u-boot-brain/board/ti/am335x/board.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

994 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* board.c
*
* Board functions for TI AM335X based boards
*
* Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <spl.h>
#include <serial.h>
#include <asm/arch/cpu.h>
#include <asm/arch/hardware.h>
#include <asm/arch/omap.h>
#include <asm/arch/ddr_defs.h>
#include <asm/arch/clock.h>
#include <asm/arch/clk_synthesizer.h>
#include <asm/arch/gpio.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/mem.h>
#include <asm/io.h>
#include <asm/emif.h>
#include <asm/gpio.h>
#include <asm/omap_common.h>
#include <asm/omap_sec_common.h>
#include <asm/omap_mmc.h>
#include <i2c.h>
#include <miiphy.h>
#include <cpsw.h>
#include <power/tps65217.h>
#include <power/tps65910.h>
#include <environment.h>
#include <watchdog.h>
#include <environment.h>
#include "../common/board_detect.h"
#include "board.h"
DECLARE_GLOBAL_DATA_PTR;
/* GPIO that controls power to DDR on EVM-SK */
#define GPIO_TO_PIN(bank, gpio) (32 * (bank) + (gpio))
#define GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 7)
#define ICE_GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 18)
#define GPIO_PR1_MII_CTRL GPIO_TO_PIN(3, 4)
#define GPIO_MUX_MII_CTRL GPIO_TO_PIN(3, 10)
#define GPIO_FET_SWITCH_CTRL GPIO_TO_PIN(0, 7)
#define GPIO_PHY_RESET GPIO_TO_PIN(2, 5)
#define GPIO_ETH0_MODE GPIO_TO_PIN(0, 11)
#define GPIO_ETH1_MODE GPIO_TO_PIN(1, 26)
static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
#define GPIO0_RISINGDETECT (AM33XX_GPIO0_BASE + OMAP_GPIO_RISINGDETECT)
#define GPIO1_RISINGDETECT (AM33XX_GPIO1_BASE + OMAP_GPIO_RISINGDETECT)
#define GPIO0_IRQSTATUS1 (AM33XX_GPIO0_BASE + OMAP_GPIO_IRQSTATUS1)
#define GPIO1_IRQSTATUS1 (AM33XX_GPIO1_BASE + OMAP_GPIO_IRQSTATUS1)
#define GPIO0_IRQSTATUSRAW (AM33XX_GPIO0_BASE + 0x024)
#define GPIO1_IRQSTATUSRAW (AM33XX_GPIO1_BASE + 0x024)
/*
* Read header information from EEPROM into global structure.
*/
#ifdef CONFIG_TI_I2C_BOARD_DETECT
void do_board_detect(void)
{
enable_i2c0_pin_mux();
i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE);
if (ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
CONFIG_EEPROM_CHIP_ADDRESS))
printf("ti_i2c_eeprom_init failed\n");
}
#endif
#ifndef CONFIG_DM_SERIAL
struct serial_device *default_serial_console(void)
{
if (board_is_icev2())
return &eserial4_device;
else
return &eserial1_device;
}
#endif
#ifndef CONFIG_SKIP_LOWLEVEL_INIT
static const struct ddr_data ddr2_data = {
.datardsratio0 = MT47H128M16RT25E_RD_DQS,
.datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE,
.datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA,
};
static const struct cmd_control ddr2_cmd_ctrl_data = {
.cmd0csratio = MT47H128M16RT25E_RATIO,
.cmd1csratio = MT47H128M16RT25E_RATIO,
.cmd2csratio = MT47H128M16RT25E_RATIO,
};
static const struct emif_regs ddr2_emif_reg_data = {
.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
};
static const struct emif_regs ddr2_evm_emif_reg_data = {
.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
.ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
};
static const struct ddr_data ddr3_data = {
.datardsratio0 = MT41J128MJT125_RD_DQS,
.datawdsratio0 = MT41J128MJT125_WR_DQS,
.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE,
.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA,
};
static const struct ddr_data ddr3_beagleblack_data = {
.datardsratio0 = MT41K256M16HA125E_RD_DQS,
.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
};
static const struct ddr_data ddr3_evm_data = {
.datardsratio0 = MT41J512M8RH125_RD_DQS,
.datawdsratio0 = MT41J512M8RH125_WR_DQS,
.datafwsratio0 = MT41J512M8RH125_PHY_FIFO_WE,
.datawrsratio0 = MT41J512M8RH125_PHY_WR_DATA,
};
static const struct ddr_data ddr3_icev2_data = {
.datardsratio0 = MT41J128MJT125_RD_DQS_400MHz,
.datawdsratio0 = MT41J128MJT125_WR_DQS_400MHz,
.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE_400MHz,
.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA_400MHz,
};
static const struct cmd_control ddr3_cmd_ctrl_data = {
.cmd0csratio = MT41J128MJT125_RATIO,
.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT,
.cmd1csratio = MT41J128MJT125_RATIO,
.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT,
.cmd2csratio = MT41J128MJT125_RATIO,
.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT,
};
static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = {
.cmd0csratio = MT41K256M16HA125E_RATIO,
.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd1csratio = MT41K256M16HA125E_RATIO,
.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd2csratio = MT41K256M16HA125E_RATIO,
.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
};
static const struct cmd_control ddr3_evm_cmd_ctrl_data = {
.cmd0csratio = MT41J512M8RH125_RATIO,
.cmd0iclkout = MT41J512M8RH125_INVERT_CLKOUT,
.cmd1csratio = MT41J512M8RH125_RATIO,
.cmd1iclkout = MT41J512M8RH125_INVERT_CLKOUT,
.cmd2csratio = MT41J512M8RH125_RATIO,
.cmd2iclkout = MT41J512M8RH125_INVERT_CLKOUT,
};
static const struct cmd_control ddr3_icev2_cmd_ctrl_data = {
.cmd0csratio = MT41J128MJT125_RATIO_400MHz,
.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
.cmd1csratio = MT41J128MJT125_RATIO_400MHz,
.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
.cmd2csratio = MT41J128MJT125_RATIO_400MHz,
.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
};
static struct emif_regs ddr3_emif_reg_data = {
.sdram_config = MT41J128MJT125_EMIF_SDCFG,
.ref_ctrl = MT41J128MJT125_EMIF_SDREF,
.sdram_tim1 = MT41J128MJT125_EMIF_TIM1,
.sdram_tim2 = MT41J128MJT125_EMIF_TIM2,
.sdram_tim3 = MT41J128MJT125_EMIF_TIM3,
.zq_config = MT41J128MJT125_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY |
PHY_EN_DYN_PWRDN,
};
static struct emif_regs ddr3_beagleblack_emif_reg_data = {
.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
.ocp_config = EMIF_OCP_CONFIG_BEAGLEBONE_BLACK,
.zq_config = MT41K256M16HA125E_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
};
static struct emif_regs ddr3_evm_emif_reg_data = {
.sdram_config = MT41J512M8RH125_EMIF_SDCFG,
.ref_ctrl = MT41J512M8RH125_EMIF_SDREF,
.sdram_tim1 = MT41J512M8RH125_EMIF_TIM1,
.sdram_tim2 = MT41J512M8RH125_EMIF_TIM2,
.sdram_tim3 = MT41J512M8RH125_EMIF_TIM3,
.ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
.zq_config = MT41J512M8RH125_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41J512M8RH125_EMIF_READ_LATENCY |
PHY_EN_DYN_PWRDN,
};
static struct emif_regs ddr3_icev2_emif_reg_data = {
.sdram_config = MT41J128MJT125_EMIF_SDCFG_400MHz,
.ref_ctrl = MT41J128MJT125_EMIF_SDREF_400MHz,
.sdram_tim1 = MT41J128MJT125_EMIF_TIM1_400MHz,
.sdram_tim2 = MT41J128MJT125_EMIF_TIM2_400MHz,
.sdram_tim3 = MT41J128MJT125_EMIF_TIM3_400MHz,
.zq_config = MT41J128MJT125_ZQ_CFG_400MHz,
.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY_400MHz |
PHY_EN_DYN_PWRDN,
};
#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{
#ifdef CONFIG_SPL_SERIAL_SUPPORT
/* break into full u-boot on 'c' */
if (serial_tstc() && serial_getc() == 'c')
return 1;
#endif
#ifdef CONFIG_SPL_ENV_SUPPORT
env_init();
env_load();
if (env_get_yesno("boot_os") != 1)
return 1;
#endif
return 0;
}
#endif
const struct dpll_params *get_dpll_ddr_params(void)
{
int ind = get_sys_clk_index();
if (board_is_evm_sk())
return &dpll_ddr3_303MHz[ind];
else if (board_is_pb() || board_is_bone_lt() || board_is_icev2())
return &dpll_ddr3_400MHz[ind];
else if (board_is_evm_15_or_later())
return &dpll_ddr3_303MHz[ind];
else
return &dpll_ddr2_266MHz[ind];
}
static u8 bone_not_connected_to_ac_power(void)
{
if (board_is_bone()) {
uchar pmic_status_reg;
if (tps65217_reg_read(TPS65217_STATUS,
&pmic_status_reg))
return 1;
if (!(pmic_status_reg & TPS65217_PWR_SRC_AC_BITMASK)) {
puts("No AC power, switching to default OPP\n");
return 1;
}
}
return 0;
}
const struct dpll_params *get_dpll_mpu_params(void)
{
int ind = get_sys_clk_index();
int freq = am335x_get_efuse_mpu_max_freq(cdev);
if (bone_not_connected_to_ac_power())
freq = MPUPLL_M_600;
if (board_is_pb() || board_is_bone_lt())
freq = MPUPLL_M_1000;
switch (freq) {
case MPUPLL_M_1000:
return &dpll_mpu_opp[ind][5];
case MPUPLL_M_800:
return &dpll_mpu_opp[ind][4];
case MPUPLL_M_720:
return &dpll_mpu_opp[ind][3];
case MPUPLL_M_600:
return &dpll_mpu_opp[ind][2];
case MPUPLL_M_500:
return &dpll_mpu_opp100;
case MPUPLL_M_300:
return &dpll_mpu_opp[ind][0];
}
return &dpll_mpu_opp[ind][0];
}
static void scale_vcores_bone(int freq)
{
int usb_cur_lim, mpu_vdd;
/*
* Only perform PMIC configurations if board rev > A1
* on Beaglebone White
*/
if (board_is_bone() && !strncmp(board_ti_get_rev(), "00A1", 4))
return;
if (i2c_probe(TPS65217_CHIP_PM))
return;
/*
* On Beaglebone White we need to ensure we have AC power
* before increasing the frequency.
*/
if (bone_not_connected_to_ac_power())
freq = MPUPLL_M_600;
/*
* Override what we have detected since we know if we have
* a Beaglebone Black it supports 1GHz.
*/
if (board_is_pb() || board_is_bone_lt())
freq = MPUPLL_M_1000;
switch (freq) {
case MPUPLL_M_1000:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA;
break;
case MPUPLL_M_800:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
break;
case MPUPLL_M_720:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
break;
case MPUPLL_M_600:
case MPUPLL_M_500:
case MPUPLL_M_300:
default:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
break;
}
if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
TPS65217_POWER_PATH,
usb_cur_lim,
TPS65217_USB_INPUT_CUR_LIMIT_MASK))
puts("tps65217_reg_write failure\n");
/* Set DCDC3 (CORE) voltage to 1.10V */
if (tps65217_voltage_update(TPS65217_DEFDCDC3,
TPS65217_DCDC_VOLT_SEL_1100MV)) {
puts("tps65217_voltage_update failure\n");
return;
}
/* Set DCDC2 (MPU) voltage */
if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
puts("tps65217_voltage_update failure\n");
return;
}
/*
* Set LDO3, LDO4 output voltage to 3.3V for Beaglebone.
* Set LDO3 to 1.8V and LDO4 to 3.3V for Beaglebone Black.
*/
if (board_is_bone()) {
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS1,
TPS65217_LDO_VOLTAGE_OUT_3_3,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
} else {
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS1,
TPS65217_LDO_VOLTAGE_OUT_1_8,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
}
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS2,
TPS65217_LDO_VOLTAGE_OUT_3_3,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
}
void scale_vcores_generic(int freq)
{
int sil_rev, mpu_vdd;
/*
* The GP EVM, IDK and EVM SK use a TPS65910 PMIC. For all
* MPU frequencies we support we use a CORE voltage of
* 1.10V. For MPU voltage we need to switch based on
* the frequency we are running at.
*/
if (i2c_probe(TPS65910_CTRL_I2C_ADDR))
return;
/*
* Depending on MPU clock and PG we will need a different
* VDD to drive at that speed.
*/
sil_rev = readl(&cdev->deviceid) >> 28;
mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev, freq);
/* Tell the TPS65910 to use i2c */
tps65910_set_i2c_control();
/* First update MPU voltage. */
if (tps65910_voltage_update(MPU, mpu_vdd))
return;
/* Second, update the CORE voltage. */
if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_0))
return;
}
void gpi2c_init(void)
{
/* When needed to be invoked prior to BSS initialization */
static bool first_time = true;
if (first_time) {
enable_i2c0_pin_mux();
i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
CONFIG_SYS_OMAP24_I2C_SLAVE);
first_time = false;
}
}
void scale_vcores(void)
{
int freq;
gpi2c_init();
freq = am335x_get_efuse_mpu_max_freq(cdev);
if (board_is_beaglebonex())
scale_vcores_bone(freq);
else
scale_vcores_generic(freq);
}
void set_uart_mux_conf(void)
{
#if CONFIG_CONS_INDEX == 1
enable_uart0_pin_mux();
#elif CONFIG_CONS_INDEX == 2
enable_uart1_pin_mux();
#elif CONFIG_CONS_INDEX == 3
enable_uart2_pin_mux();
#elif CONFIG_CONS_INDEX == 4
enable_uart3_pin_mux();
#elif CONFIG_CONS_INDEX == 5
enable_uart4_pin_mux();
#elif CONFIG_CONS_INDEX == 6
enable_uart5_pin_mux();
#endif
}
void set_mux_conf_regs(void)
{
enable_board_pin_mux();
}
const struct ctrl_ioregs ioregs_evmsk = {
.cm0ioctl = MT41J128MJT125_IOCTRL_VALUE,
.cm1ioctl = MT41J128MJT125_IOCTRL_VALUE,
.cm2ioctl = MT41J128MJT125_IOCTRL_VALUE,
.dt0ioctl = MT41J128MJT125_IOCTRL_VALUE,
.dt1ioctl = MT41J128MJT125_IOCTRL_VALUE,
};
const struct ctrl_ioregs ioregs_bonelt = {
.cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
};
const struct ctrl_ioregs ioregs_evm15 = {
.cm0ioctl = MT41J512M8RH125_IOCTRL_VALUE,
.cm1ioctl = MT41J512M8RH125_IOCTRL_VALUE,
.cm2ioctl = MT41J512M8RH125_IOCTRL_VALUE,
.dt0ioctl = MT41J512M8RH125_IOCTRL_VALUE,
.dt1ioctl = MT41J512M8RH125_IOCTRL_VALUE,
};
const struct ctrl_ioregs ioregs = {
.cm0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.cm1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.cm2ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.dt0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.dt1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
};
void sdram_init(void)
{
if (board_is_evm_sk()) {
/*
* EVM SK 1.2A and later use gpio0_7 to enable DDR3.
* This is safe enough to do on older revs.
*/
gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en");
gpio_direction_output(GPIO_DDR_VTT_EN, 1);
}
if (board_is_icev2()) {
gpio_request(ICE_GPIO_DDR_VTT_EN, "ddr_vtt_en");
gpio_direction_output(ICE_GPIO_DDR_VTT_EN, 1);
}
if (board_is_evm_sk())
config_ddr(303, &ioregs_evmsk, &ddr3_data,
&ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0);
else if (board_is_pb() || board_is_bone_lt())
config_ddr(400, &ioregs_bonelt,
&ddr3_beagleblack_data,
&ddr3_beagleblack_cmd_ctrl_data,
&ddr3_beagleblack_emif_reg_data, 0);
else if (board_is_evm_15_or_later())
config_ddr(303, &ioregs_evm15, &ddr3_evm_data,
&ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0);
else if (board_is_icev2())
config_ddr(400, &ioregs_evmsk, &ddr3_icev2_data,
&ddr3_icev2_cmd_ctrl_data, &ddr3_icev2_emif_reg_data,
0);
else if (board_is_gp_evm())
config_ddr(266, &ioregs, &ddr2_data,
&ddr2_cmd_ctrl_data, &ddr2_evm_emif_reg_data, 0);
else
config_ddr(266, &ioregs, &ddr2_data,
&ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0);
}
#endif
#if defined(CONFIG_CLOCK_SYNTHESIZER) && (!defined(CONFIG_SPL_BUILD) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)))
static void request_and_set_gpio(int gpio, char *name, int val)
{
int ret;
ret = gpio_request(gpio, name);
if (ret < 0) {
printf("%s: Unable to request %s\n", __func__, name);
return;
}
ret = gpio_direction_output(gpio, 0);
if (ret < 0) {
printf("%s: Unable to set %s as output\n", __func__, name);
goto err_free_gpio;
}
gpio_set_value(gpio, val);
return;
err_free_gpio:
gpio_free(gpio);
}
#define REQUEST_AND_SET_GPIO(N) request_and_set_gpio(N, #N, 1);
#define REQUEST_AND_CLR_GPIO(N) request_and_set_gpio(N, #N, 0);
/**
* RMII mode on ICEv2 board needs 50MHz clock. Given the clock
* synthesizer With a capacitor of 18pF, and 25MHz input clock cycle
* PLL1 gives an output of 100MHz. So, configuring the div2/3 as 2 to
* give 50MHz output for Eth0 and 1.
*/
static struct clk_synth cdce913_data = {
.id = 0x81,
.capacitor = 0x90,
.mux = 0x6d,
.pdiv2 = 0x2,
.pdiv3 = 0x2,
};
#endif
/*
* Basic board specific setup. Pinmux has been handled already.
*/
int board_init(void)
{
#if defined(CONFIG_HW_WATCHDOG)
hw_watchdog_init();
#endif
gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
#if defined(CONFIG_NOR) || defined(CONFIG_NAND)
gpmc_init();
#endif
#if defined(CONFIG_CLOCK_SYNTHESIZER) && (!defined(CONFIG_SPL_BUILD) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)))
if (board_is_icev2()) {
int rv;
u32 reg;
REQUEST_AND_SET_GPIO(GPIO_PR1_MII_CTRL);
/* Make J19 status available on GPIO1_26 */
REQUEST_AND_CLR_GPIO(GPIO_MUX_MII_CTRL);
REQUEST_AND_SET_GPIO(GPIO_FET_SWITCH_CTRL);
/*
* Both ports can be set as RMII-CPSW or MII-PRU-ETH using
* jumpers near the port. Read the jumper value and set
* the pinmux, external mux and PHY clock accordingly.
* As jumper line is overridden by PHY RX_DV pin immediately
* after bootstrap (power-up/reset), we need to sample
* it during PHY reset using GPIO rising edge detection.
*/
REQUEST_AND_SET_GPIO(GPIO_PHY_RESET);
/* Enable rising edge IRQ on GPIO0_11 and GPIO 1_26 */
reg = readl(GPIO0_RISINGDETECT) | BIT(11);
writel(reg, GPIO0_RISINGDETECT);
reg = readl(GPIO1_RISINGDETECT) | BIT(26);
writel(reg, GPIO1_RISINGDETECT);
/* Reset PHYs to capture the Jumper setting */
gpio_set_value(GPIO_PHY_RESET, 0);
udelay(2); /* PHY datasheet states 1uS min. */
gpio_set_value(GPIO_PHY_RESET, 1);
reg = readl(GPIO0_IRQSTATUSRAW) & BIT(11);
if (reg) {
writel(reg, GPIO0_IRQSTATUS1); /* clear irq */
/* RMII mode */
printf("ETH0, CPSW\n");
} else {
/* MII mode */
printf("ETH0, PRU\n");
cdce913_data.pdiv3 = 4; /* 25MHz PHY clk */
}
reg = readl(GPIO1_IRQSTATUSRAW) & BIT(26);
if (reg) {
writel(reg, GPIO1_IRQSTATUS1); /* clear irq */
/* RMII mode */
printf("ETH1, CPSW\n");
gpio_set_value(GPIO_MUX_MII_CTRL, 1);
} else {
/* MII mode */
printf("ETH1, PRU\n");
cdce913_data.pdiv2 = 4; /* 25MHz PHY clk */
}
/* disable rising edge IRQs */
reg = readl(GPIO0_RISINGDETECT) & ~BIT(11);
writel(reg, GPIO0_RISINGDETECT);
reg = readl(GPIO1_RISINGDETECT) & ~BIT(26);
writel(reg, GPIO1_RISINGDETECT);
rv = setup_clock_synthesizer(&cdce913_data);
if (rv) {
printf("Clock synthesizer setup failed %d\n", rv);
return rv;
}
/* reset PHYs */
gpio_set_value(GPIO_PHY_RESET, 0);
udelay(2); /* PHY datasheet states 1uS min. */
gpio_set_value(GPIO_PHY_RESET, 1);
}
#endif
return 0;
}
#ifdef CONFIG_BOARD_LATE_INIT
int board_late_init(void)
{
#if !defined(CONFIG_SPL_BUILD)
uint8_t mac_addr[6];
uint32_t mac_hi, mac_lo;
#endif
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
char *name = NULL;
if (board_is_bone_lt()) {
/* BeagleBoard.org BeagleBone Black Wireless: */
if (!strncmp(board_ti_get_rev(), "BWA", 3)) {
name = "BBBW";
}
/* SeeedStudio BeagleBone Green Wireless */
if (!strncmp(board_ti_get_rev(), "GW1", 3)) {
name = "BBGW";
}
/* BeagleBoard.org BeagleBone Blue */
if (!strncmp(board_ti_get_rev(), "BLA", 3)) {
name = "BBBL";
}
}
if (board_is_bbg1())
name = "BBG1";
set_board_info_env(name);
/*
* Default FIT boot on HS devices. Non FIT images are not allowed
* on HS devices.
*/
if (get_device_type() == HS_DEVICE)
env_set("boot_fit", "1");
#endif
#if !defined(CONFIG_SPL_BUILD)
/* try reading mac address from efuse */
mac_lo = readl(&cdev->macid0l);
mac_hi = readl(&cdev->macid0h);
mac_addr[0] = mac_hi & 0xFF;
mac_addr[1] = (mac_hi & 0xFF00) >> 8;
mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
mac_addr[4] = mac_lo & 0xFF;
mac_addr[5] = (mac_lo & 0xFF00) >> 8;
if (!env_get("ethaddr")) {
printf("<ethaddr> not set. Validating first E-fuse MAC\n");
if (is_valid_ethaddr(mac_addr))
eth_env_set_enetaddr("ethaddr", mac_addr);
}
mac_lo = readl(&cdev->macid1l);
mac_hi = readl(&cdev->macid1h);
mac_addr[0] = mac_hi & 0xFF;
mac_addr[1] = (mac_hi & 0xFF00) >> 8;
mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
mac_addr[4] = mac_lo & 0xFF;
mac_addr[5] = (mac_lo & 0xFF00) >> 8;
if (!env_get("eth1addr")) {
if (is_valid_ethaddr(mac_addr))
eth_env_set_enetaddr("eth1addr", mac_addr);
}
#endif
if (!env_get("serial#")) {
char *board_serial = env_get("board_serial");
char *ethaddr = env_get("ethaddr");
if (!board_serial || !strncmp(board_serial, "unknown", 7))
env_set("serial#", ethaddr);
else
env_set("serial#", board_serial);
}
return 0;
}
#endif
#ifndef CONFIG_DM_ETH
#if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
static void cpsw_control(int enabled)
{
/* VTP can be added here */
return;
}
static struct cpsw_slave_data cpsw_slaves[] = {
{
.slave_reg_ofs = 0x208,
.sliver_reg_ofs = 0xd80,
.phy_addr = 0,
},
{
.slave_reg_ofs = 0x308,
.sliver_reg_ofs = 0xdc0,
.phy_addr = 1,
},
};
static struct cpsw_platform_data cpsw_data = {
.mdio_base = CPSW_MDIO_BASE,
.cpsw_base = CPSW_BASE,
.mdio_div = 0xff,
.channels = 8,
.cpdma_reg_ofs = 0x800,
.slaves = 1,
.slave_data = cpsw_slaves,
.ale_reg_ofs = 0xd00,
.ale_entries = 1024,
.host_port_reg_ofs = 0x108,
.hw_stats_reg_ofs = 0x900,
.bd_ram_ofs = 0x2000,
.mac_control = (1 << 5),
.control = cpsw_control,
.host_port_num = 0,
.version = CPSW_CTRL_VERSION_2,
};
#endif
#if ((defined(CONFIG_SPL_ETH_SUPPORT) || defined(CONFIG_SPL_USB_ETHER)) &&\
defined(CONFIG_SPL_BUILD)) || \
((defined(CONFIG_DRIVER_TI_CPSW) || \
defined(CONFIG_USB_ETHER) && defined(CONFIG_MUSB_GADGET)) && \
!defined(CONFIG_SPL_BUILD))
/*
* This function will:
* Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr
* in the environment
* Perform fixups to the PHY present on certain boards. We only need this
* function in:
* - SPL with either CPSW or USB ethernet support
* - Full U-Boot, with either CPSW or USB ethernet
* Build in only these cases to avoid warnings about unused variables
* when we build an SPL that has neither option but full U-Boot will.
*/
int board_eth_init(bd_t *bis)
{
int rv, n = 0;
#if defined(CONFIG_USB_ETHER) && \
(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USB_ETHER))
uint8_t mac_addr[6];
uint32_t mac_hi, mac_lo;
/*
* use efuse mac address for USB ethernet as we know that
* both CPSW and USB ethernet will never be active at the same time
*/
mac_lo = readl(&cdev->macid0l);
mac_hi = readl(&cdev->macid0h);
mac_addr[0] = mac_hi & 0xFF;
mac_addr[1] = (mac_hi & 0xFF00) >> 8;
mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
mac_addr[4] = mac_lo & 0xFF;
mac_addr[5] = (mac_lo & 0xFF00) >> 8;
#endif
#if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
#ifdef CONFIG_DRIVER_TI_CPSW
if (board_is_bone() || board_is_bone_lt() ||
board_is_idk()) {
writel(MII_MODE_ENABLE, &cdev->miisel);
cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
PHY_INTERFACE_MODE_MII;
} else if (board_is_icev2()) {
writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel);
cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII;
cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RMII;
cpsw_slaves[0].phy_addr = 1;
cpsw_slaves[1].phy_addr = 3;
} else {
writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel);
cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
PHY_INTERFACE_MODE_RGMII;
}
rv = cpsw_register(&cpsw_data);
if (rv < 0)
printf("Error %d registering CPSW switch\n", rv);
else
n += rv;
#endif
/*
*
* CPSW RGMII Internal Delay Mode is not supported in all PVT
* operating points. So we must set the TX clock delay feature
* in the AR8051 PHY. Since we only support a single ethernet
* device in U-Boot, we only do this for the first instance.
*/
#define AR8051_PHY_DEBUG_ADDR_REG 0x1d
#define AR8051_PHY_DEBUG_DATA_REG 0x1e
#define AR8051_DEBUG_RGMII_CLK_DLY_REG 0x5
#define AR8051_RGMII_TX_CLK_DLY 0x100
if (board_is_evm_sk() || board_is_gp_evm()) {
const char *devname;
devname = miiphy_get_current_dev();
miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_ADDR_REG,
AR8051_DEBUG_RGMII_CLK_DLY_REG);
miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_DATA_REG,
AR8051_RGMII_TX_CLK_DLY);
}
#endif
#if defined(CONFIG_USB_ETHER) && \
(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USB_ETHER))
if (is_valid_ethaddr(mac_addr))
eth_env_set_enetaddr("usbnet_devaddr", mac_addr);
rv = usb_eth_initialize(bis);
if (rv < 0)
printf("Error %d registering USB_ETHER\n", rv);
else
n += rv;
#endif
return n;
}
#endif
#endif /* CONFIG_DM_ETH */
#ifdef CONFIG_SPL_LOAD_FIT
int board_fit_config_name_match(const char *name)
{
if (board_is_gp_evm() && !strcmp(name, "am335x-evm"))
return 0;
else if (board_is_bone() && !strcmp(name, "am335x-bone"))
return 0;
else if (board_is_bone_lt() && !strcmp(name, "am335x-boneblack"))
return 0;
else if (board_is_pb() && !strcmp(name, "am335x-pocketbeagle"))
return 0;
else if (board_is_evm_sk() && !strcmp(name, "am335x-evmsk"))
return 0;
else if (board_is_bbg1() && !strcmp(name, "am335x-bonegreen"))
return 0;
else if (board_is_icev2() && !strcmp(name, "am335x-icev2"))
return 0;
else
return -1;
}
#endif
#ifdef CONFIG_TI_SECURE_DEVICE
void board_fit_image_post_process(void **p_image, size_t *p_size)
{
secure_boot_verify_image(p_image, p_size);
}
#endif
#if !CONFIG_IS_ENABLED(OF_CONTROL)
static const struct omap_hsmmc_plat am335x_mmc0_platdata = {
.base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE,
.cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_4BIT,
.cfg.f_min = 400000,
.cfg.f_max = 52000000,
.cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195,
.cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
};
U_BOOT_DEVICE(am335x_mmc0) = {
.name = "omap_hsmmc",
.platdata = &am335x_mmc0_platdata,
};
static const struct omap_hsmmc_plat am335x_mmc1_platdata = {
.base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE,
.cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_8BIT,
.cfg.f_min = 400000,
.cfg.f_max = 52000000,
.cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195,
.cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
};
U_BOOT_DEVICE(am335x_mmc1) = {
.name = "omap_hsmmc",
.platdata = &am335x_mmc1_platdata,
};
#endif