u-boot-brain/drivers/misc/fsl_law.c
Liu Gang 81fa73bab0 powerpc/corenet_ds: Get rid of the CONFIG_SRIOBOOT_SLAVE_PORTx macro
When compile the slave image for boot from SRIO, no longer need to
specify which SRIO port it will boot from. The code will get this
information from RCW and then finishes corresponding configurations.

This has the following advantages:
	1. No longer need to rebuild an image when change the SRIO port for
	   boot from SRIO, just rewrite the new RCW with selected port,
	   then the code will get the port information by reading new RCW.
	2. It will be easier to support other boot location options, for
	   example, boot from PCIE.

Signed-off-by: Liu Gang <Gang.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-08-23 10:24:14 -05:00

307 lines
6.9 KiB
C

/*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <linux/compiler.h>
#include <asm/fsl_law.h>
#include <asm/io.h>
DECLARE_GLOBAL_DATA_PTR;
#define FSL_HW_NUM_LAWS CONFIG_SYS_FSL_NUM_LAWS
#ifdef CONFIG_FSL_CORENET
#define LAW_BASE (CONFIG_SYS_FSL_CORENET_CCM_ADDR)
#define LAWAR_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawar)
#define LAWBARH_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawbarh)
#define LAWBARL_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawbarl)
#define LAWBAR_SHIFT 0
#else
#define LAW_BASE (CONFIG_SYS_IMMR + 0xc08)
#define LAWAR_ADDR(x) ((u32 *)LAW_BASE + 8 * x + 2)
#define LAWBAR_ADDR(x) ((u32 *)LAW_BASE + 8 * x)
#define LAWBAR_SHIFT 12
#endif
static inline phys_addr_t get_law_base_addr(int idx)
{
#ifdef CONFIG_FSL_CORENET
return (phys_addr_t)
((u64)in_be32(LAWBARH_ADDR(idx)) << 32) |
in_be32(LAWBARL_ADDR(idx));
#else
return (phys_addr_t)in_be32(LAWBAR_ADDR(idx)) << LAWBAR_SHIFT;
#endif
}
static inline void set_law_base_addr(int idx, phys_addr_t addr)
{
#ifdef CONFIG_FSL_CORENET
out_be32(LAWBARL_ADDR(idx), addr & 0xffffffff);
out_be32(LAWBARH_ADDR(idx), (u64)addr >> 32);
#else
out_be32(LAWBAR_ADDR(idx), addr >> LAWBAR_SHIFT);
#endif
}
void set_law(u8 idx, phys_addr_t addr, enum law_size sz, enum law_trgt_if id)
{
gd->used_laws |= (1 << idx);
out_be32(LAWAR_ADDR(idx), 0);
set_law_base_addr(idx, addr);
out_be32(LAWAR_ADDR(idx), LAW_EN | ((u32)id << 20) | (u32)sz);
/* Read back so that we sync the writes */
in_be32(LAWAR_ADDR(idx));
}
void disable_law(u8 idx)
{
gd->used_laws &= ~(1 << idx);
out_be32(LAWAR_ADDR(idx), 0);
set_law_base_addr(idx, 0);
/* Read back so that we sync the writes */
in_be32(LAWAR_ADDR(idx));
return;
}
#ifndef CONFIG_NAND_SPL
static int get_law_entry(u8 i, struct law_entry *e)
{
u32 lawar;
lawar = in_be32(LAWAR_ADDR(i));
if (!(lawar & LAW_EN))
return 0;
e->addr = get_law_base_addr(i);
e->size = lawar & 0x3f;
e->trgt_id = (lawar >> 20) & 0xff;
return 1;
}
#endif
int set_next_law(phys_addr_t addr, enum law_size sz, enum law_trgt_if id)
{
u32 idx = ffz(gd->used_laws);
if (idx >= FSL_HW_NUM_LAWS)
return -1;
set_law(idx, addr, sz, id);
return idx;
}
#ifndef CONFIG_NAND_SPL
int set_last_law(phys_addr_t addr, enum law_size sz, enum law_trgt_if id)
{
u32 idx;
/* we have no LAWs free */
if (gd->used_laws == -1)
return -1;
/* grab the last free law */
idx = __ilog2(~(gd->used_laws));
if (idx >= FSL_HW_NUM_LAWS)
return -1;
set_law(idx, addr, sz, id);
return idx;
}
struct law_entry find_law(phys_addr_t addr)
{
struct law_entry entry;
int i;
entry.index = -1;
entry.addr = 0;
entry.size = 0;
entry.trgt_id = 0;
for (i = 0; i < FSL_HW_NUM_LAWS; i++) {
u64 upper;
if (!get_law_entry(i, &entry))
continue;
upper = entry.addr + (2ull << entry.size);
if ((addr >= entry.addr) && (addr < upper)) {
entry.index = i;
break;
}
}
return entry;
}
void print_laws(void)
{
int i;
u32 lawar;
printf("\nLocal Access Window Configuration\n");
for (i = 0; i < FSL_HW_NUM_LAWS; i++) {
lawar = in_be32(LAWAR_ADDR(i));
#ifdef CONFIG_FSL_CORENET
printf("LAWBARH%02d: 0x%08x LAWBARL%02d: 0x%08x",
i, in_be32(LAWBARH_ADDR(i)),
i, in_be32(LAWBARL_ADDR(i)));
#else
printf("LAWBAR%02d: 0x%08x", i, in_be32(LAWBAR_ADDR(i)));
#endif
printf(" LAWAR%02d: 0x%08x\n", i, lawar);
printf("\t(EN: %d TGT: 0x%02x SIZE: ",
(lawar & LAW_EN) ? 1 : 0, (lawar >> 20) & 0xff);
print_size(lawar_size(lawar), ")\n");
}
return;
}
/* use up to 2 LAWs for DDR, used the last available LAWs */
int set_ddr_laws(u64 start, u64 sz, enum law_trgt_if id)
{
u64 start_align, law_sz;
int law_sz_enc;
if (start == 0)
start_align = 1ull << (LAW_SIZE_32G + 1);
else
start_align = 1ull << (ffs64(start) - 1);
law_sz = min(start_align, sz);
law_sz_enc = __ilog2_u64(law_sz) - 1;
if (set_last_law(start, law_sz_enc, id) < 0)
return -1;
/* recalculate size based on what was actually covered by the law */
law_sz = 1ull << __ilog2_u64(law_sz);
/* do we still have anything to map */
sz = sz - law_sz;
if (sz) {
start += law_sz;
start_align = 1ull << (ffs64(start) - 1);
law_sz = min(start_align, sz);
law_sz_enc = __ilog2_u64(law_sz) - 1;
if (set_last_law(start, law_sz_enc, id) < 0)
return -1;
} else {
return 0;
}
/* do we still have anything to map */
sz = sz - law_sz;
if (sz)
return 1;
return 0;
}
#endif
void init_laws(void)
{
int i;
#if FSL_HW_NUM_LAWS < 32
gd->used_laws = ~((1 << FSL_HW_NUM_LAWS) - 1);
#elif FSL_HW_NUM_LAWS == 32
gd->used_laws = 0;
#else
#error FSL_HW_NUM_LAWS can not be greater than 32 w/o code changes
#endif
/*
* Any LAWs that were set up before we booted assume they are meant to
* be around and mark them used.
*/
for (i = 0; i < FSL_HW_NUM_LAWS; i++) {
u32 lawar = in_be32(LAWAR_ADDR(i));
if (lawar & LAW_EN)
gd->used_laws |= (1 << i);
}
#if defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL)
/*
* in NAND boot we've already parsed the law_table and setup those LAWs
* so don't do it again.
*/
return;
#endif
for (i = 0; i < num_law_entries; i++) {
if (law_table[i].index == -1)
set_next_law(law_table[i].addr, law_table[i].size,
law_table[i].trgt_id);
else
set_law(law_table[i].index, law_table[i].addr,
law_table[i].size, law_table[i].trgt_id);
}
#ifdef CONFIG_SRIOBOOT_SLAVE
/* check RCW to get which port is used for boot */
ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR;
u32 bootloc = in_be32(&gur->rcwsr[6]);
/* in SRIO boot we need to set specail LAWs for SRIO interfaces */
switch ((bootloc & FSL_CORENET_RCWSR6_BOOT_LOC) >> 23) {
case 0x8: /* boot from SRIO1 */
set_next_law(CONFIG_SYS_SRIOBOOT_SLAVE_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_RIO_1);
set_next_law(CONFIG_SYS_SRIOBOOT_UCODE_ENV_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_RIO_1);
break;
case 0x9: /* boot from SRIO2 */
set_next_law(CONFIG_SYS_SRIOBOOT_SLAVE_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_RIO_2);
set_next_law(CONFIG_SYS_SRIOBOOT_UCODE_ENV_ADDR_PHYS,
LAW_SIZE_1M,
LAW_TRGT_IF_RIO_2);
break;
default:
break;
}
#endif
return ;
}