u-boot-brain/arch/arm/cpu/armv7/exynos/clock.c
Amar 2b81c26b7c EXYNOS5: DWMMC: Initialise the local variable to avoid unwanted results.
This patch initialises the local variable 'shift' to zero.
The uninitialised local variable 'shift' had garbage value and was
resulting in unwnated results in the functions exynos5_get_mmc_clk()
and exynos4_get_mmc_clk().

Signed-off-by: Amar <amarendra.xt@samsung.com>
Acked-by: Simon Glass <sjg@chromium.org>
Acked-by: Jaehoon Chung <jh80.chung@samsung.com>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
2013-06-13 17:35:14 +09:00

1424 lines
30 KiB
C

/*
* Copyright (C) 2010 Samsung Electronics
* Minkyu Kang <mk7.kang@samsung.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/clk.h>
#include <asm/arch/periph.h>
/* *
* This structure is to store the src bit, div bit and prediv bit
* positions of the peripheral clocks of the src and div registers
*/
struct clk_bit_info {
int8_t src_bit;
int8_t div_bit;
int8_t prediv_bit;
};
/* src_bit div_bit prediv_bit */
static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = {
{0, 0, -1},
{4, 4, -1},
{8, 8, -1},
{12, 12, -1},
{0, 0, 8},
{4, 16, 24},
{8, 0, 8},
{12, 16, 24},
{-1, -1, -1},
{16, 0, 8},
{20, 16, 24},
{24, 0, 8},
{0, 0, 4},
{4, 12, 16},
{-1, -1, -1},
{-1, -1, -1},
{-1, 24, 0},
{-1, 24, 0},
{-1, 24, 0},
{-1, 24, 0},
{-1, 24, 0},
{-1, 24, 0},
{-1, 24, 0},
{-1, 24, 0},
{24, 0, -1},
{24, 0, -1},
{24, 0, -1},
{24, 0, -1},
{24, 0, -1},
};
/* Epll Clock division values to achive different frequency output */
static struct set_epll_con_val exynos5_epll_div[] = {
{ 192000000, 0, 48, 3, 1, 0 },
{ 180000000, 0, 45, 3, 1, 0 },
{ 73728000, 1, 73, 3, 3, 47710 },
{ 67737600, 1, 90, 4, 3, 20762 },
{ 49152000, 0, 49, 3, 3, 9961 },
{ 45158400, 0, 45, 3, 3, 10381 },
{ 180633600, 0, 45, 3, 1, 10381 }
};
/* exynos: return pll clock frequency */
static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
{
unsigned long m, p, s = 0, mask, fout;
unsigned int freq;
/*
* APLL_CON: MIDV [25:16]
* MPLL_CON: MIDV [25:16]
* EPLL_CON: MIDV [24:16]
* VPLL_CON: MIDV [24:16]
* BPLL_CON: MIDV [25:16]: Exynos5
*/
if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
mask = 0x3ff;
else
mask = 0x1ff;
m = (r >> 16) & mask;
/* PDIV [13:8] */
p = (r >> 8) & 0x3f;
/* SDIV [2:0] */
s = r & 0x7;
freq = CONFIG_SYS_CLK_FREQ;
if (pllreg == EPLL) {
k = k & 0xffff;
/* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
fout = (m + k / 65536) * (freq / (p * (1 << s)));
} else if (pllreg == VPLL) {
k = k & 0xfff;
/* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
fout = (m + k / 1024) * (freq / (p * (1 << s)));
} else {
/* FOUT = MDIV * FIN / (PDIV * 2^SDIV) */
fout = m * (freq / (p * (1 << s)));
}
return fout;
}
/* exynos4: return pll clock frequency */
static unsigned long exynos4_get_pll_clk(int pllreg)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long r, k = 0;
switch (pllreg) {
case APLL:
r = readl(&clk->apll_con0);
break;
case MPLL:
r = readl(&clk->mpll_con0);
break;
case EPLL:
r = readl(&clk->epll_con0);
k = readl(&clk->epll_con1);
break;
case VPLL:
r = readl(&clk->vpll_con0);
k = readl(&clk->vpll_con1);
break;
default:
printf("Unsupported PLL (%d)\n", pllreg);
return 0;
}
return exynos_get_pll_clk(pllreg, r, k);
}
/* exynos4x12: return pll clock frequency */
static unsigned long exynos4x12_get_pll_clk(int pllreg)
{
struct exynos4x12_clock *clk =
(struct exynos4x12_clock *)samsung_get_base_clock();
unsigned long r, k = 0;
switch (pllreg) {
case APLL:
r = readl(&clk->apll_con0);
break;
case MPLL:
r = readl(&clk->mpll_con0);
break;
case EPLL:
r = readl(&clk->epll_con0);
k = readl(&clk->epll_con1);
break;
case VPLL:
r = readl(&clk->vpll_con0);
k = readl(&clk->vpll_con1);
break;
default:
printf("Unsupported PLL (%d)\n", pllreg);
return 0;
}
return exynos_get_pll_clk(pllreg, r, k);
}
/* exynos5: return pll clock frequency */
static unsigned long exynos5_get_pll_clk(int pllreg)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned long r, k = 0, fout;
unsigned int pll_div2_sel, fout_sel;
switch (pllreg) {
case APLL:
r = readl(&clk->apll_con0);
break;
case MPLL:
r = readl(&clk->mpll_con0);
break;
case EPLL:
r = readl(&clk->epll_con0);
k = readl(&clk->epll_con1);
break;
case VPLL:
r = readl(&clk->vpll_con0);
k = readl(&clk->vpll_con1);
break;
case BPLL:
r = readl(&clk->bpll_con0);
break;
default:
printf("Unsupported PLL (%d)\n", pllreg);
return 0;
}
fout = exynos_get_pll_clk(pllreg, r, k);
/* According to the user manual, in EVT1 MPLL and BPLL always gives
* 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
if (pllreg == MPLL || pllreg == BPLL) {
pll_div2_sel = readl(&clk->pll_div2_sel);
switch (pllreg) {
case MPLL:
fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
& MPLL_FOUT_SEL_MASK;
break;
case BPLL:
fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
& BPLL_FOUT_SEL_MASK;
break;
default:
fout_sel = -1;
break;
}
if (fout_sel == 0)
fout /= 2;
}
return fout;
}
static unsigned long exynos5_get_periph_rate(int peripheral)
{
struct clk_bit_info *bit_info = &clk_bit_info[peripheral];
unsigned long sclk, sub_clk;
unsigned int src, div, sub_div;
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
switch (peripheral) {
case PERIPH_ID_UART0:
case PERIPH_ID_UART1:
case PERIPH_ID_UART2:
case PERIPH_ID_UART3:
src = readl(&clk->src_peric0);
div = readl(&clk->div_peric0);
break;
case PERIPH_ID_PWM0:
case PERIPH_ID_PWM1:
case PERIPH_ID_PWM2:
case PERIPH_ID_PWM3:
case PERIPH_ID_PWM4:
src = readl(&clk->src_peric0);
div = readl(&clk->div_peric3);
break;
case PERIPH_ID_SPI0:
case PERIPH_ID_SPI1:
src = readl(&clk->src_peric1);
div = readl(&clk->div_peric1);
break;
case PERIPH_ID_SPI2:
src = readl(&clk->src_peric1);
div = readl(&clk->div_peric2);
break;
case PERIPH_ID_SPI3:
case PERIPH_ID_SPI4:
src = readl(&clk->sclk_src_isp);
div = readl(&clk->sclk_div_isp);
break;
case PERIPH_ID_SDMMC0:
case PERIPH_ID_SDMMC1:
case PERIPH_ID_SDMMC2:
case PERIPH_ID_SDMMC3:
src = readl(&clk->src_fsys);
div = readl(&clk->div_fsys1);
break;
case PERIPH_ID_I2C0:
case PERIPH_ID_I2C1:
case PERIPH_ID_I2C2:
case PERIPH_ID_I2C3:
case PERIPH_ID_I2C4:
case PERIPH_ID_I2C5:
case PERIPH_ID_I2C6:
case PERIPH_ID_I2C7:
sclk = exynos5_get_pll_clk(MPLL);
sub_div = ((readl(&clk->div_top1) >> bit_info->div_bit)
& 0x7) + 1;
div = ((readl(&clk->div_top0) >> bit_info->prediv_bit)
& 0x7) + 1;
return (sclk / sub_div) / div;
default:
debug("%s: invalid peripheral %d", __func__, peripheral);
return -1;
};
src = (src >> bit_info->src_bit) & 0xf;
switch (src) {
case EXYNOS_SRC_MPLL:
sclk = exynos5_get_pll_clk(MPLL);
break;
case EXYNOS_SRC_EPLL:
sclk = exynos5_get_pll_clk(EPLL);
break;
case EXYNOS_SRC_VPLL:
sclk = exynos5_get_pll_clk(VPLL);
break;
default:
return 0;
}
/* Ratio clock division for this peripheral */
sub_div = (div >> bit_info->div_bit) & 0xf;
sub_clk = sclk / (sub_div + 1);
/* Pre-ratio clock division for SDMMC0 and 2 */
if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) {
div = (div >> bit_info->prediv_bit) & 0xff;
return sub_clk / (div + 1);
}
return sub_clk;
}
unsigned long clock_get_periph_rate(int peripheral)
{
if (cpu_is_exynos5())
return exynos5_get_periph_rate(peripheral);
else
return 0;
}
/* exynos4: return ARM clock frequency */
static unsigned long exynos4_get_arm_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long div;
unsigned long armclk;
unsigned int core_ratio;
unsigned int core2_ratio;
div = readl(&clk->div_cpu0);
/* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
core_ratio = (div >> 0) & 0x7;
core2_ratio = (div >> 28) & 0x7;
armclk = get_pll_clk(APLL) / (core_ratio + 1);
armclk /= (core2_ratio + 1);
return armclk;
}
/* exynos4x12: return ARM clock frequency */
static unsigned long exynos4x12_get_arm_clk(void)
{
struct exynos4x12_clock *clk =
(struct exynos4x12_clock *)samsung_get_base_clock();
unsigned long div;
unsigned long armclk;
unsigned int core_ratio;
unsigned int core2_ratio;
div = readl(&clk->div_cpu0);
/* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
core_ratio = (div >> 0) & 0x7;
core2_ratio = (div >> 28) & 0x7;
armclk = get_pll_clk(APLL) / (core_ratio + 1);
armclk /= (core2_ratio + 1);
return armclk;
}
/* exynos5: return ARM clock frequency */
static unsigned long exynos5_get_arm_clk(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned long div;
unsigned long armclk;
unsigned int arm_ratio;
unsigned int arm2_ratio;
div = readl(&clk->div_cpu0);
/* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
arm_ratio = (div >> 0) & 0x7;
arm2_ratio = (div >> 28) & 0x7;
armclk = get_pll_clk(APLL) / (arm_ratio + 1);
armclk /= (arm2_ratio + 1);
return armclk;
}
/* exynos4: return pwm clock frequency */
static unsigned long exynos4_get_pwm_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long pclk, sclk;
unsigned int sel;
unsigned int ratio;
if (s5p_get_cpu_rev() == 0) {
/*
* CLK_SRC_PERIL0
* PWM_SEL [27:24]
*/
sel = readl(&clk->src_peril0);
sel = (sel >> 24) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_PERIL3
* PWM_RATIO [3:0]
*/
ratio = readl(&clk->div_peril3);
ratio = ratio & 0xf;
} else if (s5p_get_cpu_rev() == 1) {
sclk = get_pll_clk(MPLL);
ratio = 8;
} else
return 0;
pclk = sclk / (ratio + 1);
return pclk;
}
/* exynos4x12: return pwm clock frequency */
static unsigned long exynos4x12_get_pwm_clk(void)
{
unsigned long pclk, sclk;
unsigned int ratio;
sclk = get_pll_clk(MPLL);
ratio = 8;
pclk = sclk / (ratio + 1);
return pclk;
}
/* exynos4: return uart clock frequency */
static unsigned long exynos4_get_uart_clk(int dev_index)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long uclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_PERIL0
* UART0_SEL [3:0]
* UART1_SEL [7:4]
* UART2_SEL [8:11]
* UART3_SEL [12:15]
* UART4_SEL [16:19]
* UART5_SEL [23:20]
*/
sel = readl(&clk->src_peril0);
sel = (sel >> (dev_index << 2)) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_PERIL0
* UART0_RATIO [3:0]
* UART1_RATIO [7:4]
* UART2_RATIO [8:11]
* UART3_RATIO [12:15]
* UART4_RATIO [16:19]
* UART5_RATIO [23:20]
*/
ratio = readl(&clk->div_peril0);
ratio = (ratio >> (dev_index << 2)) & 0xf;
uclk = sclk / (ratio + 1);
return uclk;
}
/* exynos4x12: return uart clock frequency */
static unsigned long exynos4x12_get_uart_clk(int dev_index)
{
struct exynos4x12_clock *clk =
(struct exynos4x12_clock *)samsung_get_base_clock();
unsigned long uclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_PERIL0
* UART0_SEL [3:0]
* UART1_SEL [7:4]
* UART2_SEL [8:11]
* UART3_SEL [12:15]
* UART4_SEL [16:19]
*/
sel = readl(&clk->src_peril0);
sel = (sel >> (dev_index << 2)) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_PERIL0
* UART0_RATIO [3:0]
* UART1_RATIO [7:4]
* UART2_RATIO [8:11]
* UART3_RATIO [12:15]
* UART4_RATIO [16:19]
*/
ratio = readl(&clk->div_peril0);
ratio = (ratio >> (dev_index << 2)) & 0xf;
uclk = sclk / (ratio + 1);
return uclk;
}
/* exynos5: return uart clock frequency */
static unsigned long exynos5_get_uart_clk(int dev_index)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned long uclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_PERIC0
* UART0_SEL [3:0]
* UART1_SEL [7:4]
* UART2_SEL [8:11]
* UART3_SEL [12:15]
* UART4_SEL [16:19]
* UART5_SEL [23:20]
*/
sel = readl(&clk->src_peric0);
sel = (sel >> (dev_index << 2)) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_PERIC0
* UART0_RATIO [3:0]
* UART1_RATIO [7:4]
* UART2_RATIO [8:11]
* UART3_RATIO [12:15]
* UART4_RATIO [16:19]
* UART5_RATIO [23:20]
*/
ratio = readl(&clk->div_peric0);
ratio = (ratio >> (dev_index << 2)) & 0xf;
uclk = sclk / (ratio + 1);
return uclk;
}
static unsigned long exynos4_get_mmc_clk(int dev_index)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long uclk, sclk;
unsigned int sel, ratio, pre_ratio;
int shift = 0;
sel = readl(&clk->src_fsys);
sel = (sel >> (dev_index << 2)) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
switch (dev_index) {
case 0:
case 1:
ratio = readl(&clk->div_fsys1);
pre_ratio = readl(&clk->div_fsys1);
break;
case 2:
case 3:
ratio = readl(&clk->div_fsys2);
pre_ratio = readl(&clk->div_fsys2);
break;
case 4:
ratio = readl(&clk->div_fsys3);
pre_ratio = readl(&clk->div_fsys3);
break;
default:
return 0;
}
if (dev_index == 1 || dev_index == 3)
shift = 16;
ratio = (ratio >> shift) & 0xf;
pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
return uclk;
}
static unsigned long exynos5_get_mmc_clk(int dev_index)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned long uclk, sclk;
unsigned int sel, ratio, pre_ratio;
int shift = 0;
sel = readl(&clk->src_fsys);
sel = (sel >> (dev_index << 2)) & 0xf;
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
switch (dev_index) {
case 0:
case 1:
ratio = readl(&clk->div_fsys1);
pre_ratio = readl(&clk->div_fsys1);
break;
case 2:
case 3:
ratio = readl(&clk->div_fsys2);
pre_ratio = readl(&clk->div_fsys2);
break;
default:
return 0;
}
if (dev_index == 1 || dev_index == 3)
shift = 16;
ratio = (ratio >> shift) & 0xf;
pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
return uclk;
}
/* exynos4: set the mmc clock */
static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned int addr;
unsigned int val;
/*
* CLK_DIV_FSYS1
* MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
* CLK_DIV_FSYS2
* MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
* CLK_DIV_FSYS3
* MMC4_PRE_RATIO [15:8]
*/
if (dev_index < 2) {
addr = (unsigned int)&clk->div_fsys1;
} else if (dev_index == 4) {
addr = (unsigned int)&clk->div_fsys3;
dev_index -= 4;
} else {
addr = (unsigned int)&clk->div_fsys2;
dev_index -= 2;
}
val = readl(addr);
val &= ~(0xff << ((dev_index << 4) + 8));
val |= (div & 0xff) << ((dev_index << 4) + 8);
writel(val, addr);
}
/* exynos4x12: set the mmc clock */
static void exynos4x12_set_mmc_clk(int dev_index, unsigned int div)
{
struct exynos4x12_clock *clk =
(struct exynos4x12_clock *)samsung_get_base_clock();
unsigned int addr;
unsigned int val;
/*
* CLK_DIV_FSYS1
* MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
* CLK_DIV_FSYS2
* MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
*/
if (dev_index < 2) {
addr = (unsigned int)&clk->div_fsys1;
} else {
addr = (unsigned int)&clk->div_fsys2;
dev_index -= 2;
}
val = readl(addr);
val &= ~(0xff << ((dev_index << 4) + 8));
val |= (div & 0xff) << ((dev_index << 4) + 8);
writel(val, addr);
}
/* exynos5: set the mmc clock */
static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned int addr;
unsigned int val;
/*
* CLK_DIV_FSYS1
* MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
* CLK_DIV_FSYS2
* MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
*/
if (dev_index < 2) {
addr = (unsigned int)&clk->div_fsys1;
} else {
addr = (unsigned int)&clk->div_fsys2;
dev_index -= 2;
}
val = readl(addr);
val &= ~(0xff << ((dev_index << 4) + 8));
val |= (div & 0xff) << ((dev_index << 4) + 8);
writel(val, addr);
}
/* get_lcd_clk: return lcd clock frequency */
static unsigned long exynos4_get_lcd_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long pclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
*/
sel = readl(&clk->src_lcd0);
sel = sel & 0xf;
/*
* 0x6: SCLK_MPLL
* 0x7: SCLK_EPLL
* 0x8: SCLK_VPLL
*/
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
*/
ratio = readl(&clk->div_lcd0);
ratio = ratio & 0xf;
pclk = sclk / (ratio + 1);
return pclk;
}
/* get_lcd_clk: return lcd clock frequency */
static unsigned long exynos5_get_lcd_clk(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned long pclk, sclk;
unsigned int sel;
unsigned int ratio;
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
*/
sel = readl(&clk->src_disp1_0);
sel = sel & 0xf;
/*
* 0x6: SCLK_MPLL
* 0x7: SCLK_EPLL
* 0x8: SCLK_VPLL
*/
if (sel == 0x6)
sclk = get_pll_clk(MPLL);
else if (sel == 0x7)
sclk = get_pll_clk(EPLL);
else if (sel == 0x8)
sclk = get_pll_clk(VPLL);
else
return 0;
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
*/
ratio = readl(&clk->div_disp1_0);
ratio = ratio & 0xf;
pclk = sclk / (ratio + 1);
return pclk;
}
void exynos4_set_lcd_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned int cfg = 0;
/*
* CLK_GATE_BLOCK
* CLK_CAM [0]
* CLK_TV [1]
* CLK_MFC [2]
* CLK_G3D [3]
* CLK_LCD0 [4]
* CLK_LCD1 [5]
* CLK_GPS [7]
*/
cfg = readl(&clk->gate_block);
cfg |= 1 << 4;
writel(cfg, &clk->gate_block);
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
* MDNIE0_SEL [7:4]
* MDNIE_PWM0_SEL [8:11]
* MIPI0_SEL [12:15]
* set lcd0 src clock 0x6: SCLK_MPLL
*/
cfg = readl(&clk->src_lcd0);
cfg &= ~(0xf);
cfg |= 0x6;
writel(cfg, &clk->src_lcd0);
/*
* CLK_GATE_IP_LCD0
* CLK_FIMD0 [0]
* CLK_MIE0 [1]
* CLK_MDNIE0 [2]
* CLK_DSIM0 [3]
* CLK_SMMUFIMD0 [4]
* CLK_PPMULCD0 [5]
* Gating all clocks for FIMD0
*/
cfg = readl(&clk->gate_ip_lcd0);
cfg |= 1 << 0;
writel(cfg, &clk->gate_ip_lcd0);
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
* MDNIE0_RATIO [7:4]
* MDNIE_PWM0_RATIO [11:8]
* MDNIE_PWM_PRE_RATIO [15:12]
* MIPI0_RATIO [19:16]
* MIPI0_PRE_RATIO [23:20]
* set fimd ratio
*/
cfg &= ~(0xf);
cfg |= 0x1;
writel(cfg, &clk->div_lcd0);
}
void exynos5_set_lcd_clk(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned int cfg = 0;
/*
* CLK_GATE_BLOCK
* CLK_CAM [0]
* CLK_TV [1]
* CLK_MFC [2]
* CLK_G3D [3]
* CLK_LCD0 [4]
* CLK_LCD1 [5]
* CLK_GPS [7]
*/
cfg = readl(&clk->gate_block);
cfg |= 1 << 4;
writel(cfg, &clk->gate_block);
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
* MDNIE0_SEL [7:4]
* MDNIE_PWM0_SEL [8:11]
* MIPI0_SEL [12:15]
* set lcd0 src clock 0x6: SCLK_MPLL
*/
cfg = readl(&clk->src_disp1_0);
cfg &= ~(0xf);
cfg |= 0x6;
writel(cfg, &clk->src_disp1_0);
/*
* CLK_GATE_IP_LCD0
* CLK_FIMD0 [0]
* CLK_MIE0 [1]
* CLK_MDNIE0 [2]
* CLK_DSIM0 [3]
* CLK_SMMUFIMD0 [4]
* CLK_PPMULCD0 [5]
* Gating all clocks for FIMD0
*/
cfg = readl(&clk->gate_ip_disp1);
cfg |= 1 << 0;
writel(cfg, &clk->gate_ip_disp1);
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
* MDNIE0_RATIO [7:4]
* MDNIE_PWM0_RATIO [11:8]
* MDNIE_PWM_PRE_RATIO [15:12]
* MIPI0_RATIO [19:16]
* MIPI0_PRE_RATIO [23:20]
* set fimd ratio
*/
cfg &= ~(0xf);
cfg |= 0x0;
writel(cfg, &clk->div_disp1_0);
}
void exynos4_set_mipi_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned int cfg = 0;
/*
* CLK_SRC_LCD0
* FIMD0_SEL [3:0]
* MDNIE0_SEL [7:4]
* MDNIE_PWM0_SEL [8:11]
* MIPI0_SEL [12:15]
* set mipi0 src clock 0x6: SCLK_MPLL
*/
cfg = readl(&clk->src_lcd0);
cfg &= ~(0xf << 12);
cfg |= (0x6 << 12);
writel(cfg, &clk->src_lcd0);
/*
* CLK_SRC_MASK_LCD0
* FIMD0_MASK [0]
* MDNIE0_MASK [4]
* MDNIE_PWM0_MASK [8]
* MIPI0_MASK [12]
* set src mask mipi0 0x1: Unmask
*/
cfg = readl(&clk->src_mask_lcd0);
cfg |= (0x1 << 12);
writel(cfg, &clk->src_mask_lcd0);
/*
* CLK_GATE_IP_LCD0
* CLK_FIMD0 [0]
* CLK_MIE0 [1]
* CLK_MDNIE0 [2]
* CLK_DSIM0 [3]
* CLK_SMMUFIMD0 [4]
* CLK_PPMULCD0 [5]
* Gating all clocks for MIPI0
*/
cfg = readl(&clk->gate_ip_lcd0);
cfg |= 1 << 3;
writel(cfg, &clk->gate_ip_lcd0);
/*
* CLK_DIV_LCD0
* FIMD0_RATIO [3:0]
* MDNIE0_RATIO [7:4]
* MDNIE_PWM0_RATIO [11:8]
* MDNIE_PWM_PRE_RATIO [15:12]
* MIPI0_RATIO [19:16]
* MIPI0_PRE_RATIO [23:20]
* set mipi ratio
*/
cfg &= ~(0xf << 16);
cfg |= (0x1 << 16);
writel(cfg, &clk->div_lcd0);
}
/*
* I2C
*
* exynos5: obtaining the I2C clock
*/
static unsigned long exynos5_get_i2c_clk(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned long aclk_66, aclk_66_pre, sclk;
unsigned int ratio;
sclk = get_pll_clk(MPLL);
ratio = (readl(&clk->div_top1)) >> 24;
ratio &= 0x7;
aclk_66_pre = sclk / (ratio + 1);
ratio = readl(&clk->div_top0);
ratio &= 0x7;
aclk_66 = aclk_66_pre / (ratio + 1);
return aclk_66;
}
int exynos5_set_epll_clk(unsigned long rate)
{
unsigned int epll_con, epll_con_k;
unsigned int i;
unsigned int lockcnt;
unsigned int start;
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
epll_con = readl(&clk->epll_con0);
epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
EPLL_CON0_LOCK_DET_EN_SHIFT) |
EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
if (exynos5_epll_div[i].freq_out == rate)
break;
}
if (i == ARRAY_SIZE(exynos5_epll_div))
return -1;
epll_con_k = exynos5_epll_div[i].k_dsm << 0;
epll_con |= exynos5_epll_div[i].en_lock_det <<
EPLL_CON0_LOCK_DET_EN_SHIFT;
epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
/*
* Required period ( in cycles) to genarate a stable clock output.
* The maximum clock time can be up to 3000 * PDIV cycles of PLLs
* frequency input (as per spec)
*/
lockcnt = 3000 * exynos5_epll_div[i].p_div;
writel(lockcnt, &clk->epll_lock);
writel(epll_con, &clk->epll_con0);
writel(epll_con_k, &clk->epll_con1);
start = get_timer(0);
while (!(readl(&clk->epll_con0) &
(0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
debug("%s: Timeout waiting for EPLL lock\n", __func__);
return -1;
}
}
return 0;
}
void exynos5_set_i2s_clk_source(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
(CLK_SRC_SCLK_EPLL));
}
int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
unsigned int dst_frq)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
unsigned int div;
if ((dst_frq == 0) || (src_frq == 0)) {
debug("%s: Invalid requency input for prescaler\n", __func__);
debug("src frq = %d des frq = %d ", src_frq, dst_frq);
return -1;
}
div = (src_frq / dst_frq);
if (div > AUDIO_1_RATIO_MASK) {
debug("%s: Frequency ratio is out of range\n", __func__);
debug("src frq = %d des frq = %d ", src_frq, dst_frq);
return -1;
}
clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
(div & AUDIO_1_RATIO_MASK));
return 0;
}
/**
* Linearly searches for the most accurate main and fine stage clock scalars
* (divisors) for a specified target frequency and scalar bit sizes by checking
* all multiples of main_scalar_bits values. Will always return scalars up to or
* slower than target.
*
* @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
* @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
* @param input_freq Clock frequency to be scaled in Hz
* @param target_freq Desired clock frequency in Hz
* @param best_fine_scalar Pointer to store the fine stage divisor
*
* @return best_main_scalar Main scalar for desired frequency or -1 if none
* found
*/
static int clock_calc_best_scalar(unsigned int main_scaler_bits,
unsigned int fine_scalar_bits, unsigned int input_rate,
unsigned int target_rate, unsigned int *best_fine_scalar)
{
int i;
int best_main_scalar = -1;
unsigned int best_error = target_rate;
const unsigned int cap = (1 << fine_scalar_bits) - 1;
const unsigned int loops = 1 << main_scaler_bits;
debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
target_rate, cap);
assert(best_fine_scalar != NULL);
assert(main_scaler_bits <= fine_scalar_bits);
*best_fine_scalar = 1;
if (input_rate == 0 || target_rate == 0)
return -1;
if (target_rate >= input_rate)
return 1;
for (i = 1; i <= loops; i++) {
const unsigned int effective_div = max(min(input_rate / i /
target_rate, cap), 1);
const unsigned int effective_rate = input_rate / i /
effective_div;
const int error = target_rate - effective_rate;
debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
effective_rate, error);
if (error >= 0 && error <= best_error) {
best_error = error;
best_main_scalar = i;
*best_fine_scalar = effective_div;
}
}
return best_main_scalar;
}
static int exynos5_set_spi_clk(enum periph_id periph_id,
unsigned int rate)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
int main;
unsigned int fine;
unsigned shift, pre_shift;
unsigned mask = 0xff;
u32 *reg;
main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
if (main < 0) {
debug("%s: Cannot set clock rate for periph %d",
__func__, periph_id);
return -1;
}
main = main - 1;
fine = fine - 1;
switch (periph_id) {
case PERIPH_ID_SPI0:
reg = &clk->div_peric1;
shift = 0;
pre_shift = 8;
break;
case PERIPH_ID_SPI1:
reg = &clk->div_peric1;
shift = 16;
pre_shift = 24;
break;
case PERIPH_ID_SPI2:
reg = &clk->div_peric2;
shift = 0;
pre_shift = 8;
break;
case PERIPH_ID_SPI3:
reg = &clk->sclk_div_isp;
shift = 0;
pre_shift = 4;
break;
case PERIPH_ID_SPI4:
reg = &clk->sclk_div_isp;
shift = 12;
pre_shift = 16;
break;
default:
debug("%s: Unsupported peripheral ID %d\n", __func__,
periph_id);
return -1;
}
clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
return 0;
}
static unsigned long exynos4_get_i2c_clk(void)
{
struct exynos4_clock *clk =
(struct exynos4_clock *)samsung_get_base_clock();
unsigned long sclk, aclk_100;
unsigned int ratio;
sclk = get_pll_clk(APLL);
ratio = (readl(&clk->div_top)) >> 4;
ratio &= 0xf;
aclk_100 = sclk / (ratio + 1);
return aclk_100;
}
unsigned long get_pll_clk(int pllreg)
{
if (cpu_is_exynos5())
return exynos5_get_pll_clk(pllreg);
else {
if (proid_is_exynos4412())
return exynos4x12_get_pll_clk(pllreg);
return exynos4_get_pll_clk(pllreg);
}
}
unsigned long get_arm_clk(void)
{
if (cpu_is_exynos5())
return exynos5_get_arm_clk();
else {
if (proid_is_exynos4412())
return exynos4x12_get_arm_clk();
return exynos4_get_arm_clk();
}
}
unsigned long get_i2c_clk(void)
{
if (cpu_is_exynos5()) {
return exynos5_get_i2c_clk();
} else if (cpu_is_exynos4()) {
return exynos4_get_i2c_clk();
} else {
debug("I2C clock is not set for this CPU\n");
return 0;
}
}
unsigned long get_pwm_clk(void)
{
if (cpu_is_exynos5())
return clock_get_periph_rate(PERIPH_ID_PWM0);
else {
if (proid_is_exynos4412())
return exynos4x12_get_pwm_clk();
return exynos4_get_pwm_clk();
}
}
unsigned long get_uart_clk(int dev_index)
{
if (cpu_is_exynos5())
return exynos5_get_uart_clk(dev_index);
else {
if (proid_is_exynos4412())
return exynos4x12_get_uart_clk(dev_index);
return exynos4_get_uart_clk(dev_index);
}
}
unsigned long get_mmc_clk(int dev_index)
{
if (cpu_is_exynos5())
return exynos5_get_mmc_clk(dev_index);
else
return exynos4_get_mmc_clk(dev_index);
}
void set_mmc_clk(int dev_index, unsigned int div)
{
if (cpu_is_exynos5())
exynos5_set_mmc_clk(dev_index, div);
else {
if (proid_is_exynos4412())
exynos4x12_set_mmc_clk(dev_index, div);
exynos4_set_mmc_clk(dev_index, div);
}
}
unsigned long get_lcd_clk(void)
{
if (cpu_is_exynos4())
return exynos4_get_lcd_clk();
else
return exynos5_get_lcd_clk();
}
void set_lcd_clk(void)
{
if (cpu_is_exynos4())
exynos4_set_lcd_clk();
else
exynos5_set_lcd_clk();
}
void set_mipi_clk(void)
{
if (cpu_is_exynos4())
exynos4_set_mipi_clk();
}
int set_spi_clk(int periph_id, unsigned int rate)
{
if (cpu_is_exynos5())
return exynos5_set_spi_clk(periph_id, rate);
else
return 0;
}
int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
{
if (cpu_is_exynos5())
return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq);
else
return 0;
}
void set_i2s_clk_source(void)
{
if (cpu_is_exynos5())
exynos5_set_i2s_clk_source();
}
int set_epll_clk(unsigned long rate)
{
if (cpu_is_exynos5())
return exynos5_set_epll_clk(rate);
else
return 0;
}