u-boot-brain/drivers/spi/fsl_espi.c
Masahiro Yamada b41411954d linux/kernel.h: sync min, max, min3, max3 macros with Linux
U-Boot has never cared about the type when we get max/min of two
values, but Linux Kernel does.  This commit gets min, max, min3, max3
macros synced with the kernel introducing type checks.

Many of references of those macros must be fixed to suppress warnings.
We have two options:
 - Use min, max, min3, max3 only when the arguments have the same type
   (or add casts to the arguments)
 - Use min_t/max_t instead with the appropriate type for the first
   argument

Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Acked-by: Pavel Machek <pavel@denx.de>
Acked-by: Lukasz Majewski <l.majewski@samsung.com>
Tested-by: Lukasz Majewski <l.majewski@samsung.com>
[trini: Fixup arch/blackfin/lib/string.c]
Signed-off-by: Tom Rini <trini@ti.com>
2014-11-23 06:48:30 -05:00

390 lines
9.5 KiB
C

/*
* eSPI controller driver.
*
* Copyright 2010-2011 Freescale Semiconductor, Inc.
* Author: Mingkai Hu (Mingkai.hu@freescale.com)
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/immap_85xx.h>
struct fsl_spi_slave {
struct spi_slave slave;
ccsr_espi_t *espi;
unsigned int div16;
unsigned int pm;
int tx_timeout;
unsigned int mode;
size_t cmd_len;
u8 cmd_buf[16];
size_t data_len;
unsigned int max_transfer_length;
};
#define to_fsl_spi_slave(s) container_of(s, struct fsl_spi_slave, slave)
#define US_PER_SECOND 1000000UL
#define ESPI_MAX_CS_NUM 4
#define ESPI_FIFO_WIDTH_BIT 32
#define ESPI_EV_RNE (1 << 9)
#define ESPI_EV_TNF (1 << 8)
#define ESPI_EV_DON (1 << 14)
#define ESPI_EV_TXE (1 << 15)
#define ESPI_EV_RFCNT_SHIFT 24
#define ESPI_EV_RFCNT_MASK (0x3f << ESPI_EV_RFCNT_SHIFT)
#define ESPI_MODE_EN (1 << 31) /* Enable interface */
#define ESPI_MODE_TXTHR(x) ((x) << 8) /* Tx FIFO threshold */
#define ESPI_MODE_RXTHR(x) ((x) << 0) /* Rx FIFO threshold */
#define ESPI_COM_CS(x) ((x) << 30)
#define ESPI_COM_TRANLEN(x) ((x) << 0)
#define ESPI_CSMODE_CI_INACTIVEHIGH (1 << 31)
#define ESPI_CSMODE_CP_BEGIN_EDGCLK (1 << 30)
#define ESPI_CSMODE_REV_MSB_FIRST (1 << 29)
#define ESPI_CSMODE_DIV16 (1 << 28)
#define ESPI_CSMODE_PM(x) ((x) << 24)
#define ESPI_CSMODE_POL_ASSERTED_LOW (1 << 20)
#define ESPI_CSMODE_LEN(x) ((x) << 16)
#define ESPI_CSMODE_CSBEF(x) ((x) << 12)
#define ESPI_CSMODE_CSAFT(x) ((x) << 8)
#define ESPI_CSMODE_CSCG(x) ((x) << 3)
#define ESPI_CSMODE_INIT_VAL (ESPI_CSMODE_POL_ASSERTED_LOW | \
ESPI_CSMODE_CSBEF(0) | ESPI_CSMODE_CSAFT(0) | \
ESPI_CSMODE_CSCG(1))
#define ESPI_MAX_DATA_TRANSFER_LEN 0xFFF0
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct fsl_spi_slave *fsl;
sys_info_t sysinfo;
unsigned long spibrg = 0;
unsigned long spi_freq = 0;
unsigned char pm = 0;
if (!spi_cs_is_valid(bus, cs))
return NULL;
fsl = spi_alloc_slave(struct fsl_spi_slave, bus, cs);
if (!fsl)
return NULL;
fsl->espi = (void *)(CONFIG_SYS_MPC85xx_ESPI_ADDR);
fsl->mode = mode;
fsl->max_transfer_length = ESPI_MAX_DATA_TRANSFER_LEN;
/* Set eSPI BRG clock source */
get_sys_info(&sysinfo);
spibrg = sysinfo.freq_systembus / 2;
fsl->div16 = 0;
if ((spibrg / max_hz) > 32) {
fsl->div16 = ESPI_CSMODE_DIV16;
pm = spibrg / (max_hz * 16 * 2);
if (pm > 16) {
pm = 16;
debug("Requested speed is too low: %d Hz, %ld Hz "
"is used.\n", max_hz, spibrg / (32 * 16));
}
} else
pm = spibrg / (max_hz * 2);
if (pm)
pm--;
fsl->pm = pm;
if (fsl->div16)
spi_freq = spibrg / ((pm + 1) * 2 * 16);
else
spi_freq = spibrg / ((pm + 1) * 2);
/* set tx_timeout to 10 times of one espi FIFO entry go out */
fsl->tx_timeout = DIV_ROUND_UP((US_PER_SECOND * ESPI_FIFO_WIDTH_BIT
* 10), spi_freq);
return &fsl->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
free(fsl);
}
void spi_init(void)
{
}
int spi_claim_bus(struct spi_slave *slave)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
ccsr_espi_t *espi = fsl->espi;
unsigned char pm = fsl->pm;
unsigned int cs = slave->cs;
unsigned int mode = fsl->mode;
unsigned int div16 = fsl->div16;
int i;
debug("%s: bus:%i cs:%i\n", __func__, slave->bus, cs);
/* Enable eSPI interface */
out_be32(&espi->mode, ESPI_MODE_RXTHR(3)
| ESPI_MODE_TXTHR(4) | ESPI_MODE_EN);
out_be32(&espi->event, 0xffffffff); /* Clear all eSPI events */
out_be32(&espi->mask, 0x00000000); /* Mask all eSPI interrupts */
/* Init CS mode interface */
for (i = 0; i < ESPI_MAX_CS_NUM; i++)
out_be32(&espi->csmode[i], ESPI_CSMODE_INIT_VAL);
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs]) &
~(ESPI_CSMODE_PM(0xF) | ESPI_CSMODE_DIV16
| ESPI_CSMODE_CI_INACTIVEHIGH | ESPI_CSMODE_CP_BEGIN_EDGCLK
| ESPI_CSMODE_REV_MSB_FIRST | ESPI_CSMODE_LEN(0xF)));
/* Set eSPI BRG clock source */
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_PM(pm) | div16);
/* Set eSPI mode */
if (mode & SPI_CPHA)
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_CP_BEGIN_EDGCLK);
if (mode & SPI_CPOL)
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_CI_INACTIVEHIGH);
/* Character bit order: msb first */
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_REV_MSB_FIRST);
/* Character length in bits, between 0x3~0xf, i.e. 4bits~16bits */
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_LEN(7));
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
}
static void fsl_espi_tx(struct fsl_spi_slave *fsl, const void *dout)
{
ccsr_espi_t *espi = fsl->espi;
unsigned int tmpdout, event;
int tmp_tx_timeout;
if (dout)
tmpdout = *(u32 *)dout;
else
tmpdout = 0;
out_be32(&espi->tx, tmpdout);
out_be32(&espi->event, ESPI_EV_TNF);
debug("***spi_xfer:...%08x written\n", tmpdout);
tmp_tx_timeout = fsl->tx_timeout;
/* Wait for eSPI transmit to go out */
while (tmp_tx_timeout--) {
event = in_be32(&espi->event);
if (event & ESPI_EV_DON || event & ESPI_EV_TXE) {
out_be32(&espi->event, ESPI_EV_TXE);
break;
}
udelay(1);
}
if (tmp_tx_timeout < 0)
debug("***spi_xfer:...Tx timeout! event = %08x\n", event);
}
static int fsl_espi_rx(struct fsl_spi_slave *fsl, void *din, unsigned int bytes)
{
ccsr_espi_t *espi = fsl->espi;
unsigned int tmpdin, rx_times;
unsigned char *buf, *p_cursor;
if (bytes <= 0)
return 0;
rx_times = DIV_ROUND_UP(bytes, 4);
buf = (unsigned char *)malloc(4 * rx_times);
if (!buf) {
debug("SF: Failed to malloc memory.\n");
return -1;
}
p_cursor = buf;
while (rx_times--) {
tmpdin = in_be32(&espi->rx);
debug("***spi_xfer:...%08x readed\n", tmpdin);
*(u32 *)p_cursor = tmpdin;
p_cursor += 4;
}
if (din)
memcpy(din, buf, bytes);
free(buf);
out_be32(&espi->event, ESPI_EV_RNE);
return bytes;
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *data_out,
void *data_in, unsigned long flags)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
ccsr_espi_t *espi = fsl->espi;
unsigned int event, rx_bytes;
const void *dout = NULL;
void *din = NULL;
int len = 0;
int num_blks, num_chunks, max_tran_len, tran_len;
int num_bytes;
unsigned char *buffer = NULL;
size_t buf_len;
u8 *cmd_buf = fsl->cmd_buf;
size_t cmd_len = fsl->cmd_len;
size_t data_len = bitlen / 8;
size_t rx_offset = 0;
int rf_cnt;
max_tran_len = fsl->max_transfer_length;
switch (flags) {
case SPI_XFER_BEGIN:
cmd_len = fsl->cmd_len = data_len;
memcpy(cmd_buf, data_out, cmd_len);
return 0;
case 0:
case SPI_XFER_END:
if (bitlen == 0) {
spi_cs_deactivate(slave);
return 0;
}
buf_len = 2 * cmd_len + min(data_len, (size_t)max_tran_len);
len = cmd_len + data_len;
rx_offset = cmd_len;
buffer = (unsigned char *)malloc(buf_len);
if (!buffer) {
debug("SF: Failed to malloc memory.\n");
return 1;
}
memcpy(buffer, cmd_buf, cmd_len);
if (data_in == NULL)
memcpy(buffer + cmd_len, data_out, data_len);
break;
case SPI_XFER_BEGIN | SPI_XFER_END:
len = data_len;
buffer = (unsigned char *)malloc(len * 2);
if (!buffer) {
debug("SF: Failed to malloc memory.\n");
return 1;
}
memcpy(buffer, data_out, len);
rx_offset = len;
cmd_len = 0;
break;
}
debug("spi_xfer: data_out %08X(%p) data_in %08X(%p) len %u\n",
*(uint *)data_out, data_out, *(uint *)data_in, data_in, len);
num_chunks = DIV_ROUND_UP(data_len, max_tran_len);
while (num_chunks--) {
if (data_in)
din = buffer + rx_offset;
dout = buffer;
tran_len = min(data_len, (size_t)max_tran_len);
num_blks = DIV_ROUND_UP(tran_len + cmd_len, 4);
num_bytes = (tran_len + cmd_len) % 4;
fsl->data_len = tran_len + cmd_len;
spi_cs_activate(slave);
/* Clear all eSPI events */
out_be32(&espi->event , 0xffffffff);
/* handle data in 32-bit chunks */
while (num_blks) {
event = in_be32(&espi->event);
if (event & ESPI_EV_TNF) {
fsl_espi_tx(fsl, dout);
/* Set up the next iteration */
if (len > 4) {
len -= 4;
dout += 4;
}
}
event = in_be32(&espi->event);
if (event & ESPI_EV_RNE) {
rf_cnt = ((event & ESPI_EV_RFCNT_MASK)
>> ESPI_EV_RFCNT_SHIFT);
if (rf_cnt >= 4)
rx_bytes = 4;
else if (num_blks == 1 && rf_cnt == num_bytes)
rx_bytes = num_bytes;
else
continue;
if (fsl_espi_rx(fsl, din, rx_bytes)
== rx_bytes) {
num_blks--;
if (din)
din = (unsigned char *)din
+ rx_bytes;
}
}
}
if (data_in) {
memcpy(data_in, buffer + 2 * cmd_len, tran_len);
if (*buffer == 0x0b) {
data_in += tran_len;
data_len -= tran_len;
*(int *)buffer += tran_len;
}
}
spi_cs_deactivate(slave);
}
free(buffer);
return 0;
}
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
return bus == 0 && cs < ESPI_MAX_CS_NUM;
}
void spi_cs_activate(struct spi_slave *slave)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
ccsr_espi_t *espi = fsl->espi;
unsigned int com = 0;
size_t data_len = fsl->data_len;
com &= ~(ESPI_COM_CS(0x3) | ESPI_COM_TRANLEN(0xFFFF));
com |= ESPI_COM_CS(slave->cs);
com |= ESPI_COM_TRANLEN(data_len - 1);
out_be32(&espi->com, com);
}
void spi_cs_deactivate(struct spi_slave *slave)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
ccsr_espi_t *espi = fsl->espi;
/* clear the RXCNT and TXCNT */
out_be32(&espi->mode, in_be32(&espi->mode) & (~ESPI_MODE_EN));
out_be32(&espi->mode, in_be32(&espi->mode) | ESPI_MODE_EN);
}