u-boot-brain/drivers/ram/stm32mp1/stm32mp1_tuning.c
Patrick Delaunay 8c9ce08075 ram: stm32mp1: update BIST config for tuning
Update the BIST config to compute the real use mask for the real
bank, row and col of the used DDR. The values are get from addrmap
register value.

Signed-off-by: Patrick Delaunay <patrick.delaunay@st.com>
Acked-by: Patrice Chotard <patrice.chotard@st.com>
2020-03-24 14:20:50 +01:00

1536 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2019, STMicroelectronics - All Rights Reserved
*/
#include <common.h>
#include <console.h>
#include <clk.h>
#include <ram.h>
#include <reset.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/iopoll.h>
#include "stm32mp1_ddr_regs.h"
#include "stm32mp1_ddr.h"
#include "stm32mp1_tests.h"
#define MAX_DQS_PHASE_IDX _144deg
#define MAX_DQS_UNIT_IDX 7
#define MAX_GSL_IDX 5
#define MAX_GPS_IDX 3
/* Number of bytes used in this SW. ( min 1--> max 4). */
#define NUM_BYTES 4
enum dqs_phase_enum {
_36deg = 0,
_54deg = 1,
_72deg = 2,
_90deg = 3,
_108deg = 4,
_126deg = 5,
_144deg = 6
};
/* BIST Result struct */
struct BIST_result {
/* Overall test result:
* 0 Fail (any bit failed) ,
* 1 Success (All bits success)
*/
bool test_result;
/* 1: true, all fail / 0: False, not all bits fail */
bool all_bits_fail;
bool bit_i_test_result[8]; /* 0 fail / 1 success */
};
/* a struct that defines tuning parameters of a byte. */
struct tuning_position {
u8 phase; /* DQS phase */
u8 unit; /* DQS unit delay */
u32 bits_delay; /* Bits deskew in this byte */
};
/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};
static u8 BIST_error_max = 1;
static u32 BIST_seed = 0x1234ABCD;
static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
{
u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
u8 nb_bytes = NUM_BYTES;
switch (data_bus) {
case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
nb_bytes /= 2;
break;
case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
nb_bytes /= 4;
break;
default:
break;
}
return nb_bytes;
}
static u8 get_nb_bank(struct stm32mp1_ddrctl *ctl)
{
/* Count bank address bits */
u8 bits = 0;
u32 reg, val;
reg = readl(&ctl->addrmap1);
/* addrmap1.addrmap_bank_b1 */
val = (reg & GENMASK(5, 0)) >> 0;
if (val <= 31)
bits++;
/* addrmap1.addrmap_bank_b2 */
val = (reg & GENMASK(13, 8)) >> 8;
if (val <= 31)
bits++;
/* addrmap1.addrmap_bank_b3 */
val = (reg & GENMASK(21, 16)) >> 16;
if (val <= 31)
bits++;
return bits;
}
static u8 get_nb_col(struct stm32mp1_ddrctl *ctl)
{
u8 bits;
u32 reg, val;
/* Count column address bits, start at 2 for b0 and b1 (fixed) */
bits = 2;
reg = readl(&ctl->addrmap2);
/* addrmap2.addrmap_col_b2 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 7)
bits++;
/* addrmap2.addrmap_col_b3 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 7)
bits++;
/* addrmap2.addrmap_col_b4 */
val = (reg & GENMASK(19, 16)) >> 16;
if (val <= 7)
bits++;
/* addrmap2.addrmap_col_b5 */
val = (reg & GENMASK(27, 24)) >> 24;
if (val <= 7)
bits++;
reg = readl(&ctl->addrmap3);
/* addrmap3.addrmap_col_b6 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 7)
bits++;
/* addrmap3.addrmap_col_b7 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 7)
bits++;
/* addrmap3.addrmap_col_b8 */
val = (reg & GENMASK(19, 16)) >> 16;
if (val <= 7)
bits++;
/* addrmap3.addrmap_col_b9 */
val = (reg & GENMASK(27, 24)) >> 24;
if (val <= 7)
bits++;
reg = readl(&ctl->addrmap4);
/* addrmap4.addrmap_col_b10 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 7)
bits++;
/* addrmap4.addrmap_col_b11 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 7)
bits++;
return bits;
}
static u8 get_nb_row(struct stm32mp1_ddrctl *ctl)
{
/* Count row address bits */
u8 bits = 0;
u32 reg, val;
reg = readl(&ctl->addrmap5);
/* addrmap5.addrmap_row_b0 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 11)
bits++;
/* addrmap5.addrmap_row_b1 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 11)
bits++;
/* addrmap5.addrmap_row_b2_10 */
val = (reg & GENMASK(19, 16)) >> 16;
if (val <= 11)
bits += 9;
else
printf("warning: addrmap5.addrmap_row_b2_10 not supported\n");
/* addrmap5.addrmap_row_b11 */
val = (reg & GENMASK(27, 24)) >> 24;
if (val <= 11)
bits++;
reg = readl(&ctl->addrmap6);
/* addrmap6.addrmap_row_b12 */
val = (reg & GENMASK(3, 0)) >> 0;
if (val <= 7)
bits++;
/* addrmap6.addrmap_row_b13 */
val = (reg & GENMASK(11, 8)) >> 8;
if (val <= 7)
bits++;
/* addrmap6.addrmap_row_b14 */
val = (reg & GENMASK(19, 16)) >> 16;
if (val <= 7)
bits++;
/* addrmap6.addrmap_row_b15 */
val = (reg & GENMASK(27, 24)) >> 24;
if (val <= 7)
bits++;
return bits;
}
static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
{
stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
}
/* Read DQ unit delay register and provides the retrieved value for DQS
* We are assuming that we have the same delay when clocking
* by DQS and when clocking by DQSN
*/
static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
{
u32 index;
u32 addr = DXNDQTR(phy, byte);
/* We are assuming that we have the same delay when clocking by DQS
* and when clocking by DQSN : use only the low bits
*/
index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
& DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;
pr_debug("%s: [%x]: %x => DQ unit index = %x\n",
__func__, addr, readl(addr), index);
return index;
}
/* Sets the DQS phase delay for a byte lane.
*phase delay is specified by giving the index of the desired delay
* in the dx_dll_phase array.
*/
static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
{
u8 sdphase_val = 0;
/* Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
sdphase_val = dx_dll_phase[phase_idx];
clrsetbits_le32(DXNDLLCR(phy, byte),
DDRPHYC_DXNDLLCR_SDPHASE_MASK,
sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
}
/* Sets the DQS unit delay for a byte lane.
* unit delay is specified by giving the index of the desired delay
* for dgsdly and dqsndly (same value).
*/
static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
u8 byte, u8 unit_dly_idx)
{
/* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
clrsetbits_le32(DXNDQSTR(phy, byte),
DDRPHYC_DXNDQSTR_DQSDLY_MASK |
DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));
/* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
* plus PIR.INIT=1) must be issued.
*/
stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
}
/* Sets the DQ unit delay for a bit line in particular byte lane.
* unit delay is specified by giving the desired delay
*/
static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
u8 byte, u8 bit,
u8 dq_delay_index)
{
u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);
/* same value on delay for clock DQ an DQS_b */
clrsetbits_le32(DXNDQTR(phy, byte),
DDRPHYC_DXNDQTR_DQDLY_MASK
<< DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
}
static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
u8 byte, u8 r0dgsl_idx)
{
clrsetbits_le32(DXNDQSTR(phy, byte),
DDRPHYC_DXNDQSTR_R0DGSL_MASK,
r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
}
static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
u8 byte, u8 r0dgps_idx)
{
clrsetbits_le32(DXNDQSTR(phy, byte),
DDRPHYC_DXNDQSTR_R0DGPS_MASK,
r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
}
/* Basic BIST configuration for data lane tests. */
static void config_BIST(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy)
{
u8 nb_bank = get_nb_bank(ctl);
u8 nb_row = get_nb_row(ctl);
u8 nb_col = get_nb_col(ctl);
/* Selects the SDRAM bank address to be used during BIST. */
u32 bbank = 0;
/* Selects the SDRAM row address to be used during BIST. */
u32 brow = 0;
/* Selects the SDRAM column address to be used during BIST. */
u32 bcol = 0;
/* Selects the value by which the SDRAM address is incremented
* for each write/read access.
*/
u32 bainc = 0x00000008;
/* Specifies the maximum SDRAM rank to be used during BIST.
* The default value is set to maximum ranks minus 1.
* must be 0 with single rank
*/
u32 bmrank = 0;
/* Selects the SDRAM rank to be used during BIST.
* must be 0 with single rank
*/
u32 brank = 0;
/* Specifies the maximum SDRAM bank address to be used during
* BIST before the address & increments to the next rank.
*/
u32 bmbank = (1 << nb_bank) - 1;
/* Specifies the maximum SDRAM row address to be used during
* BIST before the address & increments to the next bank.
*/
u32 bmrow = (1 << nb_row) - 1;
/* Specifies the maximum SDRAM column address to be used during
* BIST before the address & increments to the next row.
*/
u32 bmcol = (1 << nb_col) - 1;
u32 bmode_conf = 0x00000001; /* DRam mode */
u32 bdxen_conf = 0x00000001; /* BIST on Data byte */
u32 bdpat_conf = 0x00000002; /* Select LFSR pattern */
/*Setup BIST for DRAM mode, and LFSR-random data pattern.*/
/*Write BISTRR.BMODE = 1?b1;*/
/*Write BISTRR.BDXEN = 1?b1;*/
/*Write BISTRR.BDPAT = 2?b10;*/
/* reset BIST */
writel(0x3, &phy->bistrr);
writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
&phy->bistrr);
/*Setup BIST Word Count*/
/*Write BISTWCR.BWCNT = 16?b0008;*/
writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */
writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);
writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
}
/* Select the Byte lane to be tested by BIST. */
static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
{
clrsetbits_le32(&phy->bistrr,
DDRPHYC_BISTRR_BDXSEL_MASK,
datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);
/*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
/* Write BISTRR.BDXSEL = datx8; */
}
/* Perform BIST Write_Read test on a byte lane and return test result. */
static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
struct BIST_result *bist)
{
bool result = true; /* BIST_SUCCESS */
u32 cnt = 0;
u32 error = 0;
u32 val;
int ret;
bist->test_result = true;
run:
itm_soft_reset(phy);
/*Perform BIST Reset*/
/* Write BISTRR.BINST = 3?b011; */
clrsetbits_le32(&phy->bistrr,
0x00000007,
0x00000003);
/*Re-seed LFSR*/
/* Write BISTLSR.SEED = 32'h1234ABCD; */
if (BIST_seed)
writel(BIST_seed, &phy->bistlsr);
else
writel(rand(), &phy->bistlsr);
/* some delay to reset BIST */
mdelay(1);
/*Perform BIST Run*/
clrsetbits_le32(&phy->bistrr,
0x00000007,
0x00000001);
/* Write BISTRR.BINST = 3?b001; */
/* poll on BISTGSR.BDONE and wait max 1000 us */
ret = readl_poll_timeout(&phy->bistgsr, val,
val & DDRPHYC_BISTGSR_BDDONE, 1000);
if (ret < 0) {
printf("warning: BIST timeout\n");
result = false; /* BIST_FAIL; */
/*Perform BIST Stop */
clrsetbits_le32(&phy->bistrr, 0x00000007, 0x00000002);
} else {
/*Check if received correct number of words*/
/* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT)
== readl(&phy->bistwcr)) {
/*Determine if there is a data comparison error*/
/* if (Read BISTGSR.BDXERR = 1?b0) */
if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
result = false; /* BIST_FAIL; */
else
result = true; /* BIST_SUCCESS; */
} else {
result = false; /* BIST_FAIL; */
}
}
/* loop while success */
cnt++;
if (result && cnt != 1000)
goto run;
if (!result)
error++;
if (error < BIST_error_max) {
if (cnt != 1000)
goto run;
bist->test_result = true;
} else {
bist->test_result = false;
}
}
/* After running the deskew algo, this function applies the new DQ delays
* by reading them from the array "deskew_delay"and writing in PHY registers.
* The bits that are not deskewed parfectly (too much skew on them,
* or data eye very wide) are marked in the array deskew_non_converge.
*/
static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
u8 deskew_delay[NUM_BYTES][8],
u8 deskew_non_converge[NUM_BYTES][8])
{
u8 bit_i;
u8 index;
for (bit_i = 0; bit_i < 8; bit_i++) {
set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
index = DQ_unit_index(phy, byte, bit_i);
pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
byte, bit_i, deskew_delay[byte][bit_i],
index, index - 3);
printf("Byte %d, bit %d, DQ delay = %d",
byte, bit_i, deskew_delay[byte][bit_i]);
if (deskew_non_converge[byte][bit_i] == 1)
pr_debug(" - not converged : still more skew");
printf("\n");
}
}
/* DQ Bit de-skew algorithm.
* Deskews data lines as much as possible.
* 1. Add delay to DQS line until finding the failure
* (normally a hold time violation)
* 2. Reduce DQS line by small steps until finding the very first time
* we go back to "Pass" condition.
* 3. For each DQ line, Reduce DQ delay until finding the very first failure
* (normally a hold time fail)
* 4. When all bits are at their first failure delay, we can consider them
* aligned.
* Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
* at any step)
* TODO Provide a return Status. Improve doc
*/
static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy, char *string)
{
/* New DQ delay value (index), set during Deskew algo */
u8 deskew_delay[NUM_BYTES][8];
/*If there is still skew on a bit, mark this bit. */
u8 deskew_non_converge[NUM_BYTES][8];
struct BIST_result result;
s8 dqs_unit_delay_index = 0;
u8 datx8 = 0;
u8 bit_i = 0;
s8 phase_idx = 0;
s8 bit_i_delay_index = 0;
u8 success = 0;
struct tuning_position last_right_ok;
u8 force_stop = 0;
u8 fail_found;
u8 error = 0;
u8 nb_bytes = get_nb_bytes(ctl);
/* u8 last_pass_dqs_unit = 0; */
memset(deskew_delay, 0, sizeof(deskew_delay));
memset(deskew_non_converge, 0, sizeof(deskew_non_converge));
/*Disable DQS Drift Compensation*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
/*Disable all bytes*/
/* Disable automatic power down of DLL and IOs when disabling
* a byte (To avoid having to add programming and delay
* for a DLL re-lock when later re-enabling a disabled Byte Lane)
*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
/* Disable all data bytes */
clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
/* Config the BIST block */
config_BIST(ctl, phy);
pr_debug("BIST Config done.\n");
/* Train each byte */
for (datx8 = 0; datx8 < nb_bytes; datx8++) {
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("\n======================\n");
pr_debug("Start deskew byte %d .\n", datx8);
pr_debug("======================\n");
/* Enable Byte (DXNGCR, bit DXEN) */
setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
/* Select the byte lane for comparison of read data */
BIST_datx8_sel(phy, datx8);
/* Set all DQDLYn to maximum value. All bits within the byte
* will be delayed with DQSTR = 2 instead of max = 3
* to avoid inter bits fail influence
*/
writel(0xAAAAAAAA, DXNDQTR(phy, datx8));
/* Set the DQS phase delay to 90 DEG (default).
* What is defined here is the index of the desired config
* in the PHASE array.
*/
phase_idx = _90deg;
/* Set DQS unit delay to the max value. */
dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
DQS_phase_delay(phy, datx8, phase_idx);
/* Issue a DLL soft reset */
clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
/* Test this typical init condition */
BIST_test(phy, datx8, &result);
success = result.test_result;
/* If the test pass in this typical condition,
* start the algo with it.
* Else, look for Pass init condition
*/
if (!success) {
pr_debug("Fail at init condtion. Let's look for a good init condition.\n");
success = 0; /* init */
/* Make sure we start with a PASS condition before
* looking for a fail condition.
* Find the first PASS PHASE condition
*/
/* escape if we find a PASS */
pr_debug("increase Phase idx\n");
while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
DQS_phase_delay(phy, datx8, phase_idx);
BIST_test(phy, datx8, &result);
success = result.test_result;
phase_idx++;
}
/* if ended with success
* ==>> Restore the fist success condition
*/
if (success)
phase_idx--; /* because it ended with ++ */
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return TEST_FAILED;
}
/* We couldn't find a successful condition, its seems
* we have hold violation, lets try reduce DQS_unit Delay
*/
if (!success) {
/* We couldn't find a successful condition, its seems
* we have hold violation, lets try reduce DQS_unit
* Delay
*/
pr_debug("Still fail. Try decrease DQS Unit delay\n");
phase_idx = 0;
dqs_unit_delay_index = 0;
DQS_phase_delay(phy, datx8, phase_idx);
/* escape if we find a PASS */
while (!success &&
(dqs_unit_delay_index <=
MAX_DQS_UNIT_IDX)) {
DQS_unit_delay(phy, datx8,
dqs_unit_delay_index);
BIST_test(phy, datx8, &result);
success = result.test_result;
dqs_unit_delay_index++;
}
if (success) {
/* Restore the first success condition*/
dqs_unit_delay_index--;
/* last_pass_dqs_unit = dqs_unit_delay_index;*/
DQS_unit_delay(phy, datx8,
dqs_unit_delay_index);
} else {
/* No need to continue,
* there is no pass region.
*/
force_stop = 1;
}
}
/* There is an initial PASS condition
* Look for the first failing condition by PHASE stepping.
* This part of the algo can finish without converging.
*/
if (force_stop) {
printf("Result: Failed ");
printf("[Cannot Deskew lines, ");
printf("there is no PASS region]\n");
error++;
continue;
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("there is a pass region for phase idx %d\n",
phase_idx);
pr_debug("Step1: Find the first failing condition\n");
/* Look for the first failing condition by PHASE stepping.
* This part of the algo can finish without converging.
*/
/* escape if we find a fail (hold time violation)
* condition at any bit or if out of delay range.
*/
while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
DQS_phase_delay(phy, datx8, phase_idx);
BIST_test(phy, datx8, &result);
success = result.test_result;
phase_idx++;
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return TEST_FAILED;
}
/* if the loop ended with a failing condition at any bit,
* lets look for the first previous success condition by unit
* stepping (minimal delay)
*/
if (!success) {
pr_debug("Fail region (PHASE) found phase idx %d\n",
phase_idx);
pr_debug("Let's look for first success by DQS Unit steps\n");
/* This part, the algo always converge */
phase_idx--;
/* escape if we find a success condition
* or if out of delay range.
*/
while (!success && dqs_unit_delay_index >= 0) {
DQS_unit_delay(phy, datx8,
dqs_unit_delay_index);
BIST_test(phy, datx8, &result);
success = result.test_result;
dqs_unit_delay_index--;
}
/* if the loop ended with a success condition,
* the last delay Right OK (before hold violation)
* condition is then defined as following:
*/
if (success) {
/* Hold the dely parameters of the the last
* delay Right OK condition.
* -1 to get back to current condition
*/
last_right_ok.phase = phase_idx;
/*+1 to get back to current condition */
last_right_ok.unit = dqs_unit_delay_index + 1;
last_right_ok.bits_delay = 0xFFFFFFFF;
pr_debug("Found %d\n", dqs_unit_delay_index);
} else {
/* the last OK condition is then with the
* previous phase_idx.
* -2 instead of -1 because at the last
* iteration of the while(),
* we incremented phase_idx
*/
last_right_ok.phase = phase_idx - 1;
/* Nominal+1. Because we want the previous
* delay after reducing the phase delay.
*/
last_right_ok.unit = 1;
last_right_ok.bits_delay = 0xFFFFFFFF;
pr_debug("Not Found : try previous phase %d\n",
phase_idx - 1);
DQS_phase_delay(phy, datx8, phase_idx - 1);
dqs_unit_delay_index = 0;
success = true;
while (success &&
(dqs_unit_delay_index <
MAX_DQS_UNIT_IDX)) {
DQS_unit_delay(phy, datx8,
dqs_unit_delay_index);
BIST_test(phy, datx8, &result);
success = result.test_result;
dqs_unit_delay_index++;
pr_debug("dqs_unit_delay_index = %d, result = %d\n",
dqs_unit_delay_index, success);
}
if (!success) {
last_right_ok.unit =
dqs_unit_delay_index - 1;
} else {
last_right_ok.unit = 0;
pr_debug("ERROR: failed region not FOUND");
}
}
} else {
/* we can't find a failing condition at all bits
* ==> Just hold the last test condition
* (the max DQS delay)
* which is the most likely,
* the closest to a hold violation
* If we can't find a Fail condition after
* the Pass region, stick at this position
* In order to have max chances to find a fail
* when reducing DQ delays.
*/
last_right_ok.phase = MAX_DQS_PHASE_IDX;
last_right_ok.unit = MAX_DQS_UNIT_IDX;
last_right_ok.bits_delay = 0xFFFFFFFF;
pr_debug("Can't find the a fail condition\n");
}
/* step 2:
* if we arrive at this stage, it means that we found the last
* Right OK condition (by tweeking the DQS delay). Or we simply
* pushed DQS delay to the max
* This means that by reducing the delay on some DQ bits,
* we should find a failing condition.
*/
printf("Byte %d, DQS unit = %d, phase = %d\n",
datx8, last_right_ok.unit, last_right_ok.phase);
pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
last_right_ok.unit, last_right_ok.phase,
last_right_ok.bits_delay);
/* Restore the last_right_ok condtion. */
DQS_unit_delay(phy, datx8, last_right_ok.unit);
DQS_phase_delay(phy, datx8, last_right_ok.phase);
writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));
/* train each bit
* reduce delay on each bit, and perform a write/read test
* and stop at the very first time it fails.
* the goal is the find the first failing condition
* for each bit.
* When we achieve this condition< for all the bits,
* we are sure they are aligned (+/- step resolution)
*/
fail_found = 0;
for (bit_i = 0; bit_i < 8; bit_i++) {
if (ctrlc()) {
sprintf(string,
"interrupted at byte %d/%d, error=%d",
datx8 + 1, nb_bytes, error);
return error;
}
pr_debug("deskewing bit %d:\n", bit_i);
success = 1; /* init */
/* Set all DQDLYn to maximum value.
* Only bit_i will be down-delayed
* ==> if we have a fail, it will be definitely
* from bit_i
*/
writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
/* Arriving at this stage,
* we have a success condition with delay = 3;
*/
bit_i_delay_index = 3;
/* escape if bit delay is out of range or
* if a fatil occurs
*/
while ((bit_i_delay_index >= 0) && success) {
set_DQ_unit_delay(phy, datx8,
bit_i,
bit_i_delay_index);
BIST_test(phy, datx8, &result);
success = result.test_result;
bit_i_delay_index--;
}
/* if escape with a fail condition
* ==> save this position for bit_i
*/
if (!success) {
/* save the delay position.
* Add 1 because the while loop ended with a --,
* and that we need to hold the last success
* delay
*/
deskew_delay[datx8][bit_i] =
bit_i_delay_index + 2;
if (deskew_delay[datx8][bit_i] > 3)
deskew_delay[datx8][bit_i] = 3;
/* A flag that states we found at least a fail
* at one bit.
*/
fail_found = 1;
pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
bit_i, bit_i_delay_index + 1,
datx8, bit_i,
deskew_delay[datx8][bit_i]);
} else {
/* if we can find a success condition by
* back-delaying this bit, just set the delay
* to 0 (the best deskew
* possible) and mark the bit.
*/
deskew_delay[datx8][bit_i] = 0;
/* set a flag that will be used later
* in the report.
*/
deskew_non_converge[datx8][bit_i] = 1;
pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
bit_i, datx8, bit_i,
deskew_delay[datx8][bit_i]);
}
}
pr_debug("**********byte %d tuning complete************\n",
datx8);
/* If we can't find any failure by back delaying DQ lines,
* hold the default values
*/
if (!fail_found) {
for (bit_i = 0; bit_i < 8; bit_i++)
deskew_delay[datx8][bit_i] = 0;
pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
}
apply_deskew_results(phy, datx8, deskew_delay,
deskew_non_converge);
/* Restore nominal value for DQS delay */
DQS_phase_delay(phy, datx8, 3);
DQS_unit_delay(phy, datx8, 3);
/* disable byte after byte bits deskew */
clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
} /* end of byte deskew */
/* re-enable all data bytes */
setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
if (error) {
sprintf(string, "error = %d", error);
return TEST_FAILED;
}
return TEST_PASSED;
} /* end function */
/* Trim DQS timings and set it in the centre of data eye.
* Look for a PPPPF region, then look for a FPPP region and finally select
* the mid of the FPPPPPF region
*/
static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy, char *string)
{
/*Stores the DQS trim values (PHASE index, unit index) */
u8 eye_training_val[NUM_BYTES][2];
u8 byte = 0;
struct BIST_result result;
s8 dqs_unit_delay_index = 0;
s8 phase_idx = 0;
s8 dqs_unit_delay_index_pass = 0;
s8 phase_idx_pass = 0;
u8 success = 0;
u8 left_phase_bound_found, right_phase_bound_found;
u8 left_unit_bound_found, right_unit_bound_found;
u8 left_bound_found, right_bound_found;
struct tuning_position left_bound, right_bound;
u8 error = 0;
u8 nb_bytes = get_nb_bytes(ctl);
/*Disable DQS Drift Compensation*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
/*Disable all bytes*/
/* Disable automatic power down of DLL and IOs when disabling a byte
* (To avoid having to add programming and delay
* for a DLL re-lock when later re-enabling a disabled Byte Lane)
*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
/*Disable all data bytes */
clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
/* Config the BIST block */
config_BIST(ctl, phy);
for (byte = 0; byte < nb_bytes; byte++) {
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
right_bound.phase = 0;
right_bound.unit = 0;
left_bound.phase = 0;
left_bound.unit = 0;
left_phase_bound_found = 0;
right_phase_bound_found = 0;
left_unit_bound_found = 0;
right_unit_bound_found = 0;
left_bound_found = 0;
right_bound_found = 0;
/* Enable Byte (DXNGCR, bit DXEN) */
setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
/* Select the byte lane for comparison of read data */
BIST_datx8_sel(phy, byte);
/* Set DQS phase delay to the nominal value. */
phase_idx = _90deg;
phase_idx_pass = phase_idx;
/* Set DQS unit delay to the nominal value. */
dqs_unit_delay_index = 3;
dqs_unit_delay_index_pass = dqs_unit_delay_index;
success = 0;
pr_debug("STEP0: Find Init delay\n");
/* STEP0: Find Init delay: a delay that put the system
* in a "Pass" condition then (TODO) update
* dqs_unit_delay_index_pass & phase_idx_pass
*/
DQS_unit_delay(phy, byte, dqs_unit_delay_index);
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
/* If we have a fail in the nominal condition */
if (!success) {
/* Look at the left */
while (phase_idx >= 0 && !success) {
phase_idx--;
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
}
}
if (!success) {
/* if we can't find pass condition,
* then look at the right
*/
phase_idx = _90deg;
while (phase_idx <= MAX_DQS_PHASE_IDX &&
!success) {
phase_idx++;
DQS_phase_delay(phy, byte,
phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
}
}
/* save the pass condition */
if (success) {
phase_idx_pass = phase_idx;
} else {
printf("Result: Failed ");
printf("[Cannot DQS timings, ");
printf("there is no PASS region]\n");
error++;
continue;
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("STEP1: Find LEFT PHASE DQS Bound\n");
/* STEP1: Find LEFT PHASE DQS Bound */
while ((phase_idx >= 0) &&
(phase_idx <= MAX_DQS_PHASE_IDX) &&
!left_phase_bound_found) {
DQS_unit_delay(phy, byte,
dqs_unit_delay_index);
DQS_phase_delay(phy, byte,
phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
/*TODO: Manage the case were at the beginning
* there is already a fail
*/
if (!success) {
/* the last pass condition */
left_bound.phase = ++phase_idx;
left_phase_bound_found = 1;
} else if (success) {
phase_idx--;
}
}
if (!left_phase_bound_found) {
left_bound.phase = 0;
phase_idx = 0;
}
/* If not found, lets take 0 */
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("STEP2: Find UNIT left bound\n");
/* STEP2: Find UNIT left bound */
while ((dqs_unit_delay_index >= 0) &&
!left_unit_bound_found) {
DQS_unit_delay(phy, byte,
dqs_unit_delay_index);
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
if (!success) {
left_bound.unit =
++dqs_unit_delay_index;
left_unit_bound_found = 1;
left_bound_found = 1;
} else if (success) {
dqs_unit_delay_index--;
}
}
/* If not found, lets take 0 */
if (!left_unit_bound_found)
left_bound.unit = 0;
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("STEP3: Find PHase right bound\n");
/* STEP3: Find PHase right bound, start with "pass"
* condition
*/
/* Set DQS phase delay to the pass value. */
phase_idx = phase_idx_pass;
/* Set DQS unit delay to the pass value. */
dqs_unit_delay_index = dqs_unit_delay_index_pass;
while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
!right_phase_bound_found) {
DQS_unit_delay(phy, byte,
dqs_unit_delay_index);
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
if (!success) {
/* the last pass condition */
right_bound.phase = --phase_idx;
right_phase_bound_found = 1;
} else if (success) {
phase_idx++;
}
}
/* If not found, lets take the max value */
if (!right_phase_bound_found) {
right_bound.phase = MAX_DQS_PHASE_IDX;
phase_idx = MAX_DQS_PHASE_IDX;
}
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d, error=%d",
byte + 1, nb_bytes, error);
return TEST_FAILED;
}
pr_debug("STEP4: Find UNIT right bound\n");
/* STEP4: Find UNIT right bound */
while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
!right_unit_bound_found) {
DQS_unit_delay(phy, byte,
dqs_unit_delay_index);
DQS_phase_delay(phy, byte, phase_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
if (!success) {
right_bound.unit =
--dqs_unit_delay_index;
right_unit_bound_found = 1;
right_bound_found = 1;
} else if (success) {
dqs_unit_delay_index++;
}
}
/* If not found, lets take the max value */
if (!right_unit_bound_found)
right_bound.unit = MAX_DQS_UNIT_IDX;
/* If we found a regular FAil Pass FAil pattern
* FFPPPPPPFF
* OR PPPPPFF Or FFPPPPP
*/
if (left_bound_found || right_bound_found) {
eye_training_val[byte][0] = (right_bound.phase +
left_bound.phase) / 2;
eye_training_val[byte][1] = (right_bound.unit +
left_bound.unit) / 2;
/* If we already lost 1/2PHASE Tuning,
* let's try to recover by ++ on unit
*/
if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
eye_training_val[byte][1]++;
pr_debug("** found phase : %d - %d & unit %d - %d\n",
right_bound.phase, left_bound.phase,
right_bound.unit, left_bound.unit);
pr_debug("** calculating mid region: phase: %d unit: %d (nominal is 3)\n",
eye_training_val[byte][0],
eye_training_val[byte][1]);
} else {
/* PPPPPPPPPP, we're already good.
* Set nominal values.
*/
eye_training_val[byte][0] = 3;
eye_training_val[byte][1] = 3;
}
DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
DQS_unit_delay(phy, byte, eye_training_val[byte][1]);
printf("Byte %d, DQS unit = %d, phase = %d\n",
byte,
eye_training_val[byte][1],
eye_training_val[byte][0]);
}
if (error) {
sprintf(string, "error = %d", error);
return TEST_FAILED;
}
return TEST_PASSED;
}
static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
{
u8 i = 0;
printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n ",
byte);
for (i = 0; i < 8; i++)
printf("%d ", DQ_unit_index(phy, byte, i));
printf("\n");
printf("dxndllcr: [%08x] val:%08x\n",
DXNDLLCR(phy, byte),
readl(DXNDLLCR(phy, byte)));
printf("dxnqdstr: [%08x] val:%08x\n",
DXNDQSTR(phy, byte),
readl(DXNDQSTR(phy, byte)));
printf("dxndqtr: [%08x] val:%08x\n",
DXNDQTR(phy, byte),
readl(DXNDQTR(phy, byte)));
}
/* analyse the dgs gating log table, and determine the midpoint.*/
static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
u8 dqs_gating[NUM_BYTES]
[MAX_GSL_IDX + 1]
[MAX_GPS_IDX + 1])
{
/* stores the dqs gate values (gsl index, gps index) */
u8 dqs_gate_values[NUM_BYTES][2];
u8 gsl_idx, gps_idx = 0;
u8 left_bound_idx[2] = {0, 0};
u8 right_bound_idx[2] = {0, 0};
u8 left_bound_found = 0;
u8 right_bound_found = 0;
u8 intermittent = 0;
u8 value;
for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
value = dqs_gating[byte][gsl_idx][gps_idx];
if (value == 1 && left_bound_found == 0) {
left_bound_idx[0] = gsl_idx;
left_bound_idx[1] = gps_idx;
left_bound_found = 1;
} else if (value == 0 &&
left_bound_found == 1 &&
!right_bound_found) {
if (gps_idx == 0) {
right_bound_idx[0] = gsl_idx - 1;
right_bound_idx[1] = MAX_GPS_IDX;
} else {
right_bound_idx[0] = gsl_idx;
right_bound_idx[1] = gps_idx - 1;
}
right_bound_found = 1;
} else if (value == 1 &&
right_bound_found == 1) {
intermittent = 1;
}
}
}
/* if only ppppppp is found, there is no mid region. */
if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
intermittent = 1;
/*if we found a regular fail pass fail pattern ffppppppff
* or pppppff or ffppppp
*/
if (!intermittent) {
/*if we found a regular fail pass fail pattern ffppppppff
* or pppppff or ffppppp
*/
if (left_bound_found || right_bound_found) {
pr_debug("idx0(%d): %d %d idx1(%d) : %d %d\n",
left_bound_found,
right_bound_idx[0], left_bound_idx[0],
right_bound_found,
right_bound_idx[1], left_bound_idx[1]);
dqs_gate_values[byte][0] =
(right_bound_idx[0] + left_bound_idx[0]) / 2;
dqs_gate_values[byte][1] =
(right_bound_idx[1] + left_bound_idx[1]) / 2;
/* if we already lost 1/2gsl tuning,
* let's try to recover by ++ on gps
*/
if (((right_bound_idx[0] +
left_bound_idx[0]) % 2 == 1) &&
dqs_gate_values[byte][1] != MAX_GPS_IDX)
dqs_gate_values[byte][1]++;
/* if we already lost 1/2gsl tuning and gps is on max*/
else if (((right_bound_idx[0] +
left_bound_idx[0]) % 2 == 1) &&
dqs_gate_values[byte][1] == MAX_GPS_IDX) {
dqs_gate_values[byte][1] = 0;
dqs_gate_values[byte][0]++;
}
/* if we have gsl left and write limit too close
* (difference=1)
*/
if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
dqs_gate_values[byte][1] = (left_bound_idx[1] +
right_bound_idx[1] +
4) / 2;
if (dqs_gate_values[byte][1] >= 4) {
dqs_gate_values[byte][0] =
right_bound_idx[0];
dqs_gate_values[byte][1] -= 4;
} else {
dqs_gate_values[byte][0] =
left_bound_idx[0];
}
}
pr_debug("*******calculating mid region: system latency: %d phase: %d********\n",
dqs_gate_values[byte][0],
dqs_gate_values[byte][1]);
pr_debug("*******the nominal values were system latency: 0 phase: 2*******\n");
}
} else {
/* if intermitant, restore defaut values */
pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
dqs_gate_values[byte][0] = 0;
dqs_gate_values[byte][1] = 2;
}
set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
printf("Byte %d, R0DGSL = %d, R0DGPS = %d\n",
byte, dqs_gate_values[byte][0], dqs_gate_values[byte][1]);
/* return 0 if intermittent or if both left_bound
* and right_bound are not found
*/
return !(intermittent || (left_bound_found && right_bound_found));
}
static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string)
{
/* stores the log of pass/fail */
u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
u8 byte, gsl_idx, gps_idx = 0;
struct BIST_result result;
u8 success = 0;
u8 nb_bytes = get_nb_bytes(ctl);
memset(dqs_gating, 0x0, sizeof(dqs_gating));
/*disable dqs drift compensation*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
/*disable all bytes*/
/* disable automatic power down of dll and ios when disabling a byte
* (to avoid having to add programming and delay
* for a dll re-lock when later re-enabling a disabled byte lane)
*/
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
/* disable all data bytes */
clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
/* config the bist block */
config_BIST(ctl, phy);
for (byte = 0; byte < nb_bytes; byte++) {
if (ctrlc()) {
sprintf(string, "interrupted at byte %d/%d",
byte + 1, nb_bytes);
return TEST_FAILED;
}
/* enable byte x (dxngcr, bit dxen) */
setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
/* select the byte lane for comparison of read data */
BIST_datx8_sel(phy, byte);
for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
if (ctrlc()) {
sprintf(string,
"interrupted at byte %d/%d",
byte + 1, nb_bytes);
return TEST_FAILED;
}
/* write cfg to dxndqstr */
set_r0dgsl_delay(phy, byte, gsl_idx);
set_r0dgps_delay(phy, byte, gps_idx);
BIST_test(phy, byte, &result);
success = result.test_result;
if (success)
dqs_gating[byte][gsl_idx][gps_idx] = 1;
itm_soft_reset(phy);
}
}
set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
/* dummy reads */
readl(0xc0000000);
readl(0xc0000000);
}
/* re-enable drift compensation */
/* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
return TEST_PASSED;
}
/****************************************************************
* TEST
****************************************************************
*/
static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc,
char *argv[])
{
u32 rfshctl3 = readl(&ctl->rfshctl3);
u32 pwrctl = readl(&ctl->pwrctl);
u32 derateen = readl(&ctl->derateen);
enum test_result res;
writel(0x0, &ctl->derateen);
stm32mp1_refresh_disable(ctl);
res = read_dqs_gating(ctl, phy, string);
stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
writel(derateen, &ctl->derateen);
return res;
}
static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc, char *argv[])
{
u32 rfshctl3 = readl(&ctl->rfshctl3);
u32 pwrctl = readl(&ctl->pwrctl);
u32 derateen = readl(&ctl->derateen);
enum test_result res;
writel(0x0, &ctl->derateen);
stm32mp1_refresh_disable(ctl);
res = bit_deskew(ctl, phy, string);
stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
writel(derateen, &ctl->derateen);
return res;
}
static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc, char *argv[])
{
u32 rfshctl3 = readl(&ctl->rfshctl3);
u32 pwrctl = readl(&ctl->pwrctl);
u32 derateen = readl(&ctl->derateen);
enum test_result res;
writel(0x0, &ctl->derateen);
stm32mp1_refresh_disable(ctl);
res = eye_training(ctl, phy, string);
stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
writel(derateen, &ctl->derateen);
return res;
}
static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc, char *argv[])
{
int byte;
u8 nb_bytes = get_nb_bytes(ctl);
for (byte = 0; byte < nb_bytes; byte++)
display_reg_results(phy, byte);
return TEST_PASSED;
}
static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
struct stm32mp1_ddrphy *phy,
char *string, int argc, char *argv[])
{
unsigned long value;
if (argc > 0) {
if (strict_strtoul(argv[0], 0, &value) < 0) {
sprintf(string, "invalid nbErr %s", argv[0]);
return TEST_FAILED;
}
BIST_error_max = value;
}
if (argc > 1) {
if (strict_strtoul(argv[1], 0, &value) < 0) {
sprintf(string, "invalid Seed %s", argv[1]);
return TEST_FAILED;
}
BIST_seed = value;
}
printf("Bist.nbErr = %d\n", BIST_error_max);
if (BIST_seed)
printf("Bist.Seed = 0x%x\n", BIST_seed);
else
printf("Bist.Seed = random\n");
return TEST_PASSED;
}
/****************************************************************
* TEST Description
****************************************************************
*/
const struct test_desc tuning[] = {
{do_read_dqs_gating, "Read DQS gating",
"software read DQS Gating", "", 0 },
{do_bit_deskew, "Bit de-skew", "", "", 0 },
{do_eye_training, "Eye Training", "or DQS training", "", 0 },
{do_display, "Display registers", "", "", 0 },
{do_bist_config, "Bist config", "[nbErr] [seed]",
"configure Bist test", 2},
};
const int tuning_nb = ARRAY_SIZE(tuning);