else {
/*
* - Single-Slot , Dual-Rank (2 CS per DIMM)
*
* Read: Turn on ODT off on all ranks
* Write: Turn on ODT on active rank
*/
odt_mask_0 = 0x0;
odt_mask_1 = 0x3 & (1 << rank);
}
break;
case 4: /* 4 Ranks */
/* Read:
* ----------+-----------------------+
* | ODT |
* Read From +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 0 |
* 1 | 1 | 0 | 0 | 0 |
* 2 | 0 | 0 | 0 | 1 |
* 3 | 0 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*
* Write:
* ----------+-----------------------+
* | ODT |
* Write To +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 1 |
* 1 | 1 | 0 | 1 | 0 |
* 2 | 0 | 1 | 0 | 1 |
* 3 | 1 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*/
switch (rank) {
case 0:
odt_mask_0 = 0x4;
odt_mask_1 = 0x5;
break;
case 1:
odt_mask_0 = 0x8;
odt_mask_1 = 0xA;
break;
case 2:
odt_mask_0 = 0x1;
odt_mask_1 = 0x5;
break;
case 3:
odt_mask_0 = 0x2;
odt_mask_1 = 0xA;
break;
}
break;
}
}
cs_and_odt_mask = (0xFF & ~(1 << rank)) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
}
/**
* scc_mgr_set() - Set SCC Manager register
* @off: Base offset in SCC Manager space
* @grp: Read/Write group
* @val: Value to be set
*
* This function sets the SCC Manager (Scan Chain Control Manager) register.
*/
static void scc_mgr_set(u32 off, u32 grp, u32 val)
{
writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
}
/**
* scc_mgr_initialize() - Initialize SCC Manager registers
*
* Initialize SCC Manager registers.
*/
static void scc_mgr_initialize(void)
{
/*
* Clear register file for HPS. 16 (2^4) is the size of the
* full register file in the scc mgr:
* RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
* MEM_IF_READ_DQS_WIDTH - 1);
*/
int i;
for (i = 0; i < 16; i++) {
debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
__func__, __LINE__, i);
scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
}
}
static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
{
scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
}
static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
}
static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
{
scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
}
static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
}
static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
delay);
}
static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
}
static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
}
static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
delay);
}
static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
delay);
}
/* load up dqs config settings */
static void scc_mgr_load_dqs(uint32_t dqs)
{
writel(dqs, &sdr_scc_mgr->dqs_ena);
}
/* load up dqs io config settings */
static void scc_mgr_load_dqs_io(void)
{
writel(0, &sdr_scc_mgr->dqs_io_ena);
}
/* load up dq config settings */
static void scc_mgr_load_dq(uint32_t dq_in_group)
{
writel(dq_in_group, &sdr_scc_mgr->dq_ena);
}
/* load up dm config settings */
static void scc_mgr_load_dm(uint32_t dm)
{
writel(dm, &sdr_scc_mgr->dm_ena);
}
/**
* scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
* @off: Base offset in SCC Manager space
* @grp: Read/Write group
* @val: Value to be set
* @update: If non-zero, trigger SCC Manager update for all ranks
*
* This function sets the SCC Manager (Scan Chain Control Manager) register
* and optionally triggers the SCC update for all ranks.
*/
static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
const int update)
{
u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_set(off, grp, val);
if (update || (r == 0)) {
writel(grp, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
}
}
}
static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
{
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
read_group, phase, 0);
}
static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
uint32_t phase)
{
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
write_group, phase, 0);
}
static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
uint32_t delay)
{
/*
* In shadow register mode, the T11 settings are stored in
* registers in the core, which are updated by the DQS_ENA
* signals. Not issuing the SCC_MGR_UPD command allows us to
* save lots of rank switching overhead, by calling
* select_shadow_regs_for_update with update_scan_chains
* set to 0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
read_group, delay, 1);
writel(0, &sdr_scc_mgr->update);
}
/**
* scc_mgr_set_oct_out1_delay() - Set OCT output delay
* @write_group: Write group
* @delay: Delay value
*
* This function sets the OCT output delay in SCC manager.
*/
static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
{
const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
const int base = write_group * ratio;
int i;
/*
* Load the setting in the SCC manager
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be set multiple times.
*/
for (i = 0; i < ratio; i++)
scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
}
/**
* scc_mgr_set_hhp_extras() - Set HHP extras.
*
* Load the fixed setting in the SCC manager HHP extras.
*/
static void scc_mgr_set_hhp_extras(void)
{
/*
* Load the fixed setting in the SCC manager
* bits: 0:0 = 1'b1 - DQS bypass
* bits: 1:1 = 1'b1 - DQ bypass
* bits: 4:2 = 3'b001 - rfifo_mode
* bits: 6:5 = 2'b01 - rfifo clock_select
* bits: 7:7 = 1'b0 - separate gating from ungating setting
* bits: 8:8 = 1'b0 - separate OE from Output delay setting
*/
const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
(1 << 2) | (1 << 1) | (1 << 0);
const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_HHP_GLOBALS_OFFSET |
SCC_MGR_HHP_EXTRAS_OFFSET;
debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
__func__, __LINE__);
writel(value, addr);
debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
__func__, __LINE__);
}
/**
* scc_mgr_zero_all() - Zero all DQS config
*
* Zero all DQS config.
*/
static void scc_mgr_zero_all(void)
{
int i, r;
/*
* USER Zero all DQS config settings, across all groups and all
* shadow registers
*/
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
/*
* The phases actually don't exist on a per-rank basis,
* but there's no harm updating them several times, so
* let's keep the code simple.
*/
scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
scc_mgr_set_dqs_en_phase(i, 0);
scc_mgr_set_dqs_en_delay(i, 0);
}
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
scc_mgr_set_dqdqs_output_phase(i, 0);
/* Arria V/Cyclone V don't have out2. */
scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
}
}
/* Multicast to all DQS group enables. */
writel(0xff, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
}
/**
* scc_set_bypass_mode() - Set bypass mode and trigger SCC update
* @write_group: Write group
*
* Set bypass mode and trigger SCC update.
*/
static void scc_set_bypass_mode(const u32 write_group)
{
/* Multicast to all DQ enables. */
writel(0xff, &sdr_scc_mgr->dq_ena);
writel(0xff, &sdr_scc_mgr->dm_ena);
/* Update current DQS IO enable. */
writel(0, &sdr_scc_mgr->dqs_io_ena);
/* Update the DQS logic. */
writel(write_group, &sdr_scc_mgr->dqs_ena);
/* Hit update. */
writel(0, &sdr_scc_mgr->update);
}
/**
* scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
* @write_group: Write group
*
* Load DQS settings for Write Group, do not trigger SCC update.
*/
static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
{
const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
const int base = write_group * ratio;
int i;
/*
* Load the setting in the SCC manager
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be set multiple times.
*/
for (i = 0; i < ratio; i++)
writel(base + i, &sdr_scc_mgr->dqs_ena);
}
/**
* scc_mgr_zero_group() - Zero all configs for a group
*
* Zero DQ, DM, DQS and OCT configs for a group.
*/
static void scc_mgr_zero_group(const u32 write_group, const int out_only)
{
int i, r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
/* Zero all DQ config settings. */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(i, 0);
if (!out_only)
scc_mgr_set_dq_in_delay(i, 0);
}
/* Multicast to all DQ enables. */
writel(0xff, &sdr_scc_mgr->dq_ena);
/* Zero all DM config settings. */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
scc_mgr_set_dm_out1_delay(i, 0);
/* Multicast to all DM enables. */
writel(0xff, &sdr_scc_mgr->dm_ena);
/* Zero all DQS IO settings. */
if (!out_only)
scc_mgr_set_dqs_io_in_delay(0);
/* Arria V/Cyclone V don't have out2. */
scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_load_dqs_for_write_group(write_group);
/* Multicast to all DQS IO enables (only 1 in total). */
writel(0, &sdr_scc_mgr->dqs_io_ena);
/* Hit update to zero everything. */
writel(0, &sdr_scc_mgr->update);
}
}
/*
* apply and load a particular input delay for the DQ pins in a group
* group_bgn is the index of the first dq pin (in the write group)
*/
static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(p, delay);
scc_mgr_load_dq(p);
}
}
/**
* scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
* @delay: Delay value
*
* Apply and load a particular output delay for the DQ pins in a group.
*/
static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
{
int i;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(i, delay);
scc_mgr_load_dq(i);
}
}
/* apply and load a particular output delay for the DM pins in a group */
static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
{
uint32_t i;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
scc_mgr_set_dm_out1_delay(i, delay1);
scc_mgr_load_dm(i);
}
}
/* apply and load delay on both DQS and OCT out1 */
static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
uint32_t delay)
{
scc_mgr_set_dqs_out1_delay(delay);
scc_mgr_load_dqs_io();
scc_mgr_set_oct_out1_delay(write_group, delay);
scc_mgr_load_dqs_for_write_group(write_group);
}
/**
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
* @write_group: Write group
* @delay: Delay value
*
* Apply a delay to the entire output side: DQ, DM, DQS, OCT.
*/
static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
const u32 delay)
{
u32 i, new_delay;
/* DQ shift */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
scc_mgr_load_dq(i);
/* DM shift */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
scc_mgr_load_dm(i);
/* DQS shift */
new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1,
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
__func__, __LINE__, write_group, delay, new_delay,
IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay -= IO_IO_OUT2_DELAY_MAX;
scc_mgr_set_dqs_out1_delay(new_delay);
}
scc_mgr_load_dqs_io();
/* OCT shift */
new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1,
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
__func__, __LINE__, write_group, delay,
new_delay, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay -= IO_IO_OUT2_DELAY_MAX;
scc_mgr_set_oct_out1_delay(write_group, new_delay);
}
scc_mgr_load_dqs_for_write_group(write_group);
}
/**
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
* @write_group: Write group
* @delay: Delay value
*
* Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
*/
static void
scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
const u32 delay)
{
int r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_apply_group_all_out_delay_add(write_group, delay);
writel(0, &sdr_scc_mgr->update);
}
}
/**
* set_jump_as_return() - Return instruction optimization
*
* Optimization used to recover some slots in ddr3 inst_rom could be
* applied to other protocols if we wanted to
*/
static void set_jump_as_return(void)
{
/*
* To save space, we replace return with jump to special shared
* RETURN instruction so we set the counter to large value so that
* we always jump.
*/
writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
}
/*
* should always use constants as argument to ensure all computations are
* performed at compile time
*/
static void delay_for_n_mem_clocks(const uint32_t clocks)
{
uint32_t afi_clocks;
uint8_t inner = 0;
uint8_t outer = 0;
uint16_t c_loop = 0;
debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
/* scale (rounding up) to get afi clocks */
/*
* Note, we don't bother accounting for being off a little bit
* because of a few extra instructions in outer loops
* Note, the loops have a test at the end, and do the test before
* the decrement, and so always perform the loop
* 1 time more than the counter value
*/
if (afi_clocks == 0) {
;
} else if (afi_clocks <= 0x100) {
inner = afi_clocks-1;
outer = 0;
c_loop = 0;
} else if (afi_clocks <= 0x10000) {
inner = 0xff;
outer = (afi_clocks-1) >> 8;
c_loop = 0;
} else {
inner = 0xff;
outer = 0xff;
c_loop = (afi_clocks-1) >> 16;
}
/*
* rom instructions are structured as follows:
*
* IDLE_LOOP2: jnz cntr0, TARGET_A
* IDLE_LOOP1: jnz cntr1, TARGET_B
* return
*
* so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
* TARGET_B is set to IDLE_LOOP2 as well
*
* if we have no outer loop, though, then we can use IDLE_LOOP1 only,
* and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
*
* a little confusing, but it helps save precious space in the inst_rom
* and sequencer rom and keeps the delays more accurate and reduces
* overhead
*/
if (afi_clocks <= 0x100) {
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_IDLE_LOOP1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
} else {
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
&sdr_rw_load_mgr_regs->load_cntr0);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_IDLE_LOOP2,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(RW_MGR_IDLE_LOOP2,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
/* hack to get around compiler not being smart enough */
if (afi_clocks <= 0x10000) {
/* only need to run once */
writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
} else {
do {
writel(RW_MGR_IDLE_LOOP2,
SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
} while (c_loop-- != 0);
}
}
debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
}
/**
* rw_mgr_mem_init_load_regs() - Load instruction registers
* @cntr0: Counter 0 value
* @cntr1: Counter 1 value
* @cntr2: Counter 2 value
* @jump: Jump instruction value
*
* Load instruction registers.
*/
static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
{
uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
/* Load counters */
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
&sdr_rw_load_mgr_regs->load_cntr0);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
&sdr_rw_load_mgr_regs->load_cntr2);
/* Load jump address */
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
/* Execute count instruction */
writel(jump, grpaddr);
}
/**
* rw_mgr_mem_load_user() - Load user calibration values
* @fin1: Final instruction 1
* @fin2: Final instruction 2
* @precharge: If 1, precharge the banks at the end
*
* Load user calibration values and optionally precharge the banks.
*/
static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
const int precharge)
{
u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/* precharge all banks ... */
if (precharge)
writel(RW_MGR_PRECHARGE_ALL, grpaddr);
/*
* USER Use Mirror-ed commands for odd ranks if address
* mirrorring is on
*/
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
writel(RW_MGR_MRS2_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(fin1, grpaddr);
} else {
set_jump_as_return();
writel(RW_MGR_MRS2, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1, grpaddr);
set_jump_as_return();
writel(fin2, grpaddr);
}
if (precharge)
continue;
set_jump_as_return();
writel(RW_MGR_ZQCL, grpaddr);
/* tZQinit = tDLLK = 512 ck cycles */
delay_for_n_mem_clocks(512);
}
}
/**
* rw_mgr_mem_initialize() - Initialize RW Manager
*
* Initialize RW Manager.
*/
static void rw_mgr_mem_initialize(void)
{
debug("%s:%d\n", __func__, __LINE__);
/* The reset / cke part of initialization is broadcasted to all ranks */
writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
/*
* Here's how you load register for a loop
* Counters are located @ 0x800
* Jump address are located @ 0xC00
* For both, registers 0 to 3 are selected using bits 3 and 2, like
* in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
* I know this ain't pretty, but Avalon bus throws away the 2 least
* significant bits
*/
/* Start with memory RESET activated */
/* tINIT = 200us */
/*
* 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation:
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
* b = 6A
*/
rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
SEQ_TINIT_CNTR2_VAL,
RW_MGR_INIT_RESET_0_CKE_0);
/* Indicate that memory is stable. */
writel(1, &phy_mgr_cfg->reset_mem_stbl);
/*
* transition the RESET to high
* Wait for 500us
*/
/*
* 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
* b = FF
*/
rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
SEQ_TRESET_CNTR2_VAL,
RW_MGR_INIT_RESET_1_CKE_0);
/* Bring up clock enable. */
/* tXRP < 250 ck cycles */
delay_for_n_mem_clocks(250);
rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
0);
}
/*
* At the end of calibration we have to program the user settings in, and
* USER hand off the memory to the user.
*/
static void rw_mgr_mem_handoff(void)
{
rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
/*
* USER need to wait tMOD (12CK or 15ns) time before issuing
* other commands, but we will have plenty of NIOS cycles before
* actual handoff so its okay.
*/
}
/*
* performs a guaranteed read on the patterns we are going to use during a
* read test to ensure memory works
*/
static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts of read commands */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_READ,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_READ_CONT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_GUARANTEED_READ, addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
%lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk == param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
}
static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
{
return rw_mgr_mem_calibrate_read_test_patterns(0, group,
num_tries, bit_chk, 1);
}
/* load up the patterns we are going to use during a read test */
static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
uint32_t all_ranks)
{
uint32_t r;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
debug("%s:%d\n", __func__, __LINE__);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
/*
* try a read and see if it returns correct data back. has dummy reads
* inserted into the mix used to align dqs enable. has more thorough checks
* than the regular read test.
*/
static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups, uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_READ_B2B_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_READ_B2B_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
if (quick_read_mode)
writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
/* need at least two (1+1) reads to capture failures */
else if (all_groups)
writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
else
writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
if (all_groups)
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
&sdr_rw_load_mgr_regs->load_cntr3);
else
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
if (all_groups)
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
else
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_READ_B2B, addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
(%u == %u) => %lu", __func__, __LINE__, group,
all_groups, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk ==
param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
(%u != %lu) => %lu\n", __func__, __LINE__,
group, all_groups, *bit_chk, (long unsigned int)0,
(long unsigned int)(*bit_chk != 0x00));
return *bit_chk != 0x00;
}
}
static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups)
{
return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
bit_chk, all_groups, 1);
}
static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
{
writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
(*v)++;
}
static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
{
uint32_t i;
for (i = 0; i < VFIFO_SIZE-1; i++)
rw_mgr_incr_vfifo(grp, v);
}
static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
{
uint32_t v;
uint32_t fail_cnt = 0;
uint32_t test_status;
for (v = 0; v < VFIFO_SIZE; ) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
__func__, __LINE__, v);
test_status = rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, bit_chk, 0);
if (!test_status) {
fail_cnt++;
if (fail_cnt == 2)
break;
}
/* fiddle with FIFO */
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
/* no failing read found!! Something must have gone wrong */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
__func__, __LINE__);
return 0;
} else {
return v;
}
}
static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t dtaps_per_ptap, uint32_t *work_bgn,
uint32_t *v, uint32_t *d, uint32_t *p,
uint32_t *i, uint32_t *max_working_cnt)
{
uint32_t found_begin = 0;
uint32_t tmp_delay = 0;
uint32_t test_status;
for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
*work_bgn = tmp_delay;
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
test_status =
rw_mgr_mem_calibrate_read_test_all_ranks
(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
if (test_status) {
*max_working_cnt = 1;
found_begin = 1;
break;
}
}
if (found_begin)
break;
if (*p > IO_DQS_EN_PHASE_MAX)
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
}
if (found_begin)
break;
}
if (*i >= VFIFO_SIZE) {
/* cannot find working solution */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
ptap/dtap\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *max_working_cnt)
{
uint32_t found_begin = 0;
uint32_t tmp_delay;
/* Special case code for backing up a phase */
if (*p == 0) {
*p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(*grp, v);
} else {
(*p)--;
}
tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
PASS_ONE_BIT,
bit_chk, 0)) {
found_begin = 1;
*work_bgn = tmp_delay;
break;
}
}
/* We have found a working dtap before the ptap found above */
if (found_begin == 1)
(*max_working_cnt)++;
/*
* Restore VFIFO to old state before we decremented it
* (if needed).
*/
(*p)++;
if (*p > IO_DQS_EN_PHASE_MAX) {
*p = 0;
rw_mgr_incr_vfifo(*grp, v);
}
scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
}
static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
uint32_t *work_end)
{
uint32_t found_end = 0;
(*p)++;
*work_end += IO_DELAY_PER_OPA_TAP;
if (*p > IO_DQS_EN_PHASE_MAX) {
/* fiddle with FIFO */
*p = 0;
rw_mgr_incr_vfifo(*grp, v);
}
for (; *i < VFIFO_SIZE + 1; (*i)++) {
for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
+= IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
found_end = 1;
break;
} else {
(*max_working_cnt)++;
}
}
if (found_end)
break;
if (*p > IO_DQS_EN_PHASE_MAX) {
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
*p = 0;
}
}
if (*i >= VFIFO_SIZE + 1) {
/* cannot see edge of failing read */
debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
failed\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *work_mid,
uint32_t *work_end)
{
int i;
int tmp_delay = 0;
*work_mid = (*work_bgn + *work_end) / 2;
debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
*work_bgn, *work_end, *work_mid);
/* Get the middle delay to be less than a VFIFO delay */
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
;
debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
while (*work_mid > tmp_delay)
*work_mid -= tmp_delay;
debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
tmp_delay = 0;
for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
;
tmp_delay -= IO_DELAY_PER_OPA_TAP;
debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
;
debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
/*
* push vfifo until we can successfully calibrate. We can do this
* because the largest possible margin in 1 VFIFO cycle.
*/
for (i = 0; i < VFIFO_SIZE; i++) {
debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
*v);
if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
PASS_ONE_BIT,
bit_chk, 0)) {
break;
}
/* fiddle with FIFO */
rw_mgr_incr_vfifo(*grp, v);
}
if (i >= VFIFO_SIZE) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
failed\n", __func__, __LINE__);
return 0;
} else {
return 1;
}
}
/* find a good dqs enable to use */
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
uint32_t v, d, p, i;
uint32_t max_working_cnt;
uint32_t bit_chk;
uint32_t dtaps_per_ptap;
uint32_t work_bgn, work_mid, work_end;
uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
debug("%s:%d %u\n", __func__, __LINE__, grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
/* ************************************************************** */
/* * Step 0 : Determine number of delay taps for each phase tap * */
dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
/* ********************************************************* */
/* * Step 1 : First push vfifo until we get a failing read * */
v = find_vfifo_read(grp, &bit_chk);
max_working_cnt = 0;
/* ******************************************************** */
/* * step 2: find first working phase, increment in ptaps * */
work_bgn = 0;
if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
&p, &i, &max_working_cnt) == 0)
return 0;
work_end = work_bgn;
/*
* If d is 0 then the working window covers a phase tap and
* we can follow the old procedure otherwise, we've found the beginning,
* and we need to increment the dtaps until we find the end.
*/
if (d == 0) {
/* ********************************************************* */
/* * step 3a: if we have room, back off by one and
increment in dtaps * */
sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&max_working_cnt);
/* ********************************************************* */
/* * step 4a: go forward from working phase to non working
phase, increment in ptaps * */
if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&i, &max_working_cnt, &work_end) == 0)
return 0;
/* ********************************************************* */
/* * step 5a: back off one from last, increment in dtaps * */
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
work_end -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/* * The actual increment of dtaps is done outside of
the if/else loop to share code */
d = 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
vfifo=%u ptap=%u\n", __func__, __LINE__,
v, p);
} else {
/* ******************************************************* */
/* * step 3-5b: Find the right edge of the window using
delay taps * */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
v, p, d, work_bgn);
work_end = work_bgn;
/* * The actual increment of dtaps is done outside of the
if/else loop to share code */
/* Only here to counterbalance a subtract later on which is
not needed if this branch of the algorithm is taken */
max_working_cnt++;
}
/* The dtap increment to find the failing edge is done here */
for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
end-2: dtap=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
break;
}
}
/* Go back to working dtap */
if (d != 0)
work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
v, p, d-1, work_end);
if (work_end < work_bgn) {
/* nil range */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
failed\n", __func__, __LINE__);
return 0;
}
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
__func__, __LINE__, work_bgn, work_end);
/* *************************************************************** */
/*
* * We need to calculate the number of dtaps that equal a ptap
* * To do that we'll back up a ptap and re-find the edge of the
* * window using dtaps
*/
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
for tracking\n", __func__, __LINE__);
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
cycle/phase: v=%u p=%u\n", __func__, __LINE__,
v, p);
} else {
p = p - 1;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
phase only: v=%u p=%u", __func__, __LINE__,
v, p);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/*
* Increase dtap until we first see a passing read (in case the
* window is smaller than a ptap),
* and then a failing read to mark the edge of the window again
*/
/* Find a passing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
__func__, __LINE__);
found_passing_read = 0;
found_failing_read = 0;
initial_failing_dtap = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
found_passing_read = 1;
break;
}
}
if (found_passing_read) {
/* Find a failing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
read\n", __func__, __LINE__);
for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
testing read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_failing_read = 1;
break;
}
}
} else {
debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
calculate dtaps", __func__, __LINE__);
debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
}
/*
* The dynamically calculated dtaps_per_ptap is only valid if we
* found a passing/failing read. If we didn't, it means d hit the max
* (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
* statically calculated value.
*/
if (found_passing_read && found_failing_read)
dtaps_per_ptap = d - initial_failing_dtap;
writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
- %u = %u", __func__, __LINE__, d,
initial_failing_dtap, dtaps_per_ptap);
/* ******************************************** */
/* * step 6: Find the centre of the window * */
if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
&work_mid, &work_end) == 0)
return 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
v, p-1, d);
return 1;
}
/*
* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
* dq_in_delay values
*/
static uint32_t
rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
{
uint32_t found;
uint32_t i;
uint32_t p;
uint32_t d;
uint32_t r;
const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
(RW_MGR_MEM_DQ_PER_READ_DQS-1);
/* we start at zero, so have one less dq to devide among */
debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
test_bgn);
/* try different dq_in_delays since the dq path is shorter than dqs */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
vfifo_find_dqs_", __func__, __LINE__);
debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
write_group, read_group);
debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
scc_mgr_set_dq_in_delay(p, d);
scc_mgr_load_dq(p);
}
writel(0, &sdr_scc_mgr->update);
}
found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
en_phase_sweep_dq", __func__, __LINE__);
debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
chain to zero\n", write_group, read_group, found);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
i++, p++) {
scc_mgr_set_dq_in_delay(p, 0);
scc_mgr_load_dq(p);
}
writel(0, &sdr_scc_mgr->update);
}
return found;
}
/* per-bit deskew DQ and center */
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
uint32_t use_read_test, uint32_t update_fom)
{
uint32_t i, p, d, min_index;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t mid;
int32_t orig_mid_min, mid_min;
int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
final_dqs_en;
int32_t dq_margin, dqs_margin;
uint32_t stop;
uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
uint32_t addr;
debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
start_dqs = readl(addr + (read_group << 2));
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
start_dqs_en = readl(addr + ((read_group << 2)
- IO_DQS_EN_DELAY_OFFSET));
/* set the left and right edge of each bit to an illegal value */
/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
writel(0, &sdr_scc_mgr->update);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
&& %u", __func__, __LINE__, d,
sticky_bit_chk,
param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as the
left_edge */
left_edge[i] = d;
} else {
/* If a left edge has not been seen yet,
then a future passing test will mark
this edge as the right edge */
if (left_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have seen
* both the left and right edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0)
break;
}
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
uint32_t delay = d + start_dqs_en;
if (delay > IO_DQS_EN_DELAY_MAX)
delay = IO_DQS_EN_DELAY_MAX;
scc_mgr_set_dqs_en_delay(read_group, delay);
}
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
%u && %u", __func__, __LINE__, d,
sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as
the right_edge */
right_edge[i] = d;
} else {
if (d != 0) {
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
/* d = 0 failed, but it passed
when testing the left edge,
so it must be marginal,
set it to -1 */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_IN_DELAY_MAX
+ 1) {
right_edge[i] = -1;
}
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
else if (right_edge[i] ==
IO_IO_IN_DELAY_MAX +
1) {
left_edge[i] = -(d + 1);
}
}
}
debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
d=%u]: ", __func__, __LINE__, d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Check that all bits have a window */
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
== IO_IO_IN_DELAY_MAX + 1)) {
/*
* Restore delay chain settings before letting the loop
* in rw_mgr_mem_calibrate_vfifo to retry different
* dqs/ck relationships.
*/
scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group,
start_dqs_en);
}
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
find edge [%u]: %d %d", __func__, __LINE__,
i, left_edge[i], right_edge[i]);
if (use_read_test) {
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO,
CAL_SUBSTAGE_VFIFO_CENTER);
} else {
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
}
return 0;
}
}
/* Find middle of window for each DQ bit */
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to
* make sure the rounding in further calculations is correct
* (always bias to the right), so just add 1 for all positive values.
*/
if (mid_min > 0)
mid_min++;
mid_min = mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
__func__, __LINE__, mid_min, min_index);
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs - mid_min;
if (new_dqs > IO_DQS_IN_DELAY_MAX)
new_dqs = IO_DQS_IN_DELAY_MAX;
else if (new_dqs < 0)
new_dqs = 0;
mid_min = start_dqs - new_dqs;
debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
mid_min, new_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
else if (start_dqs_en - mid_min < 0)
mid_min += start_dqs_en - mid_min;
}
new_dqs = start_dqs - mid_min;
debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
new_dqs=%d mid_min=%d\n", start_dqs,
IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_IN_DELAY_MAX + 1;
dq_margin = IO_IO_IN_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2, "vfifo_center: before: \
shift_dq[%u]=%d\n", i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
temp_dq_in_delay1 = readl(addr + (p << 2));
temp_dq_in_delay2 = readl(addr + (i << 2));
if (shift_dq + (int32_t)temp_dq_in_delay1 >
(int32_t)IO_IO_IN_DELAY_MAX) {
shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
shift_dq = -(int32_t)temp_dq_in_delay1;
}
debug_cond(DLEVEL == 2, "vfifo_center: after: \
shift_dq[%u]=%d\n", i, shift_dq);
final_dq[i] = temp_dq_in_delay1 + shift_dq;
scc_mgr_set_dq_in_delay(p, final_dq[i]);
scc_mgr_load_dq(p);
debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
final_dqs = new_dqs;
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
final_dqs_en = start_dqs_en - mid_min;
/* Move DQS-en */
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
scc_mgr_load_dqs(read_group);
}
/* Move DQS */
scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
scc_mgr_load_dqs(read_group);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
dqs_margin=%d", __func__, __LINE__,
dq_margin, dqs_margin);
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied. Apply the update bit.
*/
writel(0, &sdr_scc_mgr->update);
return (dq_margin >= 0) && (dqs_margin >= 0);
}
/**
* rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* Stage 1: Calibrate the read valid prediction FIFO.
*
* This function implements UniPHY calibration Stage 1, as explained in
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
*
* - read valid prediction will consist of finding:
* - DQS enable phase and DQS enable delay (DQS Enable Calibration)
* - DQS input phase and DQS input delay (DQ/DQS Centering)
* - we also do a per-bit deskew on the DQ lines.
*/
static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
uint32_t test_bgn)
{
uint32_t p, d, rank_bgn, sr;
uint32_t dtaps_per_ptap;
uint32_t bit_chk;
uint32_t grp_calibrated;
uint32_t write_group, write_test_bgn;
uint32_t failed_substage;
debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_VFIFO);
write_group = read_group;
write_test_bgn = test_bgn;
/* USER Determine number of delay taps for each phase tap */
dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
/* update info for sims */
reg_file_set_group(read_group);
grp_calibrated = 0;
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
/*
* In RLDRAMX we may be messing the delay of pins in
* the same write group but outside of the current read
* the group, but that's ok because we haven't
* calibrated output side yet.
*/
if (d > 0) {
scc_mgr_apply_group_all_out_delay_add_all_ranks(
write_group, d);
}
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
p++) {
/* set a particular dqdqs phase */
scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
p=%u d=%u\n", __func__, __LINE__,
read_group, p, d);
/*
* Load up the patterns used by read calibration
* using current DQDQS phase.
*/
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
if (!(gbl->phy_debug_mode_flags &
PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
(read_group, 1, &bit_chk)) {
debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
__func__, __LINE__);
debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
read_group, p, d);
break;
}
}
/* case:56390 */
grp_calibrated = 1;
if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
(write_group, read_group, test_bgn)) {
/*
* USER Read per-bit deskew can be done on a
* per shadow register basis.
*/
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG,
++sr) {
/*
* Determine if this set of ranks
* should be skipped entirely.
*/
if (!param->skip_shadow_regs[sr]) {
/*
* If doing read after write
* calibration, do not update
* FOM, now - do it then.
*/
if (!rw_mgr_mem_calibrate_vfifo_center
(rank_bgn, write_group,
read_group, test_bgn, 1, 0)) {
grp_calibrated = 0;
failed_substage =
CAL_SUBSTAGE_VFIFO_CENTER;
}
}
}
} else {
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
failed_substage);
return 0;
}
/*
* Reset the delay chains back to zero if they have moved > 1
* (check for > 1 because loop will increase d even when pass in
* first case).
*/
if (d > 2)
scc_mgr_zero_group(write_group, 1);
return 1;
}
/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
uint32_t test_bgn)
{
uint32_t rank_bgn, sr;
uint32_t grp_calibrated;
uint32_t write_group;
debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
write_group = read_group;
/* update info for sims */
reg_file_set_group(read_group);
grp_calibrated = 1;
/* Read per-bit deskew can be done on a per shadow register basis */
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
/* Determine if this set of ranks should be skipped entirely */
if (!param->skip_shadow_regs[sr]) {
/* This is the last calibration round, update FOM here */
if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
write_group,
read_group,
test_bgn, 0,
1)) {
grp_calibrated = 0;
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
return 0;
}
return 1;
}
/* Calibrate LFIFO to find smallest read latency */
static uint32_t rw_mgr_mem_calibrate_lfifo(void)
{
uint32_t found_one;
uint32_t bit_chk;
debug("%s:%d\n", __func__, __LINE__);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_LFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
/* Load up the patterns used by read calibration for all ranks */
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
found_one = 0;
do {
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
__func__, __LINE__, gbl->curr_read_lat);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
NUM_READ_TESTS,
PASS_ALL_BITS,
&bit_chk, 1)) {
break;
}
found_one = 1;
/* reduce read latency and see if things are working */
/* correctly */
gbl->curr_read_lat--;
} while (gbl->curr_read_lat > 0);
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
if (found_one) {
/* add a fudge factor to the read latency that was determined */
gbl->curr_read_lat += 2;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 1;
} else {
set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
CAL_SUBSTAGE_READ_LATENCY);
debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 0;
}
}
/*
* issue write test command.
* two variants are provided. one that just tests a write pattern and
* another that tests datamask functionality.
*/
static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
uint32_t test_dm)
{
uint32_t mcc_instruction;
uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
ENABLE_SUPER_QUICK_CALIBRATION);
uint32_t rw_wl_nop_cycles;
uint32_t addr;
/*
* Set counter and jump addresses for the right
* number of NOP cycles.
* The number of supported NOP cycles can range from -1 to infinity
* Three different cases are handled:
*
* 1. For a number of NOP cycles greater than 0, the RW Mgr looping
* mechanism will be used to insert the right number of NOPs
*
* 2. For a number of NOP cycles equals to 0, the micro-instruction
* issuing the write command will jump straight to the
* micro-instruction that turns on DQS (for DDRx), or outputs write
* data (for RLD), skipping
* the NOP micro-instruction all together
*
* 3. A number of NOP cycles equal to -1 indicates that DQS must be
* turned on in the same micro-instruction that issues the write
* command. Then we need
* to directly jump to the micro-instruction that sends out the data
*
* NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
* (2 and 3). One jump-counter (0) is used to perform multiple
* write-read operations.
* one counter left to issue this command in "multiple-group" mode
*/
rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
if (rw_wl_nop_cycles == -1) {
/*
* CNTR 2 - We want to execute the special write operation that
* turns on DQS right away and then skip directly to the
* instruction that sends out the data. We set the counter to a
* large number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
}
} else if (rw_wl_nop_cycles == 0) {
/*
* CNTR 2 - We want to skip the NOP operation and go straight
* to the DQS enable instruction. We set the counter to a large
* number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
}
} else {
/*
* CNTR 2 - In this case we want to execute the next instruction
* and NOT take the jump. So we set the counter to 0. The jump
* address doesn't count.
*/
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
/*
* CNTR 3 - Set the nop counter to the number of cycles we
* need to loop for, minus 1.
*/
writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
}
}
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
if (quick_write_mode)
writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
else
writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
/*
* CNTR 1 - This is used to ensure enough time elapses
* for read data to come back.
*/
writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
if (test_dm) {
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
} else {
writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(mcc_instruction, addr + (group << 2));
}
/* Test writes, can check for a single bit pass or multiple bit pass */
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
uint32_t *bit_chk, uint32_t all_ranks)
{
uint32_t r;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t vg;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr_rw_mgr;
uint32_t base_rw_mgr;
*bit_chk = param->write_correct_mask;
correct_mask_vg = param->write_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
tmp_bit_chk = 0;
addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
tmp_bit_chk = tmp_bit_chk <<
(RW_MGR_MEM_DQ_PER_WRITE_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
rw_mgr_mem_calibrate_write_test_issue(write_group *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
use_dm);
base_rw_mgr = readl(addr_rw_mgr);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
%u => %lu", write_group, use_dm,
*bit_chk, param->write_correct_mask,
(long unsigned int)(*bit_chk ==
param->write_correct_mask));
return *bit_chk == param->write_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
write_group, use_dm, *bit_chk);
debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
(long unsigned int)(*bit_chk != 0));
return *bit_chk != 0x00;
}
}
/*
* center all windows. do per-bit-deskew to possibly increase size of
* certain windows.
*/
static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t test_bgn)
{
uint32_t i, p, min_index;
int32_t d;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t mid;
int32_t mid_min, orig_mid_min;
int32_t new_dqs, start_dqs, shift_dq;
int32_t dq_margin, dqs_margin, dm_margin;
uint32_t stop;
uint32_t temp_dq_out1_delay;
uint32_t addr;
debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
dm_margin = 0;
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
start_dqs = readl(addr +
(RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
/* per-bit deskew */
/*
* set the left and right edge of each bit to an illegal value
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
*/
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_out1_delay(write_group, d);
writel(0, &sdr_scc_mgr->update);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
== %u && %u [bit_chk= %u ]\n",
d, sticky_bit_chk, param->write_correct_mask,
stop, bit_chk);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
/*
* Remember a passing test as the
* left_edge.
*/
left_edge[i] = d;
} else {
/*
* If a left edge has not been seen
* yet, then a future passing test will
* mark this edge as the right edge.
*/
if (left_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_out1_delay(0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have
* seen the left edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
sticky_bit_chk = sticky_bit_chk | 1;
if (i == 0)
break;
}
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + start_dqs);
writel(0, &sdr_scc_mgr->update);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
%u && %u\n", d, sticky_bit_chk,
param->write_correct_mask, stop);
if (stop == 1) {
if (d == 0) {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
i++) {
/* d = 0 failed, but it passed when
testing the left edge, so it must be
marginal, set it to -1 */
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
}
}
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
/*
* Remember a passing test as
* the right_edge.
*/
right_edge[i] = d;
} else {
if (d != 0) {
/*
* If a right edge has not
* been seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1)
left_edge[i] = -(d + 1);
} else {
/*
* d = 0 failed, but it passed
* when testing the left edge,
* so it must be marginal, set
* it to -1.
*/
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_OUT1_DELAY_MAX + 1)
right_edge[i] = -1;
/*
* If a right edge has not been
* seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
else if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX +
1)
left_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Check that all bits have a window */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
%d right_edge[%u]: %d", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
(right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
set_failing_group_stage(test_bgn + i,
CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
}
/* Find middle of window for each DQ bit */
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to
* make sure the rounding in further calculations is correct
* (always bias to the right), so just add 1 for all positive values.
*/
if (mid_min > 0)
mid_min++;
mid_min = mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
__LINE__, mid_min);
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs;
mid_min = 0;
debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
[%u]=%d\n", __func__, __LINE__, i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
temp_dq_out1_delay = readl(addr + (i << 2));
if (shift_dq + (int32_t)temp_dq_out1_delay >
(int32_t)IO_IO_OUT1_DELAY_MAX) {
shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
shift_dq = -(int32_t)temp_dq_out1_delay;
}
debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
i, shift_dq);
scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
scc_mgr_load_dq(i);
debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
/* Move DQS */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
writel(0, &sdr_scc_mgr->update);
/* Centre DM */
debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
/*
* set the left and right edge of each bit to an illegal value,
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
*/
left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t win_best = 0;
/* Search for the/part of the window with DM shift */
for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
scc_mgr_apply_group_dm_out1_delay(d);
writel(0, &sdr_scc_mgr->update);
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* USE Set current end of the window */
end_curr = -d;
/*
* If a starting edge of our window has not been seen
* this is our current start of the DM window.
*/
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
bgn_curr = -d;
/*
* If current window is bigger than best seen.
* Set best seen to be current window.
*/
if ((end_curr-bgn_curr+1) > win_best) {
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
/* We just saw a failing test. Reset temp edge */
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
}
/* Reset DM delay chains to 0 */
scc_mgr_apply_group_dm_out1_delay(0);
/*
* Check to see if the current window nudges up aganist 0 delay.
* If so we need to continue the search by shifting DQS otherwise DQS
* search begins as a new search. */
if (end_curr != 0) {
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the/part of the window with DQS shifts */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
/*
* Note: This only shifts DQS, so are we limiting ourselve to
* width of DQ unnecessarily.
*/
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + new_dqs);
writel(0, &sdr_scc_mgr->update);
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* USE Set current end of the window */
end_curr = d;
/*
* If a beginning edge of our window has not been seen
* this is our current begin of the DM window.
*/
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
bgn_curr = d;
/*
* If current window is bigger than best seen. Set best
* seen to be current window.
*/
if ((end_curr-bgn_curr+1) > win_best) {
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
/* We just saw a failing test. Reset temp edge */
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
/* Early exit optimization: if ther remaining delay
chain space is less than already seen largest window
we can exit */
if ((win_best-1) >
(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
break;
}
}
}
/* assign left and right edge for cal and reporting; */
left_edge[0] = -1*bgn_best;
right_edge[0] = end_best;
debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
__LINE__, left_edge[0], right_edge[0]);
/* Move DQS (back to orig) */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
/* Move DM */
/* Find middle of window for the DM bit */
mid = (left_edge[0] - right_edge[0]) / 2;
/* only move right, since we are not moving DQS/DQ */
if (mid < 0)
mid = 0;
/* dm_marign should fail if we never find a window */
if (win_best == 0)
dm_margin = -1;
else
dm_margin = left_edge[0] - mid;
scc_mgr_apply_group_dm_out1_delay(mid);
writel(0, &sdr_scc_mgr->update);
debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
dm_margin=%d\n", __func__, __LINE__, left_edge[0],
right_edge[0], mid, dm_margin);
/* Export values */
gbl->fom_out += dq_margin + dqs_margin;
debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
dq_margin, dqs_margin, dm_margin);
/*
* Do not remove this line as it makes sure all of our
* decisions have been applied.
*/
writel(0, &sdr_scc_mgr->update);
return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
}
/* calibrate the write operations */
static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
uint32_t test_bgn)
{
/* update info for sims */
debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
reg_file_set_stage(CAL_STAGE_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
reg_file_set_group(g);
if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
set_failing_group_stage(g, CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
return 1;
}
/**
* mem_precharge_and_activate() - Precharge all banks and activate
*
* Precharge all banks and activate row 0 in bank "000..." and bank "111...".
*/
static void mem_precharge_and_activate(void)
{
int r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
/* Test if the rank should be skipped. */
if (param->skip_ranks[r])
continue;
/* Set rank. */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/* Precharge all banks. */
writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
/* Activate rows. */
writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
}
}
/**
* mem_init_latency() - Configure memory RLAT and WLAT settings
*
* Configure memory RLAT and WLAT parameters.
*/
static void mem_init_latency(void)
{
/*
* For AV/CV, LFIFO is hardened and always runs at full rate
* so max latency in AFI clocks, used here, is correspondingly
* smaller.
*/
const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
u32 rlat, wlat;
debug("%s:%d\n", __func__, __LINE__);
/*
* Read in write latency.
* WL for Hard PHY does not include additive latency.
*/
wlat = readl(&data_mgr->t_wl_add);
wlat += readl(&data_mgr->mem_t_add);
gbl->rw_wl_nop_cycles = wlat - 1;
/* Read in readl latency. */
rlat = readl(&data_mgr->t_rl_add);
/* Set a pretty high read latency initially. */
gbl->curr_read_lat = rlat + 16;
if (gbl->curr_read_lat > max_latency)
gbl->curr_read_lat = max_latency;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
/* Advertise write latency. */
writel(wlat, &phy_mgr_cfg->afi_wlat);
}
/**
* @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
*
* Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
*/
static void mem_skip_calibrate(void)
{
uint32_t vfifo_offset;
uint32_t i, j, r;
debug("%s:%d\n", __func__, __LINE__);
/* Need to update every shadow register set used by the interface */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
/*
* Set output phase alignment settings appropriate for
* skip calibration.
*/
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_en_phase(i, 0);
#if IO_DLL_CHAIN_LENGTH == 6
scc_mgr_set_dqdqs_output_phase(i, 6);
#else
scc_mgr_set_dqdqs_output_phase(i, 7);
#endif
/*
* Case:33398
*
* Write data arrives to the I/O two cycles before write
* latency is reached (720 deg).
* -> due to bit-slip in a/c bus
* -> to allow board skew where dqs is longer than ck
* -> how often can this happen!?
* -> can claim back some ptaps for high freq
* support if we can relax this, but i digress...
*
* The write_clk leads mem_ck by 90 deg
* The minimum ptap of the OPA is 180 deg
* Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
* The write_clk is always delayed by 2 ptaps
*
* Hence, to make DQS aligned to CK, we need to delay
* DQS by:
* (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
*
* Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
* gives us the number of ptaps, which simplies to:
*
* (1.25 * IO_DLL_CHAIN_LENGTH - 2)
*/
scc_mgr_set_dqdqs_output_phase(i,
1.25 * IO_DLL_CHAIN_LENGTH - 2);
}
writel(0xff, &sdr_scc_mgr->dqs_ena);
writel(0xff, &sdr_scc_mgr->dqs_io_ena);
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
}
writel(0xff, &sdr_scc_mgr->dq_ena);
writel(0xff, &sdr_scc_mgr->dm_ena);
writel(0, &sdr_scc_mgr->update);
}
/* Compensate for simulation model behaviour */
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_bus_in_delay(i, 10);
scc_mgr_load_dqs(i);
}
writel(0, &sdr_scc_mgr->update);
/*
* ArriaV has hard FIFOs that can only be initialized by incrementing
* in sequencer.
*/
vfifo_offset = CALIB_VFIFO_OFFSET;
for (j = 0; j < vfifo_offset; j++)
writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
writel(0, &phy_mgr_cmd->fifo_reset);
/*
* For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
* setting from generation-time constant.
*/
gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
}
/**
* mem_calibrate() - Memory calibration entry point.
*
* Perform memory calibration.
*/
static uint32_t mem_calibrate(void)
{
uint32_t i;
uint32_t rank_bgn, sr;
uint32_t write_group, write_test_bgn;
uint32_t read_group, read_test_bgn;
uint32_t run_groups, current_run;
uint32_t failing_groups = 0;
uint32_t group_failed = 0;
const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
debug("%s:%d\n", __func__, __LINE__);
/* Initialize the data settings */
gbl->error_substage = CAL_SUBSTAGE_NIL;
gbl->error_stage = CAL_STAGE_NIL;
gbl->error_group = 0xff;
gbl->fom_in = 0;
gbl->fom_out = 0;
/* Initialize WLAT and RLAT. */
mem_init_latency();
/* Initialize bit slips. */
mem_precharge_and_activate();
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
/* Only needed once to set all groups, pins, DQ, DQS, DM. */
if (i == 0)
scc_mgr_set_hhp_extras();
scc_set_bypass_mode(i);
}
/* Calibration is skipped. */
if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
/*
* Set VFIFO and LFIFO to instant-on settings in skip
* calibration mode.
*/
mem_skip_calibrate();
/*
* Do not remove this line as it makes sure all of our
* decisions have been applied.
*/
writel(0, &sdr_scc_mgr->update);
return 1;
}
/* Calibration is not skipped. */
for (i = 0; i < NUM_CALIB_REPEAT; i++) {
/*
* Zero all delay chain/phase settings for all
* groups and all shadow register sets.
*/
scc_mgr_zero_all();
run_groups = ~param->skip_groups;
for (write_group = 0, write_test_bgn = 0; write_group
< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
/* Initialize the group failure */
group_failed = 0;
current_run = run_groups & ((1 <<
RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
run_groups = run_groups >>
RW_MGR_NUM_DQS_PER_WRITE_GROUP;
if (current_run == 0)
continue;
writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
scc_mgr_zero_group(write_group, 0);
for (read_group = write_group * rwdqs_ratio,
read_test_bgn = 0;
read_group < (write_group + 1) * rwdqs_ratio;
read_group++,
read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
continue;
/* Calibrate the VFIFO */
if (rw_mgr_mem_calibrate_vfifo(read_group,
read_test_bgn))
continue;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
return 0;
/* The group failed, we're done. */
goto grp_failed;
}
/* Calibrate the output side */
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
continue;
/* Not needed in quick mode! */
if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
continue;
/*
* Determine if this set of ranks
* should be skipped entirely.
*/
if (param->skip_shadow_regs[sr])
continue;
/* Calibrate WRITEs */
if (rw_mgr_mem_calibrate_writes(rank_bgn,
write_group, write_test_bgn))
continue;
group_failed = 1;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
return 0;
}
/* Some group failed, we're done. */
if (group_failed)
goto grp_failed;
for (read_group = write_group * rwdqs_ratio,
read_test_bgn = 0;
read_group < (write_group + 1) * rwdqs_ratio;
read_group++,
read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
continue;
if (rw_mgr_mem_calibrate_vfifo_end(read_group,
read_test_bgn))
continue;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
return 0;
/* The group failed, we're done. */
goto grp_failed;
}
/* No group failed, continue as usual. */
continue;
grp_failed: /* A group failed, increment the counter. */
failing_groups++;
}
/*
* USER If there are any failing groups then report
* the failure.
*/
if (failing_groups != 0)
return 0;
if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
continue;
/*
* If we're skipping groups as part of debug,
* don't calibrate LFIFO.
*/
if (param->skip_groups != 0)
continue;
/* Calibrate the LFIFO */
if (!rw_mgr_mem_calibrate_lfifo())
return 0;
}
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied.
*/
writel(0, &sdr_scc_mgr->update);
return 1;
}
/**
* run_mem_calibrate() - Perform memory calibration
*
* This function triggers the entire memory calibration procedure.
*/
static int run_mem_calibrate(void)
{
int pass;
debug("%s:%d\n", __func__, __LINE__);
/* Reset pass/fail status shown on afi_cal_success/fail */
writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
/* Stop tracking manager. */
clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
phy_mgr_initialize();
rw_mgr_mem_initialize();
/* Perform the actual memory calibration. */
pass = mem_calibrate();
mem_precharge_and_activate();
writel(0, &phy_mgr_cmd->fifo_reset);
/* Handoff. */
rw_mgr_mem_handoff();
/*
* In Hard PHY this is a 2-bit control:
* 0: AFI Mux Select
* 1: DDIO Mux Select
*/
writel(0x2, &phy_mgr_cfg->mux_sel);
/* Start tracking manager. */
setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
return pass;
}
/**
* debug_mem_calibrate() - Report result of memory calibration
* @pass: Value indicating whether calibration passed or failed
*
* This function reports the results of the memory calibration
* and writes debug information into the register file.
*/
static void debug_mem_calibrate(int pass)
{
uint32_t debug_info;
if (pass) {
printf("%s: CALIBRATION PASSED\n", __FILE__);
gbl->fom_in /= 2;
gbl->fom_out /= 2;
if (gbl->fom_in > 0xff)
gbl->fom_in = 0xff;
if (gbl->fom_out > 0xff)
gbl->fom_out = 0xff;
/* Update the FOM in the register file */
debug_info = gbl->fom_in;
debug_info |= gbl->fom_out << 8;
writel(debug_info, &sdr_reg_file->fom);
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
} else {
printf("%s: CALIBRATION FAILED\n", __FILE__);
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
writel(debug_info, &sdr_reg_file->failing_stage);
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
/* Update the failing group/stage in the register file */
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
writel(debug_info, &sdr_reg_file->failing_stage);
}
printf("%s: Calibration complete\n", __FILE__);
}
/**
* hc_initialize_rom_data() - Initialize ROM data
*
* Initialize ROM data.
*/
static void hc_initialize_rom_data(void)
{
u32 i, addr;
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
writel(inst_rom_init[i], addr + (i << 2));
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
writel(ac_rom_init[i], addr + (i << 2));
}
/**
* initialize_reg_file() - Initialize SDR register file
*
* Initialize SDR register file.
*/
static void initialize_reg_file(void)
{
/* Initialize the register file with the correct data */
writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
writel(0, &sdr_reg_file->debug_data_addr);
writel(0, &sdr_reg_file->cur_stage);
writel(0, &sdr_reg_file->fom);
writel(0, &sdr_reg_file->failing_stage);
writel(0, &sdr_reg_file->debug1);
writel(0, &sdr_reg_file->debug2);
}
/**
* initialize_hps_phy() - Initialize HPS PHY
*
* Initialize HPS PHY.
*/
static void initialize_hps_phy(void)
{
uint32_t reg;
/*
* Tracking also gets configured here because it's in the
* same register.
*/
uint32_t trk_sample_count = 7500;
uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
/*
* Format is number of outer loops in the 16 MSB, sample
* count in 16 LSB.
*/
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
/*
* This field selects the intrinsic latency to RDATA_EN/FULL path.
* 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
*/
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
trk_sample_count);
writel(reg, &sdr_ctrl->phy_ctrl0);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
trk_sample_count >>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
trk_long_idle_sample_count);
writel(reg, &sdr_ctrl->phy_ctrl1);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
trk_long_idle_sample_count >>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
writel(reg, &sdr_ctrl->phy_ctrl2);
}
/**
* initialize_tracking() - Initialize tracking
*
* Initialize the register file with usable initial data.
*/
static void initialize_tracking(void)
{
/*
* Initialize the register file with the correct data.
* Compute usable version of value in case we skip full
* computation later.
*/
writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
&sdr_reg_file->dtaps_per_ptap);
/* trk_sample_count */
writel(7500, &sdr_reg_file->trk_sample_count);
/* longidle outer loop [15:0] */
writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
/*
* longidle sample count [31:24]
* trfc, worst case of 933Mhz 4Gb [23:16]
* trcd, worst case [15:8]
* vfifo wait [7:0]
*/
writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
&sdr_reg_file->delays);
/* mux delay */
writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
(RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
&sdr_reg_file->trk_rw_mgr_addr);
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
&sdr_reg_file->trk_read_dqs_width);
/* trefi [7:0] */
writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
&sdr_reg_file->trk_rfsh);
}
int sdram_calibration_full(void)
{
struct param_type my_param;
struct gbl_type my_gbl;
uint32_t pass;
memset(&my_param, 0, sizeof(my_param));
memset(&my_gbl, 0, sizeof(my_gbl));
param = &my_param;
gbl = &my_gbl;
/* Set the calibration enabled by default */
gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
/*
* Only sweep all groups (regardless of fail state) by default
* Set enabled read test by default.
*/
#if DISABLE_GUARANTEED_READ
gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
#endif
/* Initialize the register file */
initialize_reg_file();
/* Initialize any PHY CSR */
initialize_hps_phy();
scc_mgr_initialize();
initialize_tracking();
printf("%s: Preparing to start memory calibration\n", __FILE__);
debug("%s:%d\n", __func__, __LINE__);
debug_cond(DLEVEL == 1,
"DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
debug_cond(DLEVEL == 1,
"dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
IO_IO_OUT2_DELAY_MAX);
debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
hc_initialize_rom_data();
/* update info for sims */
reg_file_set_stage(CAL_STAGE_NIL);
reg_file_set_group(0);
/*
* Load global needed for those actions that require
* some dynamic calibration support.
*/
dyn_calib_steps = STATIC_CALIB_STEPS;
/*
* Load global to allow dynamic selection of delay loop settings
* based on calibration mode.
*/
if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
skip_delay_mask = 0xff;
else
skip_delay_mask = 0x0;
pass = run_mem_calibrate();
debug_mem_calibrate(pass);
return pass;
}