u-boot-brain/arch/arm/cpu/armv8/fsl-layerscape/cpu.c
Prabhakar Kushwaha b401736463 armv8: ls2085a: Add workaround of errata A009635
If the core runs at higher than x3 speed of the platform, there is
possiblity about sev instruction to getting missed by other cores.
This is because of SoC Run Control block may not able to sample
the EVENTI(Sev) signals.

Configure Run Control and EPU to periodically send out EVENTI signals to
wake up A57 cores.

Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Reviewed-by: York Sun <yorksun@freescale.com>
2015-11-30 09:11:12 -08:00

546 lines
13 KiB
C

/*
* Copyright 2014-2015 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
#include <asm/io.h>
#include <asm/arch/fsl_serdes.h>
#include <asm/arch/soc.h>
#include <asm/arch/cpu.h>
#include <asm/arch/speed.h>
#ifdef CONFIG_MP
#include <asm/arch/mp.h>
#endif
#include <fm_eth.h>
#include <fsl_debug_server.h>
#include <fsl-mc/fsl_mc.h>
#ifdef CONFIG_FSL_ESDHC
#include <fsl_esdhc.h>
#endif
DECLARE_GLOBAL_DATA_PTR;
void cpu_name(char *name)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
unsigned int i, svr, ver;
svr = gur_in32(&gur->svr);
ver = SVR_SOC_VER(svr);
for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
strcpy(name, cpu_type_list[i].name);
if (IS_E_PROCESSOR(svr))
strcat(name, "E");
break;
}
if (i == ARRAY_SIZE(cpu_type_list))
strcpy(name, "unknown");
}
#ifndef CONFIG_SYS_DCACHE_OFF
/*
* Set the block entries according to the information of the table.
*/
static int set_block_entry(const struct sys_mmu_table *list,
struct table_info *table)
{
u64 block_size = 0, block_shift = 0;
u64 block_addr, index;
int j;
if (table->entry_size == BLOCK_SIZE_L1) {
block_size = BLOCK_SIZE_L1;
block_shift = SECTION_SHIFT_L1;
} else if (table->entry_size == BLOCK_SIZE_L2) {
block_size = BLOCK_SIZE_L2;
block_shift = SECTION_SHIFT_L2;
} else {
return -EINVAL;
}
block_addr = list->phys_addr;
index = (list->virt_addr - table->table_base) >> block_shift;
for (j = 0; j < (list->size >> block_shift); j++) {
set_pgtable_section(table->ptr,
index,
block_addr,
list->memory_type,
list->attribute);
block_addr += block_size;
index++;
}
return 0;
}
/*
* Find the corresponding table entry for the list.
*/
static int find_table(const struct sys_mmu_table *list,
struct table_info *table, u64 *level0_table)
{
u64 index = 0, level = 0;
u64 *level_table = level0_table;
u64 temp_base = 0, block_size = 0, block_shift = 0;
while (level < 3) {
if (level == 0) {
block_size = BLOCK_SIZE_L0;
block_shift = SECTION_SHIFT_L0;
} else if (level == 1) {
block_size = BLOCK_SIZE_L1;
block_shift = SECTION_SHIFT_L1;
} else if (level == 2) {
block_size = BLOCK_SIZE_L2;
block_shift = SECTION_SHIFT_L2;
}
index = 0;
while (list->virt_addr >= temp_base) {
index++;
temp_base += block_size;
}
temp_base -= block_size;
if ((level_table[index - 1] & PMD_TYPE_MASK) ==
PMD_TYPE_TABLE) {
level_table = (u64 *)(level_table[index - 1] &
~PMD_TYPE_MASK);
level++;
continue;
} else {
if (level == 0)
return -EINVAL;
if ((list->phys_addr + list->size) >
(temp_base + block_size * NUM_OF_ENTRY))
return -EINVAL;
/*
* Check the address and size of the list member is
* aligned with the block size.
*/
if (((list->phys_addr & (block_size - 1)) != 0) ||
((list->size & (block_size - 1)) != 0))
return -EINVAL;
table->ptr = level_table;
table->table_base = temp_base -
((index - 1) << block_shift);
table->entry_size = block_size;
return 0;
}
}
return -EINVAL;
}
/*
* To start MMU before DDR is available, we create MMU table in SRAM.
* The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
* levels of translation tables here to cover 40-bit address space.
* We use 4KB granule size, with 40 bits physical address, T0SZ=24
* Level 0 IA[39], table address @0
* Level 1 IA[38:30], table address @0x1000, 0x2000
* Level 2 IA[29:21], table address @0x3000, 0x4000
* Address above 0x5000 is free for other purpose.
*/
static inline void early_mmu_setup(void)
{
unsigned int el, i;
u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
u64 *level1_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
u64 *level1_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
u64 *level2_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
u64 *level2_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000);
struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};
/* Invalidate all table entries */
memset(level0_table, 0, 0x5000);
/* Fill in the table entries */
set_pgtable_table(level0_table, 0, level1_table0);
set_pgtable_table(level0_table, 1, level1_table1);
set_pgtable_table(level1_table0, 0, level2_table0);
#ifdef CONFIG_FSL_LSCH3
set_pgtable_table(level1_table0,
CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1,
level2_table1);
#elif defined(CONFIG_FSL_LSCH2)
set_pgtable_table(level1_table0, 1, level2_table1);
#endif
/* Find the table and fill in the block entries */
for (i = 0; i < ARRAY_SIZE(early_mmu_table); i++) {
if (find_table(&early_mmu_table[i],
&table, level0_table) == 0) {
/*
* If find_table() returns error, it cannot be dealt
* with here. Breakpoint can be added for debugging.
*/
set_block_entry(&early_mmu_table[i], &table);
/*
* If set_block_entry() returns error, it cannot be
* dealt with here too.
*/
}
}
el = current_el();
set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR,
MEMORY_ATTRIBUTES);
set_sctlr(get_sctlr() | CR_M);
}
/*
* The final tables look similar to early tables, but different in detail.
* These tables are in DRAM. Sub tables are added to enable cache for
* QBMan and OCRAM.
*
* Level 1 table 0 contains 512 entries for each 1GB from 0 to 512GB.
* Level 1 table 1 contains 512 entries for each 1GB from 512GB to 1TB.
* Level 2 table 0 contains 512 entries for each 2MB from 0 to 1GB.
*
* For LSCH3:
* Level 2 table 1 contains 512 entries for each 2MB from 32GB to 33GB.
* For LSCH2:
* Level 2 table 1 contains 512 entries for each 2MB from 1GB to 2GB.
* Level 2 table 2 contains 512 entries for each 2MB from 20GB to 21GB.
*/
static inline void final_mmu_setup(void)
{
unsigned int el, i;
u64 *level0_table = (u64 *)gd->arch.tlb_addr;
u64 *level1_table0 = (u64 *)(gd->arch.tlb_addr + 0x1000);
u64 *level1_table1 = (u64 *)(gd->arch.tlb_addr + 0x2000);
u64 *level2_table0 = (u64 *)(gd->arch.tlb_addr + 0x3000);
#ifdef CONFIG_FSL_LSCH3
u64 *level2_table1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
#elif defined(CONFIG_FSL_LSCH2)
u64 *level2_table1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
u64 *level2_table2 = (u64 *)(gd->arch.tlb_addr + 0x5000);
#endif
struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};
/* Invalidate all table entries */
memset(level0_table, 0, PGTABLE_SIZE);
/* Fill in the table entries */
set_pgtable_table(level0_table, 0, level1_table0);
set_pgtable_table(level0_table, 1, level1_table1);
set_pgtable_table(level1_table0, 0, level2_table0);
#ifdef CONFIG_FSL_LSCH3
set_pgtable_table(level1_table0,
CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
level2_table1);
#elif defined(CONFIG_FSL_LSCH2)
set_pgtable_table(level1_table0, 1, level2_table1);
set_pgtable_table(level1_table0,
CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
level2_table2);
#endif
/* Find the table and fill in the block entries */
for (i = 0; i < ARRAY_SIZE(final_mmu_table); i++) {
if (find_table(&final_mmu_table[i],
&table, level0_table) == 0) {
if (set_block_entry(&final_mmu_table[i],
&table) != 0) {
printf("MMU error: could not set block entry for %p\n",
&final_mmu_table[i]);
}
} else {
printf("MMU error: could not find the table for %p\n",
&final_mmu_table[i]);
}
}
/* flush new MMU table */
flush_dcache_range(gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
#ifdef CONFIG_SYS_DPAA_FMAN
flush_dcache_all();
#endif
/* point TTBR to the new table */
el = current_el();
set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR_FINAL,
MEMORY_ATTRIBUTES);
/*
* MMU is already enabled, just need to invalidate TLB to load the
* new table. The new table is compatible with the current table, if
* MMU somehow walks through the new table before invalidation TLB,
* it still works. So we don't need to turn off MMU here.
*/
}
int arch_cpu_init(void)
{
icache_enable();
__asm_invalidate_dcache_all();
__asm_invalidate_tlb_all();
early_mmu_setup();
set_sctlr(get_sctlr() | CR_C);
return 0;
}
/*
* This function is called from lib/board.c.
* It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
* There is no need to disable d-cache for this operation.
*/
void enable_caches(void)
{
final_mmu_setup();
__asm_invalidate_tlb_all();
}
#endif
static inline u32 initiator_type(u32 cluster, int init_id)
{
struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
u32 type = 0;
type = gur_in32(&gur->tp_ityp[idx]);
if (type & TP_ITYP_AV)
return type;
return 0;
}
u32 cpu_mask(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type, mask = 0;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
mask |= 1 << count;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return mask;
}
/*
* Return the number of cores on this SOC.
*/
int cpu_numcores(void)
{
return hweight32(cpu_mask());
}
int fsl_qoriq_core_to_cluster(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
if (initiator_type(cluster, j)) {
if (count == core)
return i;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return -1; /* cannot identify the cluster */
}
u32 fsl_qoriq_core_to_type(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (count == core)
return type;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return -1; /* cannot identify the cluster */
}
#ifdef CONFIG_DISPLAY_CPUINFO
int print_cpuinfo(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
struct sys_info sysinfo;
char buf[32];
unsigned int i, core;
u32 type, rcw;
puts("SoC: ");
cpu_name(buf);
printf(" %s (0x%x)\n", buf, gur_in32(&gur->svr));
memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
get_sys_info(&sysinfo);
puts("Clock Configuration:");
for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
if (!(i % 3))
puts("\n ");
type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
printf("CPU%d(%s):%-4s MHz ", core,
type == TY_ITYP_VER_A7 ? "A7 " :
(type == TY_ITYP_VER_A53 ? "A53" :
(type == TY_ITYP_VER_A57 ? "A57" : " ")),
strmhz(buf, sysinfo.freq_processor[core]));
}
printf("\n Bus: %-4s MHz ",
strmhz(buf, sysinfo.freq_systembus));
printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
#ifdef CONFIG_SYS_DPAA_FMAN
printf(" FMAN: %-4s MHz", strmhz(buf, sysinfo.freq_fman[0]));
#endif
#ifdef CONFIG_SYS_FSL_HAS_DP_DDR
printf(" DP-DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus2));
#endif
puts("\n");
/*
* Display the RCW, so that no one gets confused as to what RCW
* we're actually using for this boot.
*/
puts("Reset Configuration Word (RCW):");
for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
rcw = gur_in32(&gur->rcwsr[i]);
if ((i % 4) == 0)
printf("\n %08x:", i * 4);
printf(" %08x", rcw);
}
puts("\n");
return 0;
}
#endif
#ifdef CONFIG_FSL_ESDHC
int cpu_mmc_init(bd_t *bis)
{
return fsl_esdhc_mmc_init(bis);
}
#endif
int cpu_eth_init(bd_t *bis)
{
int error = 0;
#ifdef CONFIG_FSL_MC_ENET
error = fsl_mc_ldpaa_init(bis);
#endif
#ifdef CONFIG_FMAN_ENET
fm_standard_init(bis);
#endif
return error;
}
int arch_early_init_r(void)
{
#ifdef CONFIG_MP
int rv = 1;
#endif
#ifdef CONFIG_SYS_FSL_ERRATUM_A009635
erratum_a009635();
#endif
#ifdef CONFIG_MP
rv = fsl_layerscape_wake_seconday_cores();
if (rv)
printf("Did not wake secondary cores\n");
#endif
#ifdef CONFIG_SYS_HAS_SERDES
fsl_serdes_init();
#endif
#ifdef CONFIG_FMAN_ENET
fman_enet_init();
#endif
return 0;
}
int timer_init(void)
{
u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
#ifdef CONFIG_FSL_LSCH3
u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
#endif
#ifdef COUNTER_FREQUENCY_REAL
unsigned long cntfrq = COUNTER_FREQUENCY_REAL;
/* Update with accurate clock frequency */
asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
#endif
#ifdef CONFIG_FSL_LSCH3
/* Enable timebase for all clusters.
* It is safe to do so even some clusters are not enabled.
*/
out_le32(cltbenr, 0xf);
#endif
/* Enable clock for timer
* This is a global setting.
*/
out_le32(cntcr, 0x1);
return 0;
}
void reset_cpu(ulong addr)
{
u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
u32 val;
/* Raise RESET_REQ_B */
val = scfg_in32(rstcr);
val |= 0x02;
scfg_out32(rstcr, val);
}