u-boot-brain/drivers/pci/pcie_layerscape_fixup.c
Simon Glass 8b85dfc675 dm: Avoid accessing seq directly
At present various drivers etc. access the device's 'seq' member directly.
This makes it harder to change the meaning of that member. Change access
to go through a function instead.

The drivers/i2c/lpc32xx_i2c.c file is left unchanged for now.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-18 20:32:21 -07:00

630 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2017-2020 NXP
* Copyright 2014-2015 Freescale Semiconductor, Inc.
* Layerscape PCIe driver
*/
#include <common.h>
#include <dm.h>
#include <init.h>
#include <log.h>
#include <pci.h>
#include <asm/arch/fsl_serdes.h>
#include <asm/io.h>
#include <errno.h>
#ifdef CONFIG_OF_BOARD_SETUP
#include <linux/libfdt.h>
#include <fdt_support.h>
#ifdef CONFIG_ARM
#include <asm/arch/clock.h>
#endif
#include <malloc.h>
#include <env.h>
#include "pcie_layerscape.h"
#include "pcie_layerscape_fixup_common.h"
static int fdt_pcie_get_nodeoffset(void *blob, struct ls_pcie_rc *pcie_rc)
{
int nodeoffset;
uint svr;
char *compat = NULL;
/* find pci controller node */
nodeoffset = fdt_node_offset_by_compat_reg(blob, "fsl,ls-pcie",
pcie_rc->dbi_res.start);
if (nodeoffset < 0) {
#ifdef CONFIG_FSL_PCIE_COMPAT /* Compatible with older version of dts node */
svr = (get_svr() >> SVR_VAR_PER_SHIFT) & 0xFFFFFE;
if (svr == SVR_LS2088A || svr == SVR_LS2084A ||
svr == SVR_LS2048A || svr == SVR_LS2044A ||
svr == SVR_LS2081A || svr == SVR_LS2041A)
compat = "fsl,ls2088a-pcie";
else
compat = CONFIG_FSL_PCIE_COMPAT;
nodeoffset =
fdt_node_offset_by_compat_reg(blob, compat,
pcie_rc->dbi_res.start);
#endif
}
return nodeoffset;
}
#if defined(CONFIG_FSL_LSCH3) || defined(CONFIG_FSL_LSCH2)
/*
* Return next available LUT index.
*/
static int ls_pcie_next_lut_index(struct ls_pcie_rc *pcie_rc)
{
if (pcie_rc->next_lut_index < PCIE_LUT_ENTRY_COUNT)
return pcie_rc->next_lut_index++;
else
return -ENOSPC; /* LUT is full */
}
static void lut_writel(struct ls_pcie_rc *pcie_rc, unsigned int value,
unsigned int offset)
{
struct ls_pcie *pcie = pcie_rc->pcie;
if (pcie->big_endian)
out_be32(pcie->lut + offset, value);
else
out_le32(pcie->lut + offset, value);
}
/*
* Program a single LUT entry
*/
static void ls_pcie_lut_set_mapping(struct ls_pcie_rc *pcie_rc, int index,
u32 devid, u32 streamid)
{
/* leave mask as all zeroes, want to match all bits */
lut_writel(pcie_rc, devid << 16, PCIE_LUT_UDR(index));
lut_writel(pcie_rc, streamid | PCIE_LUT_ENABLE, PCIE_LUT_LDR(index));
}
/*
* An msi-map is a property to be added to the pci controller
* node. It is a table, where each entry consists of 4 fields
* e.g.:
*
* msi-map = <[devid] [phandle-to-msi-ctrl] [stream-id] [count]
* [devid] [phandle-to-msi-ctrl] [stream-id] [count]>;
*/
static void fdt_pcie_set_msi_map_entry_ls(void *blob,
struct ls_pcie_rc *pcie_rc,
u32 devid, u32 streamid)
{
u32 *prop;
u32 phandle;
int nodeoffset;
uint svr;
char *compat = NULL;
struct ls_pcie *pcie = pcie_rc->pcie;
/* find pci controller node */
nodeoffset = fdt_node_offset_by_compat_reg(blob, "fsl,ls-pcie",
pcie_rc->dbi_res.start);
if (nodeoffset < 0) {
#ifdef CONFIG_FSL_PCIE_COMPAT /* Compatible with older version of dts node */
svr = (get_svr() >> SVR_VAR_PER_SHIFT) & 0xFFFFFE;
if (svr == SVR_LS2088A || svr == SVR_LS2084A ||
svr == SVR_LS2048A || svr == SVR_LS2044A ||
svr == SVR_LS2081A || svr == SVR_LS2041A)
compat = "fsl,ls2088a-pcie";
else
compat = CONFIG_FSL_PCIE_COMPAT;
if (compat)
nodeoffset = fdt_node_offset_by_compat_reg(blob,
compat, pcie_rc->dbi_res.start);
#endif
if (nodeoffset < 0)
return;
}
/* get phandle to MSI controller */
prop = (u32 *)fdt_getprop(blob, nodeoffset, "msi-parent", 0);
if (prop == NULL) {
debug("\n%s: ERROR: missing msi-parent: PCIe%d\n",
__func__, pcie->idx);
return;
}
phandle = fdt32_to_cpu(*prop);
/* set one msi-map row */
fdt_appendprop_u32(blob, nodeoffset, "msi-map", devid);
fdt_appendprop_u32(blob, nodeoffset, "msi-map", phandle);
fdt_appendprop_u32(blob, nodeoffset, "msi-map", streamid);
fdt_appendprop_u32(blob, nodeoffset, "msi-map", 1);
}
/*
* An iommu-map is a property to be added to the pci controller
* node. It is a table, where each entry consists of 4 fields
* e.g.:
*
* iommu-map = <[devid] [phandle-to-iommu-ctrl] [stream-id] [count]
* [devid] [phandle-to-iommu-ctrl] [stream-id] [count]>;
*/
static void fdt_pcie_set_iommu_map_entry_ls(void *blob,
struct ls_pcie_rc *pcie_rc,
u32 devid, u32 streamid)
{
u32 *prop;
u32 iommu_map[4];
int nodeoffset;
int lenp;
struct ls_pcie *pcie = pcie_rc->pcie;
nodeoffset = fdt_pcie_get_nodeoffset(blob, pcie_rc);
if (nodeoffset < 0)
return;
/* get phandle to iommu controller */
prop = fdt_getprop_w(blob, nodeoffset, "iommu-map", &lenp);
if (prop == NULL) {
debug("\n%s: ERROR: missing iommu-map: PCIe%d\n",
__func__, pcie->idx);
return;
}
/* set iommu-map row */
iommu_map[0] = cpu_to_fdt32(devid);
iommu_map[1] = *++prop;
iommu_map[2] = cpu_to_fdt32(streamid);
iommu_map[3] = cpu_to_fdt32(1);
if (devid == 0) {
fdt_setprop_inplace(blob, nodeoffset, "iommu-map",
iommu_map, 16);
} else {
fdt_appendprop(blob, nodeoffset, "iommu-map", iommu_map, 16);
}
}
static int fdt_fixup_pcie_device_ls(void *blob, pci_dev_t bdf,
struct ls_pcie_rc *pcie_rc)
{
int streamid, index;
streamid = pcie_next_streamid(pcie_rc->stream_id_cur,
pcie_rc->pcie->idx);
if (streamid < 0) {
printf("ERROR: out of stream ids for BDF %d.%d.%d\n",
PCI_BUS(bdf), PCI_DEV(bdf), PCI_FUNC(bdf));
return -ENOENT;
}
pcie_rc->stream_id_cur++;
index = ls_pcie_next_lut_index(pcie_rc);
if (index < 0) {
printf("ERROR: out of LUT indexes for BDF %d.%d.%d\n",
PCI_BUS(bdf), PCI_DEV(bdf), PCI_FUNC(bdf));
return -ENOENT;
}
/* map PCI b.d.f to streamID in LUT */
ls_pcie_lut_set_mapping(pcie_rc, index, bdf >> 8, streamid);
/* update msi-map in device tree */
fdt_pcie_set_msi_map_entry_ls(blob, pcie_rc, bdf >> 8, streamid);
/* update iommu-map in device tree */
fdt_pcie_set_iommu_map_entry_ls(blob, pcie_rc, bdf >> 8, streamid);
return 0;
}
struct extra_iommu_entry {
int action;
pci_dev_t bdf;
int num_vfs;
bool noari;
};
#define EXTRA_IOMMU_ENTRY_HOTPLUG 1
#define EXTRA_IOMMU_ENTRY_VFS 2
static struct extra_iommu_entry *get_extra_iommu_ents(void *blob,
int nodeoffset,
phys_addr_t addr,
int *cnt)
{
const char *s, *p, *tok;
struct extra_iommu_entry *entries;
int i = 0, b, d, f;
/*
* Retrieve extra IOMMU configuration from env var or from device tree.
* Env var is given priority.
*/
s = env_get("pci_iommu_extra");
if (!s) {
s = fdt_getprop(blob, nodeoffset, "pci-iommu-extra", NULL);
} else {
phys_addr_t pci_base;
char *endp;
/*
* In env var case the config string has "pci@0x..." in
* addition. Parse this part and match it by address against
* the input pci controller's registers base address.
*/
tok = s;
p = strchrnul(s + 1, ',');
s = NULL;
do {
if (!strncmp(tok, "pci", 3)) {
pci_base = simple_strtoul(tok + 4, &endp, 0);
if (pci_base == addr) {
s = endp + 1;
break;
}
}
p = strchrnul(p + 1, ',');
tok = p + 1;
} while (*p);
}
/*
* If no env var or device tree property found or pci register base
* address mismatches, bail out
*/
if (!s)
return NULL;
/*
* In order to find how many action entries to allocate, count number
* of actions by interating through the pairs of bdfs and actions.
*/
*cnt = 0;
p = s;
while (*p && strncmp(p, "pci", 3)) {
if (*p == ',')
(*cnt)++;
p++;
}
if (!(*p))
(*cnt)++;
if (!(*cnt) || (*cnt) % 2) {
printf("ERROR: invalid or odd extra iommu token count %d\n",
*cnt);
return NULL;
}
*cnt = (*cnt) / 2;
entries = malloc((*cnt) * sizeof(*entries));
if (!entries) {
printf("ERROR: fail to allocate extra iommu entries\n");
return NULL;
}
/*
* Parse action entries one by one and store the information in the
* newly allocated actions array.
*/
p = s;
while (p) {
/* Extract BDF */
b = simple_strtoul(p, (char **)&p, 0); p++;
d = simple_strtoul(p, (char **)&p, 0); p++;
f = simple_strtoul(p, (char **)&p, 0); p++;
entries[i].bdf = PCI_BDF(b, d, f);
/* Parse action */
if (!strncmp(p, "hp", 2)) {
/* Hot-plug entry */
entries[i].action = EXTRA_IOMMU_ENTRY_HOTPLUG;
p += 2;
} else if (!strncmp(p, "vfs", 3) ||
!strncmp(p, "noari_vfs", 9)) {
/* VFs or VFs with ARI disabled entry */
entries[i].action = EXTRA_IOMMU_ENTRY_VFS;
entries[i].noari = !strncmp(p, "noari_vfs", 9);
/*
* Parse and store total number of VFs to allocate
* IOMMU entries for.
*/
p = strchr(p, '=');
entries[i].num_vfs = simple_strtoul(p + 1, (char **)&p,
0);
if (*p)
p++;
} else {
printf("ERROR: invalid action in extra iommu entry\n");
free(entries);
return NULL;
}
if (!(*p) || !strncmp(p, "pci", 3))
break;
i++;
}
return entries;
}
static void get_vf_offset_and_stride(struct udevice *dev, int sriov_pos,
struct extra_iommu_entry *entry,
u16 *offset, u16 *stride)
{
u16 tmp16;
u32 tmp32;
bool have_ari = false;
int pos;
struct udevice *pf_dev;
dm_pci_read_config16(dev, sriov_pos + PCI_SRIOV_TOTAL_VF, &tmp16);
if (entry->num_vfs > tmp16) {
printf("WARN: requested no. of VFs %d exceeds total of %d\n",
entry->num_vfs, tmp16);
}
/*
* The code below implements the VF Discovery recomandations specified
* in PCIe base spec "9.2.1.2 VF Discovery", quoted below:
*
* VF Discovery
*
* The First VF Offset and VF Stride fields in the SR-IOV extended
* capability are 16-bit Routing ID offsets. These offsets are used to
* compute the Routing IDs for the VFs with the following restrictions:
* - The value in NumVFs in a PF (Section 9.3.3.7) may affect the
* values in First VF Offset (Section 9.3.3.9) and VF Stride
* (Section 9.3.3.10) of that PF.
* - The value in ARI Capable Hierarchy (Section 9.3.3.3.5) in the
* lowest-numbered PF of the Device (for example PF0) may affect
* the values in First VF Offset and VF Stride in all PFs of the
* Device.
* - NumVFs of a PF may only be changed when VF Enable
* (Section 9.3.3.3.1) of that PF is Clear.
* - ARI Capable Hierarchy (Section 9.3.3.3.5) may only be changed
* when VF Enable is Clear in all PFs of a Device.
*/
/* Clear VF enable for all PFs */
device_foreach_child(pf_dev, dev->parent) {
dm_pci_read_config16(pf_dev, sriov_pos + PCI_SRIOV_CTRL,
&tmp16);
tmp16 &= ~PCI_SRIOV_CTRL_VFE;
dm_pci_write_config16(pf_dev, sriov_pos + PCI_SRIOV_CTRL,
tmp16);
}
/* Obtain a reference to PF0 device */
if (dm_pci_bus_find_bdf(PCI_BDF(PCI_BUS(entry->bdf),
PCI_DEV(entry->bdf), 0), &pf_dev)) {
printf("WARN: failed to get PF0\n");
}
if (entry->noari)
goto skip_ari;
/* Check that connected downstream port supports ARI Forwarding */
pos = dm_pci_find_capability(dev->parent, PCI_CAP_ID_EXP);
dm_pci_read_config32(dev->parent, pos + PCI_EXP_DEVCAP2, &tmp32);
if (!(tmp32 & PCI_EXP_DEVCAP2_ARI))
goto skip_ari;
/* Check that PF supports Alternate Routing ID */
if (!dm_pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI))
goto skip_ari;
/* Set ARI Capable Hierarcy for PF0 */
dm_pci_read_config16(pf_dev, sriov_pos + PCI_SRIOV_CTRL, &tmp16);
tmp16 |= PCI_SRIOV_CTRL_ARI;
dm_pci_write_config16(pf_dev, sriov_pos + PCI_SRIOV_CTRL, tmp16);
have_ari = true;
skip_ari:
if (!have_ari) {
/*
* No ARI support or disabled so clear ARI Capable Hierarcy
* for PF0
*/
dm_pci_read_config16(pf_dev, sriov_pos + PCI_SRIOV_CTRL,
&tmp16);
tmp16 &= ~PCI_SRIOV_CTRL_ARI;
dm_pci_write_config16(pf_dev, sriov_pos + PCI_SRIOV_CTRL,
tmp16);
}
/* Set requested number of VFs */
dm_pci_write_config16(dev, sriov_pos + PCI_SRIOV_NUM_VF,
entry->num_vfs);
/* Read VF stride and offset with the configs just made */
dm_pci_read_config16(dev, sriov_pos + PCI_SRIOV_VF_OFFSET, offset);
dm_pci_read_config16(dev, sriov_pos + PCI_SRIOV_VF_STRIDE, stride);
if (have_ari) {
/* Reset to default ARI Capable Hierarcy bit for PF0 */
dm_pci_read_config16(pf_dev, sriov_pos + PCI_SRIOV_CTRL,
&tmp16);
tmp16 &= ~PCI_SRIOV_CTRL_ARI;
dm_pci_write_config16(pf_dev, sriov_pos + PCI_SRIOV_CTRL,
tmp16);
}
/* Reset to default the number of VFs */
dm_pci_write_config16(dev, sriov_pos + PCI_SRIOV_NUM_VF, 0);
}
static int fdt_fixup_pci_vfs(void *blob, struct extra_iommu_entry *entry,
struct ls_pcie_rc *pcie_rc)
{
struct udevice *dev, *bus;
u16 vf_offset, vf_stride;
int i, sriov_pos;
pci_dev_t bdf;
if (dm_pci_bus_find_bdf(entry->bdf, &dev)) {
printf("ERROR: BDF %d.%d.%d not found\n", PCI_BUS(entry->bdf),
PCI_DEV(entry->bdf), PCI_FUNC(entry->bdf));
return 0;
}
sriov_pos = dm_pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
if (!sriov_pos) {
printf("WARN: trying to set VFs on non-SRIOV dev\n");
return 0;
}
get_vf_offset_and_stride(dev, sriov_pos, entry, &vf_offset, &vf_stride);
for (bus = dev; device_is_on_pci_bus(bus);)
bus = bus->parent;
bdf = entry->bdf - PCI_BDF(dev_seq(bus), 0, 0) + (vf_offset << 8);
for (i = 0; i < entry->num_vfs; i++) {
if (fdt_fixup_pcie_device_ls(blob, bdf, pcie_rc) < 0)
return -1;
bdf += vf_stride << 8;
}
printf("Added %d iommu VF mappings for PF %d.%d.%d\n",
entry->num_vfs, PCI_BUS(entry->bdf),
PCI_DEV(entry->bdf), PCI_FUNC(entry->bdf));
return 0;
}
static void fdt_fixup_pcie_ls(void *blob)
{
struct udevice *dev, *bus;
struct ls_pcie_rc *pcie_rc;
pci_dev_t bdf;
struct extra_iommu_entry *entries;
int i, cnt, nodeoffset;
/* Scan all known buses */
for (pci_find_first_device(&dev);
dev;
pci_find_next_device(&dev)) {
for (bus = dev; device_is_on_pci_bus(bus);)
bus = bus->parent;
/* Only do the fixups for layerscape PCIe controllers */
if (!device_is_compatible(bus, "fsl,ls-pcie") &&
!device_is_compatible(bus, CONFIG_FSL_PCIE_COMPAT))
continue;
pcie_rc = dev_get_priv(bus);
/* the DT fixup must be relative to the hose first_busno */
bdf = dm_pci_get_bdf(dev) - PCI_BDF(dev_seq(bus), 0, 0);
if (fdt_fixup_pcie_device_ls(blob, bdf, pcie_rc) < 0)
break;
}
if (!IS_ENABLED(CONFIG_PCI_IOMMU_EXTRA_MAPPINGS))
goto skip;
list_for_each_entry(pcie_rc, &ls_pcie_list, list) {
nodeoffset = fdt_pcie_get_nodeoffset(blob, pcie_rc);
if (nodeoffset < 0) {
printf("ERROR: couldn't find pci node\n");
continue;
}
entries = get_extra_iommu_ents(blob, nodeoffset,
pcie_rc->dbi_res.start, &cnt);
if (!entries)
continue;
for (i = 0; i < cnt; i++) {
if (entries[i].action == EXTRA_IOMMU_ENTRY_HOTPLUG) {
bdf = entries[i].bdf;
printf("Added iommu map for hotplug %d.%d.%d\n",
PCI_BUS(bdf), PCI_DEV(bdf),
PCI_FUNC(bdf));
if (fdt_fixup_pcie_device_ls(blob, bdf,
pcie_rc) < 0) {
free(entries);
return;
}
} else if (entries[i].action == EXTRA_IOMMU_ENTRY_VFS) {
if (fdt_fixup_pci_vfs(blob, &entries[i],
pcie_rc) < 0) {
free(entries);
return;
}
} else {
printf("Invalid action %d for BDF %d.%d.%d\n",
entries[i].action,
PCI_BUS(entries[i].bdf),
PCI_DEV(entries[i].bdf),
PCI_FUNC(entries[i].bdf));
}
}
free(entries);
}
skip:
pcie_board_fix_fdt(blob);
}
#endif
static void ft_pcie_rc_fix(void *blob, struct ls_pcie_rc *pcie_rc)
{
int off;
struct ls_pcie *pcie = pcie_rc->pcie;
off = fdt_pcie_get_nodeoffset(blob, pcie_rc);
if (off < 0)
return;
if (pcie_rc->enabled && pcie->mode == PCI_HEADER_TYPE_BRIDGE)
fdt_set_node_status(blob, off, FDT_STATUS_OKAY, 0);
else
fdt_set_node_status(blob, off, FDT_STATUS_DISABLED, 0);
}
static void ft_pcie_ep_fix(void *blob, struct ls_pcie_rc *pcie_rc)
{
int off;
struct ls_pcie *pcie = pcie_rc->pcie;
off = fdt_node_offset_by_compat_reg(blob, CONFIG_FSL_PCIE_EP_COMPAT,
pcie_rc->dbi_res.start);
if (off < 0)
return;
if (pcie_rc->enabled && pcie->mode == PCI_HEADER_TYPE_NORMAL)
fdt_set_node_status(blob, off, FDT_STATUS_OKAY, 0);
else
fdt_set_node_status(blob, off, FDT_STATUS_DISABLED, 0);
}
static void ft_pcie_ls_setup(void *blob, struct ls_pcie_rc *pcie_rc)
{
ft_pcie_ep_fix(blob, pcie_rc);
ft_pcie_rc_fix(blob, pcie_rc);
}
/* Fixup Kernel DT for PCIe */
void ft_pci_setup_ls(void *blob, struct bd_info *bd)
{
struct ls_pcie_rc *pcie_rc;
list_for_each_entry(pcie_rc, &ls_pcie_list, list)
ft_pcie_ls_setup(blob, pcie_rc);
#if defined(CONFIG_FSL_LSCH3) || defined(CONFIG_FSL_LSCH2)
fdt_fixup_pcie_ls(blob);
#endif
}
#else /* !CONFIG_OF_BOARD_SETUP */
void ft_pci_setup_ls(void *blob, struct bd_info *bd)
{
}
#endif