u-boot-brain/drivers/i2c/rk_i2c.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

410 lines
9.3 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2015 Google, Inc
*
* (C) Copyright 2008-2014 Rockchip Electronics
* Peter, Software Engineering, <superpeter.cai@gmail.com>.
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <i2c.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/i2c.h>
#include <asm/arch/periph.h>
#include <dm/pinctrl.h>
#include <linux/sizes.h>
/* i2c timerout */
#define I2C_TIMEOUT_MS 100
#define I2C_RETRY_COUNT 3
/* rk i2c fifo max transfer bytes */
#define RK_I2C_FIFO_SIZE 32
struct rk_i2c {
struct clk clk;
struct i2c_regs *regs;
unsigned int speed;
};
static inline void rk_i2c_get_div(int div, int *divh, int *divl)
{
*divl = div / 2;
if (div % 2 == 0)
*divh = div / 2;
else
*divh = DIV_ROUND_UP(div, 2);
}
/*
* SCL Divisor = 8 * (CLKDIVL+1 + CLKDIVH+1)
* SCL = PCLK / SCLK Divisor
* i2c_rate = PCLK
*/
static void rk_i2c_set_clk(struct rk_i2c *i2c, uint32_t scl_rate)
{
uint32_t i2c_rate;
int div, divl, divh;
/* First get i2c rate from pclk */
i2c_rate = clk_get_rate(&i2c->clk);
div = DIV_ROUND_UP(i2c_rate, scl_rate * 8) - 2;
divh = 0;
divl = 0;
if (div >= 0)
rk_i2c_get_div(div, &divh, &divl);
writel(I2C_CLKDIV_VAL(divl, divh), &i2c->regs->clkdiv);
debug("rk_i2c_set_clk: i2c rate = %d, scl rate = %d\n", i2c_rate,
scl_rate);
debug("set i2c clk div = %d, divh = %d, divl = %d\n", div, divh, divl);
debug("set clk(I2C_CLKDIV: 0x%08x)\n", readl(&i2c->regs->clkdiv));
}
static void rk_i2c_show_regs(struct i2c_regs *regs)
{
#ifdef DEBUG
uint i;
debug("i2c_con: 0x%08x\n", readl(&regs->con));
debug("i2c_clkdiv: 0x%08x\n", readl(&regs->clkdiv));
debug("i2c_mrxaddr: 0x%08x\n", readl(&regs->mrxaddr));
debug("i2c_mrxraddR: 0x%08x\n", readl(&regs->mrxraddr));
debug("i2c_mtxcnt: 0x%08x\n", readl(&regs->mtxcnt));
debug("i2c_mrxcnt: 0x%08x\n", readl(&regs->mrxcnt));
debug("i2c_ien: 0x%08x\n", readl(&regs->ien));
debug("i2c_ipd: 0x%08x\n", readl(&regs->ipd));
debug("i2c_fcnt: 0x%08x\n", readl(&regs->fcnt));
for (i = 0; i < 8; i++)
debug("i2c_txdata%d: 0x%08x\n", i, readl(&regs->txdata[i]));
for (i = 0; i < 8; i++)
debug("i2c_rxdata%d: 0x%08x\n", i, readl(&regs->rxdata[i]));
#endif
}
static int rk_i2c_send_start_bit(struct rk_i2c *i2c)
{
struct i2c_regs *regs = i2c->regs;
ulong start;
debug("I2c Send Start bit.\n");
writel(I2C_IPD_ALL_CLEAN, &regs->ipd);
writel(I2C_CON_EN | I2C_CON_START, &regs->con);
writel(I2C_STARTIEN, &regs->ien);
start = get_timer(0);
while (1) {
if (readl(&regs->ipd) & I2C_STARTIPD) {
writel(I2C_STARTIPD, &regs->ipd);
break;
}
if (get_timer(start) > I2C_TIMEOUT_MS) {
debug("I2C Send Start Bit Timeout\n");
rk_i2c_show_regs(regs);
return -ETIMEDOUT;
}
udelay(1);
}
return 0;
}
static int rk_i2c_send_stop_bit(struct rk_i2c *i2c)
{
struct i2c_regs *regs = i2c->regs;
ulong start;
debug("I2c Send Stop bit.\n");
writel(I2C_IPD_ALL_CLEAN, &regs->ipd);
writel(I2C_CON_EN | I2C_CON_STOP, &regs->con);
writel(I2C_CON_STOP, &regs->ien);
start = get_timer(0);
while (1) {
if (readl(&regs->ipd) & I2C_STOPIPD) {
writel(I2C_STOPIPD, &regs->ipd);
break;
}
if (get_timer(start) > I2C_TIMEOUT_MS) {
debug("I2C Send Start Bit Timeout\n");
rk_i2c_show_regs(regs);
return -ETIMEDOUT;
}
udelay(1);
}
return 0;
}
static inline void rk_i2c_disable(struct rk_i2c *i2c)
{
writel(0, &i2c->regs->con);
}
static int rk_i2c_read(struct rk_i2c *i2c, uchar chip, uint reg, uint r_len,
uchar *buf, uint b_len)
{
struct i2c_regs *regs = i2c->regs;
uchar *pbuf = buf;
uint bytes_remain_len = b_len;
uint bytes_xferred = 0;
uint words_xferred = 0;
ulong start;
uint con = 0;
uint rxdata;
uint i, j;
int err;
bool snd_chunk = false;
debug("rk_i2c_read: chip = %d, reg = %d, r_len = %d, b_len = %d\n",
chip, reg, r_len, b_len);
err = rk_i2c_send_start_bit(i2c);
if (err)
return err;
writel(I2C_MRXADDR_SET(1, chip << 1 | 1), &regs->mrxaddr);
if (r_len == 0) {
writel(0, &regs->mrxraddr);
} else if (r_len < 4) {
writel(I2C_MRXRADDR_SET(r_len, reg), &regs->mrxraddr);
} else {
debug("I2C Read: addr len %d not supported\n", r_len);
return -EIO;
}
while (bytes_remain_len) {
if (bytes_remain_len > RK_I2C_FIFO_SIZE) {
con = I2C_CON_EN;
bytes_xferred = 32;
} else {
/*
* The hw can read up to 32 bytes at a time. If we need
* more than one chunk, send an ACK after the last byte.
*/
con = I2C_CON_EN | I2C_CON_LASTACK;
bytes_xferred = bytes_remain_len;
}
words_xferred = DIV_ROUND_UP(bytes_xferred, 4);
/*
* make sure we are in plain RX mode if we read a second chunk
*/
if (snd_chunk)
con |= I2C_CON_MOD(I2C_MODE_RX);
else
con |= I2C_CON_MOD(I2C_MODE_TRX);
writel(con, &regs->con);
writel(bytes_xferred, &regs->mrxcnt);
writel(I2C_MBRFIEN | I2C_NAKRCVIEN, &regs->ien);
start = get_timer(0);
while (1) {
if (readl(&regs->ipd) & I2C_NAKRCVIPD) {
writel(I2C_NAKRCVIPD, &regs->ipd);
err = -EREMOTEIO;
}
if (readl(&regs->ipd) & I2C_MBRFIPD) {
writel(I2C_MBRFIPD, &regs->ipd);
break;
}
if (get_timer(start) > I2C_TIMEOUT_MS) {
debug("I2C Read Data Timeout\n");
err = -ETIMEDOUT;
rk_i2c_show_regs(regs);
goto i2c_exit;
}
udelay(1);
}
for (i = 0; i < words_xferred; i++) {
rxdata = readl(&regs->rxdata[i]);
debug("I2c Read RXDATA[%d] = 0x%x\n", i, rxdata);
for (j = 0; j < 4; j++) {
if ((i * 4 + j) == bytes_xferred)
break;
*pbuf++ = (rxdata >> (j * 8)) & 0xff;
}
}
bytes_remain_len -= bytes_xferred;
snd_chunk = true;
debug("I2C Read bytes_remain_len %d\n", bytes_remain_len);
}
i2c_exit:
rk_i2c_send_stop_bit(i2c);
rk_i2c_disable(i2c);
return err;
}
static int rk_i2c_write(struct rk_i2c *i2c, uchar chip, uint reg, uint r_len,
uchar *buf, uint b_len)
{
struct i2c_regs *regs = i2c->regs;
int err;
uchar *pbuf = buf;
uint bytes_remain_len = b_len + r_len + 1;
uint bytes_xferred = 0;
uint words_xferred = 0;
ulong start;
uint txdata;
uint i, j;
debug("rk_i2c_write: chip = %d, reg = %d, r_len = %d, b_len = %d\n",
chip, reg, r_len, b_len);
err = rk_i2c_send_start_bit(i2c);
if (err)
return err;
while (bytes_remain_len) {
if (bytes_remain_len > RK_I2C_FIFO_SIZE)
bytes_xferred = RK_I2C_FIFO_SIZE;
else
bytes_xferred = bytes_remain_len;
words_xferred = DIV_ROUND_UP(bytes_xferred, 4);
for (i = 0; i < words_xferred; i++) {
txdata = 0;
for (j = 0; j < 4; j++) {
if ((i * 4 + j) == bytes_xferred)
break;
if (i == 0 && j == 0 && pbuf == buf) {
txdata |= (chip << 1);
} else if (i == 0 && j <= r_len && pbuf == buf) {
txdata |= (reg &
(0xff << ((j - 1) * 8))) << 8;
} else {
txdata |= (*pbuf++)<<(j * 8);
}
}
writel(txdata, &regs->txdata[i]);
debug("I2c Write TXDATA[%d] = 0x%08x\n", i, txdata);
}
writel(I2C_CON_EN | I2C_CON_MOD(I2C_MODE_TX), &regs->con);
writel(bytes_xferred, &regs->mtxcnt);
writel(I2C_MBTFIEN | I2C_NAKRCVIEN, &regs->ien);
start = get_timer(0);
while (1) {
if (readl(&regs->ipd) & I2C_NAKRCVIPD) {
writel(I2C_NAKRCVIPD, &regs->ipd);
err = -EREMOTEIO;
}
if (readl(&regs->ipd) & I2C_MBTFIPD) {
writel(I2C_MBTFIPD, &regs->ipd);
break;
}
if (get_timer(start) > I2C_TIMEOUT_MS) {
debug("I2C Write Data Timeout\n");
err = -ETIMEDOUT;
rk_i2c_show_regs(regs);
goto i2c_exit;
}
udelay(1);
}
bytes_remain_len -= bytes_xferred;
debug("I2C Write bytes_remain_len %d\n", bytes_remain_len);
}
i2c_exit:
rk_i2c_send_stop_bit(i2c);
rk_i2c_disable(i2c);
return err;
}
static int rockchip_i2c_xfer(struct udevice *bus, struct i2c_msg *msg,
int nmsgs)
{
struct rk_i2c *i2c = dev_get_priv(bus);
int ret;
debug("i2c_xfer: %d messages\n", nmsgs);
for (; nmsgs > 0; nmsgs--, msg++) {
debug("i2c_xfer: chip=0x%x, len=0x%x\n", msg->addr, msg->len);
if (msg->flags & I2C_M_RD) {
ret = rk_i2c_read(i2c, msg->addr, 0, 0, msg->buf,
msg->len);
} else {
ret = rk_i2c_write(i2c, msg->addr, 0, 0, msg->buf,
msg->len);
}
if (ret) {
debug("i2c_write: error sending\n");
return -EREMOTEIO;
}
}
return 0;
}
int rockchip_i2c_set_bus_speed(struct udevice *bus, unsigned int speed)
{
struct rk_i2c *i2c = dev_get_priv(bus);
rk_i2c_set_clk(i2c, speed);
return 0;
}
static int rockchip_i2c_ofdata_to_platdata(struct udevice *bus)
{
struct rk_i2c *priv = dev_get_priv(bus);
int ret;
ret = clk_get_by_index(bus, 0, &priv->clk);
if (ret < 0) {
debug("%s: Could not get clock for %s: %d\n", __func__,
bus->name, ret);
return ret;
}
return 0;
}
static int rockchip_i2c_probe(struct udevice *bus)
{
struct rk_i2c *priv = dev_get_priv(bus);
priv->regs = dev_read_addr_ptr(bus);
return 0;
}
static const struct dm_i2c_ops rockchip_i2c_ops = {
.xfer = rockchip_i2c_xfer,
.set_bus_speed = rockchip_i2c_set_bus_speed,
};
static const struct udevice_id rockchip_i2c_ids[] = {
{ .compatible = "rockchip,rk3066-i2c" },
{ .compatible = "rockchip,rk3188-i2c" },
{ .compatible = "rockchip,rk3288-i2c" },
{ .compatible = "rockchip,rk3328-i2c" },
{ .compatible = "rockchip,rk3399-i2c" },
{ }
};
U_BOOT_DRIVER(i2c_rockchip) = {
.name = "i2c_rockchip",
.id = UCLASS_I2C,
.of_match = rockchip_i2c_ids,
.ofdata_to_platdata = rockchip_i2c_ofdata_to_platdata,
.probe = rockchip_i2c_probe,
.priv_auto_alloc_size = sizeof(struct rk_i2c),
.ops = &rockchip_i2c_ops,
};