u-boot-brain/arch/mips/mach-octeon/bootoctlinux.c
Stefan Roese b0f4ba0242 mips: octeon: Misc changes required because of the newly added headers
With the newly added headers and their restructuring (which macro is
defined where), some changes in the already existing Octeon files are
necessary. This patch makes the necessary changes.

Signed-off-by: Stefan Roese <sr@denx.de>
2021-04-23 21:03:24 +02:00

649 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Stefan Roese <sr@denx.de>
*/
#include <command.h>
#include <config.h>
#include <cpu_func.h>
#include <dm.h>
#include <elf.h>
#include <env.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <linux/compat.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <mach/cvmx-coremask.h>
#include <mach/cvmx-bootinfo.h>
#include <mach/cvmx-bootmem.h>
#include <mach/cvmx-regs.h>
#include <mach/cvmx-fuse.h>
#include <mach/octeon-model.h>
#include <mach/octeon-feature.h>
#include <mach/bootoct_cmd.h>
#include <mach/cvmx-ciu-defs.h>
DECLARE_GLOBAL_DATA_PTR;
/* ToDo: Revisit these settings */
#define OCTEON_RESERVED_LOW_MEM_SIZE (512 * 1024)
#define OCTEON_RESERVED_LOW_BOOT_MEM_SIZE (1024 * 1024)
#define BOOTLOADER_BOOTMEM_DESC_SPACE (1024 * 1024)
/* Default stack and heap sizes, in bytes */
#define DEFAULT_STACK_SIZE (1 * 1024 * 1024)
#define DEFAULT_HEAP_SIZE (3 * 1024 * 1024)
/**
* NOTE: This must duplicate octeon_boot_descriptor_t in the toolchain
* octeon-app-init.h file.
*/
enum {
/* If set, core should do app-wide init, only one core per app will have
* this flag set.
*/
BOOT_FLAG_INIT_CORE = 1,
OCTEON_BL_FLAG_DEBUG = 1 << 1,
OCTEON_BL_FLAG_NO_MAGIC = 1 << 2,
/* If set, use uart1 for console */
OCTEON_BL_FLAG_CONSOLE_UART1 = 1 << 3,
OCTEON_BL_FLAG_CONSOLE_PCI = 1 << 4, /* If set, use PCI console */
/* Call exit on break on serial port */
OCTEON_BL_FLAG_BREAK = 1 << 5,
/*
* Be sure to update OCTEON_APP_INIT_H_VERSION when new fields are added
* and to conditionalize the new flag's usage based on the version.
*/
} octeon_boot_descriptor_flag;
/**
* NOTE: This must duplicate octeon_boot_descriptor_t in the toolchain
* octeon-app-init.h file.
*/
#ifndef OCTEON_CURRENT_DESC_VERSION
# define OCTEON_CURRENT_DESC_VERSION 7
#endif
/**
* NOTE: This must duplicate octeon_boot_descriptor_t in the toolchain
* octeon-app-init.h file.
*/
/* Version 7 changes: Change names of deprecated fields */
#ifndef OCTEON_ARGV_MAX_ARGS
# define OCTEON_ARGV_MAX_ARGS 64
#endif
/**
* NOTE: This must duplicate octeon_boot_descriptor_t in the toolchain
* octeon-app-init.h file.
*/
#ifndef OCTEON_SERIAL_LEN
# define OCTEON_SERIAL_LEN 20
#endif
/**
* Bootloader structure used to pass info to Octeon executive startup code.
* NOTE: all fields are deprecated except for:
* * desc_version
* * desc_size,
* * heap_base
* * heap_end
* * eclock_hz
* * flags
* * argc
* * argv
* * cvmx_desc_vaddr
* * debugger_flags_base_addr
*
* All other fields have been moved to the cvmx_descriptor, and the new
* fields should be added there. They are left as placeholders in this
* structure for binary compatibility.
*
* NOTE: This structure must match what is in the toolchain octeon-app-init.h
* file.
*/
struct octeon_boot_descriptor {
/* Start of block referenced by assembly code - do not change! */
u32 desc_version;
u32 desc_size;
u64 stack_top;
u64 heap_base;
u64 heap_end;
u64 deprecated17;
u64 deprecated16;
/* End of block referenced by assembly code - do not change! */
u32 deprecated18;
u32 deprecated15;
u32 deprecated14;
u32 argc; /* argc for main() */
u32 argv[OCTEON_ARGV_MAX_ARGS]; /* argv for main() */
u32 flags; /* Flags for application */
u32 core_mask; /* Coremask running this image */
u32 dram_size; /* DEPRECATED, DRAM size in megabyes. Used up to SDK 1.8.1 */
u32 phy_mem_desc_addr;
u32 debugger_flags_base_addr; /* used to pass flags from app to debugger. */
u32 eclock_hz; /* CPU clock speed, in hz. */
u32 deprecated10;
u32 deprecated9;
u16 deprecated8;
u8 deprecated7;
u8 deprecated6;
u16 deprecated5;
u8 deprecated4;
u8 deprecated3;
char deprecated2[OCTEON_SERIAL_LEN];
u8 deprecated1[6];
u8 deprecated0;
u64 cvmx_desc_vaddr; /* Address of cvmx descriptor */
};
static struct octeon_boot_descriptor boot_desc[CVMX_MIPS_MAX_CORES];
static struct cvmx_bootinfo cvmx_bootinfo_array[CVMX_MIPS_MAX_CORES];
/**
* Programs the boot bus moveable region
* @param base base address to place the boot bus moveable region
* (bits [31:7])
* @param region_num Selects which region, 0 or 1 for node 0,
* 2 or 3 for node 1
* @param enable Set true to enable, false to disable
* @param data Pointer to data to put in the region, up to
* 16 dwords.
* @param num_words Number of data dwords (up to 32)
*
* @return 0 for success, -1 on error
*/
static int octeon_set_moveable_region(u32 base, int region_num,
bool enable, const u64 *data,
unsigned int num_words)
{
int node = region_num >> 1;
u64 val;
int i;
u8 node_mask = 0x01; /* ToDo: Currently only one node is supported */
debug("%s(0x%x, %d, %d, %p, %u)\n", __func__, base, region_num, enable,
data, num_words);
if (num_words > 32) {
printf("%s: Too many words (%d) for region %d\n", __func__,
num_words, region_num);
return -1;
}
if (base & 0x7f) {
printf("%s: Error: base address 0x%x must be 128 byte aligned\n",
__func__, base);
return -1;
}
if (region_num > (node_mask > 1 ? 3 : 1)) {
printf("%s: Region number %d out of range\n",
__func__, region_num);
return -1;
}
if (!data && num_words > 0) {
printf("%s: Error: NULL data\n", __func__);
return -1;
}
region_num &= 1;
val = MIO_BOOT_LOC_CFG_EN |
FIELD_PREP(MIO_BOOT_LOC_CFG_BASE, base >> 7);
debug("%s: Setting MIO_BOOT_LOC_CFG(%d) on node %d to 0x%llx\n",
__func__, region_num, node, val);
csr_wr(CVMX_MIO_BOOT_LOC_CFGX(region_num & 1), val);
val = FIELD_PREP(MIO_BOOT_LOC_ADR_ADR, (region_num ? 0x80 : 0x00) >> 3);
debug("%s: Setting MIO_BOOT_LOC_ADR start to 0x%llx\n", __func__, val);
csr_wr(CVMX_MIO_BOOT_LOC_ADR, val);
for (i = 0; i < num_words; i++) {
debug(" 0x%02llx: 0x%016llx\n",
csr_rd(CVMX_MIO_BOOT_LOC_ADR), data[i]);
csr_wr(CVMX_MIO_BOOT_LOC_DAT, data[i]);
}
return 0;
}
/**
* Parse comma separated numbers into an array
*
* @param[out] values values read for each node
* @param[in] str string to parse
* @param base 0 for auto, otherwise 8, 10 or 16 for the number base
*
* @return number of values read.
*/
static int octeon_parse_nodes(u64 values[CVMX_MAX_NODES],
const char *str, int base)
{
int node = 0;
char *sep;
do {
debug("Parsing node %d: \"%s\"\n", node, str);
values[node] = simple_strtoull(str, &sep, base);
debug(" node %d: 0x%llx\n", node, values[node]);
str = sep + 1;
} while (++node < CVMX_MAX_NODES && *sep == ',');
debug("%s: returning %d\n", __func__, node);
return node;
}
/**
* Parse command line arguments
*
* @param argc number of arguments
* @param[in] argv array of argument strings
* @param cmd command type
* @param[out] boot_args parsed values
*
* @return number of arguments parsed
*/
int octeon_parse_bootopts(int argc, char *const argv[],
enum octeon_boot_cmd_type cmd,
struct octeon_boot_args *boot_args)
{
u64 node_values[CVMX_MAX_NODES];
int arg, j;
int num_values;
int node;
u8 node_mask = 0x01; /* ToDo: Currently only one node is supported */
debug("%s(%d, %p, %d, %p)\n", __func__, argc, argv, cmd, boot_args);
memset(boot_args, 0, sizeof(*boot_args));
boot_args->stack_size = DEFAULT_STACK_SIZE;
boot_args->heap_size = DEFAULT_HEAP_SIZE;
boot_args->node_mask = 0;
for (arg = 0; arg < argc; arg++) {
debug(" argv[%d]: %s\n", arg, argv[arg]);
if (cmd == BOOTOCT && !strncmp(argv[arg], "stack=", 6)) {
boot_args->stack_size = simple_strtoul(argv[arg] + 6,
NULL, 0);
} else if (cmd == BOOTOCT && !strncmp(argv[arg], "heap=", 5)) {
boot_args->heap_size = simple_strtoul(argv[arg] + 5,
NULL, 0);
} else if (!strncmp(argv[arg], "debug", 5)) {
puts("setting debug flag!\n");
boot_args->boot_flags |= OCTEON_BL_FLAG_DEBUG;
} else if (cmd == BOOTOCT && !strncmp(argv[arg], "break", 5)) {
puts("setting break flag!\n");
boot_args->boot_flags |= OCTEON_BL_FLAG_BREAK;
} else if (!strncmp(argv[arg], "forceboot", 9)) {
boot_args->forceboot = true;
} else if (!strncmp(argv[arg], "nodemask=", 9)) {
boot_args->node_mask = simple_strtoul(argv[arg] + 9,
NULL, 16);
} else if (!strncmp(argv[arg], "numcores=", 9)) {
memset(node_values, 0, sizeof(node_values));
num_values = octeon_parse_nodes(node_values,
argv[arg] + 9, 0);
for (j = 0; j < num_values; j++)
boot_args->num_cores[j] = node_values[j];
boot_args->num_cores_set = true;
} else if (!strncmp(argv[arg], "skipcores=", 10)) {
memset(node_values, 0, sizeof(node_values));
num_values = octeon_parse_nodes(node_values,
argv[arg] + 10, 0);
for (j = 0; j < num_values; j++)
boot_args->num_skipped[j] = node_values[j];
boot_args->num_skipped_set = true;
} else if (!strncmp(argv[arg], "console_uart=", 13)) {
boot_args->console_uart = simple_strtoul(argv[arg] + 13,
NULL, 0);
if (boot_args->console_uart == 1) {
boot_args->boot_flags |=
OCTEON_BL_FLAG_CONSOLE_UART1;
} else if (!boot_args->console_uart) {
boot_args->boot_flags &=
~OCTEON_BL_FLAG_CONSOLE_UART1;
}
} else if (!strncmp(argv[arg], "coremask=", 9)) {
memset(node_values, 0, sizeof(node_values));
num_values = octeon_parse_nodes(node_values,
argv[arg] + 9, 16);
for (j = 0; j < num_values; j++)
cvmx_coremask_set64_node(&boot_args->coremask,
j, node_values[j]);
boot_args->coremask_set = true;
} else if (cmd == BOOTOCTLINUX &&
!strncmp(argv[arg], "namedblock=", 11)) {
boot_args->named_block = argv[arg] + 11;
} else if (!strncmp(argv[arg], "endbootargs", 11)) {
boot_args->endbootargs = 1;
arg++;
if (argc >= arg && cmd != BOOTOCTLINUX)
boot_args->app_name = argv[arg];
break;
} else {
debug(" Unknown argument \"%s\"\n", argv[arg]);
}
}
if (boot_args->coremask_set && boot_args->num_cores_set) {
puts("Warning: both coremask and numcores are set, using coremask.\n");
} else if (!boot_args->coremask_set && !boot_args->num_cores_set) {
cvmx_coremask_set_core(&boot_args->coremask, 0);
boot_args->coremask_set = true;
} else if ((!boot_args->coremask_set) && boot_args->num_cores_set) {
cvmx_coremask_for_each_node(node, node_mask)
cvmx_coremask_set64_node(&boot_args->coremask, node,
((1ull << boot_args->num_cores[node]) - 1) <<
boot_args->num_skipped[node]);
boot_args->coremask_set = true;
}
/* Update the node mask based on the coremask or the number of cores */
for (j = 0; j < CVMX_MAX_NODES; j++) {
if (cvmx_coremask_get64_node(&boot_args->coremask, j))
boot_args->node_mask |= 1 << j;
}
debug("%s: return %d\n", __func__, arg);
return arg;
}
int do_bootoctlinux(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
typedef void __noreturn (*kernel_entry_t)(int, ulong, ulong, ulong);
kernel_entry_t kernel;
struct octeon_boot_args boot_args;
int arg_start = 1;
int arg_count;
u64 addr = 0; /* Address of the ELF image */
int arg0;
u64 arg1;
u64 arg2;
u64 arg3;
int ret;
struct cvmx_coremask core_mask;
struct cvmx_coremask coremask_to_run;
struct cvmx_coremask avail_coremask;
int first_core;
int core;
const u64 *nmi_code;
int num_dwords;
u8 node_mask = 0x01;
int i;
cvmx_coremask_clear_all(&core_mask);
cvmx_coremask_clear_all(&coremask_to_run);
if (argc >= 2 && (isxdigit(argv[1][0]) && (isxdigit(argv[1][1]) ||
argv[1][1] == 'x' ||
argv[1][1] == 'X' ||
argv[1][1] == '\0'))) {
addr = simple_strtoul(argv[1], NULL, 16);
if (!addr)
addr = CONFIG_SYS_LOAD_ADDR;
arg_start++;
}
if (addr == 0)
addr = CONFIG_SYS_LOAD_ADDR;
debug("%s: arg start: %d\n", __func__, arg_start);
arg_count = octeon_parse_bootopts(argc - arg_start, argv + arg_start,
BOOTOCTLINUX, &boot_args);
debug("%s:\n"
" named block: %s\n"
" node mask: 0x%x\n"
" stack size: 0x%x\n"
" heap size: 0x%x\n"
" boot flags: 0x%x\n"
" force boot: %s\n"
" coremask set: %s\n"
" num cores set: %s\n"
" num skipped set: %s\n"
" endbootargs: %s\n",
__func__,
boot_args.named_block ? boot_args.named_block : "none",
boot_args.node_mask,
boot_args.stack_size,
boot_args.heap_size,
boot_args.boot_flags,
boot_args.forceboot ? "true" : "false",
boot_args.coremask_set ? "true" : "false",
boot_args.num_cores_set ? "true" : "false",
boot_args.num_skipped_set ? "true" : "false",
boot_args.endbootargs ? "true" : "false");
debug(" num cores: ");
for (i = 0; i < CVMX_MAX_NODES; i++)
debug("%s%d", i > 0 ? ", " : "", boot_args.num_cores[i]);
debug("\n num skipped: ");
for (i = 0; i < CVMX_MAX_NODES; i++) {
debug("%s%d", i > 0 ? ", " : "", boot_args.num_skipped[i]);
debug("\n coremask:\n");
cvmx_coremask_dprint(&boot_args.coremask);
}
if (boot_args.endbootargs) {
debug("endbootargs set, adjusting argc from %d to %d, arg_count: %d, arg_start: %d\n",
argc, argc - (arg_count + arg_start), arg_count,
arg_start);
argc -= (arg_count + arg_start);
argv += (arg_count + arg_start);
}
/*
* numcores specification overrides a coremask on the same command line
*/
cvmx_coremask_copy(&core_mask, &boot_args.coremask);
/*
* Remove cores from coremask based on environment variable stored in
* flash
*/
if (validate_coremask(&core_mask) != 0) {
puts("Invalid coremask.\n");
return 1;
} else if (cvmx_coremask_is_empty(&core_mask)) {
puts("Coremask is empty after coremask_override mask. Nothing to do.\n");
return 0;
}
if (cvmx_coremask_intersects(&core_mask, &coremask_to_run)) {
puts("ERROR: Can't load code on core twice! Provided coremask:\n");
cvmx_coremask_print(&core_mask);
puts("overlaps previously loaded coremask:\n");
cvmx_coremask_print(&coremask_to_run);
return -1;
}
debug("Setting up boot descriptor block with core mask:\n");
cvmx_coremask_dprint(&core_mask);
/*
* Add coremask to global mask of cores that have been set up and are
* runable
*/
cvmx_coremask_or(&coremask_to_run, &coremask_to_run, &core_mask);
/*
* Load kernel ELF image, or try binary if ELF is not detected.
* This way the much smaller vmlinux.bin can also be started but
* has to be loaded at the correct address (ep as parameter).
*/
if (!valid_elf_image(addr))
printf("Booting binary image instead (vmlinux.bin)...\n");
else
addr = load_elf_image_shdr(addr);
/* Set kernel entry point */
kernel = (kernel_entry_t)addr;
/* Init bootmem list for Linux kernel booting */
if (!cvmx_bootmem_phy_mem_list_init(
gd->ram_size, OCTEON_RESERVED_LOW_MEM_SIZE,
(void *)CKSEG0ADDR(BOOTLOADER_BOOTMEM_DESC_SPACE))) {
printf("FATAL: Error initializing free memory list\n");
return 0;
}
first_core = cvmx_coremask_get_first_core(&coremask_to_run);
cvmx_coremask_for_each_core(core, &coremask_to_run) {
debug("%s: Activating core %d\n", __func__, core);
cvmx_bootinfo_array[core].core_mask =
cvmx_coremask_get32(&coremask_to_run);
cvmx_coremask_copy(&cvmx_bootinfo_array[core].ext_core_mask,
&coremask_to_run);
if (core == first_core)
cvmx_bootinfo_array[core].flags |= BOOT_FLAG_INIT_CORE;
cvmx_bootinfo_array[core].dram_size = gd->ram_size /
(1024 * 1024);
cvmx_bootinfo_array[core].dclock_hz = gd->mem_clk * 1000000;
cvmx_bootinfo_array[core].eclock_hz = gd->cpu_clk;
cvmx_bootinfo_array[core].led_display_base_addr = 0;
cvmx_bootinfo_array[core].phy_mem_desc_addr =
((u32)(u64)__cvmx_bootmem_internal_get_desc_ptr()) &
0x7ffffff;
cvmx_bootinfo_array[core].major_version = CVMX_BOOTINFO_MAJ_VER;
cvmx_bootinfo_array[core].minor_version = CVMX_BOOTINFO_MIN_VER;
cvmx_bootinfo_array[core].fdt_addr = virt_to_phys(gd->fdt_blob);
boot_desc[core].dram_size = gd->ram_size / (1024 * 1024);
boot_desc[core].cvmx_desc_vaddr =
virt_to_phys(&cvmx_bootinfo_array[core]);
boot_desc[core].desc_version = OCTEON_CURRENT_DESC_VERSION;
boot_desc[core].desc_size = sizeof(boot_desc[0]);
boot_desc[core].flags = cvmx_bootinfo_array[core].flags;
boot_desc[core].eclock_hz = cvmx_bootinfo_array[core].eclock_hz;
boot_desc[core].argc = argc;
for (i = 0; i < argc; i++)
boot_desc[core].argv[i] = (u32)virt_to_phys(argv[i]);
}
core = 0;
arg0 = argc;
arg1 = (u64)argv;
arg2 = 0x1; /* Core 0 sets init core for Linux */
arg3 = XKPHYS | virt_to_phys(&boot_desc[core]);
debug("## Transferring control to Linux (at address %p) ...\n", kernel);
/*
* Flush cache before jumping to application. Let's flush the
* whole SDRAM area, since we don't know the size of the image
* that was loaded.
*/
flush_cache(gd->ram_base, gd->ram_top - gd->ram_base);
/* Take all cores out of reset */
csr_wr(CVMX_CIU_PP_RST, 0);
sync();
/* Wait a short while for the other cores... */
mdelay(100);
/* Install boot code into moveable bus for NMI (other cores) */
nmi_code = (const u64 *)nmi_bootvector;
num_dwords = (((u64)&nmi_handler_para[0] - (u64)nmi_code) + 7) / 8;
ret = octeon_set_moveable_region(0x1fc00000, 0, true, nmi_code,
num_dwords);
if (ret) {
printf("Error installing NMI handler for SMP core startup\n");
return 0;
}
/* Write NMI handler parameters for Linux kernel booting */
nmi_handler_para[0] = (u64)kernel;
nmi_handler_para[1] = arg0;
nmi_handler_para[2] = arg1;
nmi_handler_para[3] = 0; /* Don't set init core for secondary cores */
nmi_handler_para[4] = arg3;
sync();
/* Wait a short while for the other cores... */
mdelay(100);
/*
* Cores have already been taken out of reset to conserve power.
* We need to send a NMI to get the cores out of their wait loop
*/
octeon_get_available_coremask(&avail_coremask);
debug("Available coremask:\n");
cvmx_coremask_dprint(&avail_coremask);
debug("Starting coremask:\n");
cvmx_coremask_dprint(&coremask_to_run);
debug("Sending NMIs to other cores\n");
if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
u64 avail_cm;
int node;
cvmx_coremask_for_each_node(node, node_mask) {
avail_cm = cvmx_coremask_get64_node(&avail_coremask,
node);
if (avail_cm != 0) {
debug("Sending NMI to node %d, coremask=0x%llx, CIU3_NMI=0x%llx\n",
node, avail_cm,
(node > 0 ? -1ull : -2ull) & avail_cm);
csr_wr(CVMX_CIU3_NMI,
(node > 0 ? -1ull : -2ull) & avail_cm);
}
}
} else {
csr_wr(CVMX_CIU_NMI,
-2ull & cvmx_coremask_get64(&avail_coremask));
}
debug("Done sending NMIs\n");
/* Wait a short while for the other cores... */
mdelay(100);
/*
* pass address parameter as argv[0] (aka command name),
* and all remaining args
* a0 = argc
* a1 = argv (32 bit physical addresses, not pointers)
* a2 = init core
* a3 = boot descriptor address
* a4/t0 = entry point (only used by assembly stub)
*/
kernel(arg0, arg1, arg2, arg3);
return 0;
}
U_BOOT_CMD(bootoctlinux, 32, 0, do_bootoctlinux,
"Boot from a linux ELF image in memory",
"elf_address [coremask=mask_to_run | numcores=core_cnt_to_run] "
"[forceboot] [skipcores=core_cnt_to_skip] [namedblock=name] [endbootargs] [app_args ...]\n"
"elf_address - address of ELF image to load. If 0, default load address\n"
" is used.\n"
"coremask - mask of cores to run on. Anded with coremask_override\n"
" environment variable to ensure only working cores are used\n"
"numcores - number of cores to run on. Runs on specified number of cores,\n"
" taking into account the coremask_override.\n"
"skipcores - only meaningful with numcores. Skips this many cores\n"
" (starting from 0) when loading the numcores cores.\n"
" For example, setting skipcores to 1 will skip core 0\n"
" and load the application starting at the next available core.\n"
"forceboot - if set, boots application even if core 0 is not in mask\n"
"namedblock - specifies a named block to load the kernel\n"
"endbootargs - if set, bootloader does not process any further arguments and\n"
" only passes the arguments that follow to the kernel.\n"
" If not set, the kernel gets the entire commnad line as\n"
" arguments.\n" "\n");