u-boot-brain/arch/arm/cpu/armv8/fsl-layerscape/mp.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

286 lines
6.9 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2014-2015 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/arch/mp.h>
#include <asm/arch/soc.h>
#include "cpu.h"
#include <asm/arch-fsl-layerscape/soc.h>
DECLARE_GLOBAL_DATA_PTR;
void *get_spin_tbl_addr(void)
{
return &__spin_table;
}
phys_addr_t determine_mp_bootpg(void)
{
return (phys_addr_t)&secondary_boot_code;
}
void update_os_arch_secondary_cores(uint8_t os_arch)
{
u64 *table = get_spin_tbl_addr();
int i;
for (i = 1; i < CONFIG_MAX_CPUS; i++) {
if (os_arch == IH_ARCH_DEFAULT)
table[i * WORDS_PER_SPIN_TABLE_ENTRY +
SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_SAME;
else
table[i * WORDS_PER_SPIN_TABLE_ENTRY +
SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_DIFF;
}
}
#ifdef CONFIG_FSL_LSCH3
void wake_secondary_core_n(int cluster, int core, int cluster_cores)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
u32 mpidr = 0;
mpidr = ((cluster << 8) | core);
/*
* mpidr_el1 register value of core which needs to be released
* is written to scratchrw[6] register
*/
gur_out32(&gur->scratchrw[6], mpidr);
asm volatile("dsb st" : : : "memory");
rst->brrl |= 1 << ((cluster * cluster_cores) + core);
asm volatile("dsb st" : : : "memory");
/*
* scratchrw[6] register value is polled
* when the value becomes zero, this means that this core is up
* and running, next core can be released now
*/
while (gur_in32(&gur->scratchrw[6]) != 0)
;
}
#endif
int fsl_layerscape_wake_seconday_cores(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
#ifdef CONFIG_FSL_LSCH3
struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
u32 svr, ver, cluster, type;
int j = 0, cluster_cores = 0;
#elif defined(CONFIG_FSL_LSCH2)
struct ccsr_scfg __iomem *scfg = (void *)(CONFIG_SYS_FSL_SCFG_ADDR);
#endif
u32 cores, cpu_up_mask = 1;
int i, timeout = 10;
u64 *table = get_spin_tbl_addr();
#ifdef COUNTER_FREQUENCY_REAL
/* update for secondary cores */
__real_cntfrq = COUNTER_FREQUENCY_REAL;
flush_dcache_range((unsigned long)&__real_cntfrq,
(unsigned long)&__real_cntfrq + 8);
#endif
cores = cpu_mask();
/* Clear spin table so that secondary processors
* observe the correct value after waking up from wfe.
*/
memset(table, 0, CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE);
flush_dcache_range((unsigned long)table,
(unsigned long)table +
(CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE));
printf("Waking secondary cores to start from %lx\n", gd->relocaddr);
#ifdef CONFIG_FSL_LSCH3
gur_out32(&gur->bootlocptrh, (u32)(gd->relocaddr >> 32));
gur_out32(&gur->bootlocptrl, (u32)gd->relocaddr);
svr = gur_in32(&gur->svr);
ver = SVR_SOC_VER(svr);
if (ver == SVR_LS2080A || ver == SVR_LS2085A) {
gur_out32(&gur->scratchrw[6], 1);
asm volatile("dsb st" : : : "memory");
rst->brrl = cores;
asm volatile("dsb st" : : : "memory");
} else {
/*
* Release the cores out of reset one-at-a-time to avoid
* power spikes
*/
i = 0;
cluster = in_le32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type &&
TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
cluster_cores++;
}
do {
cluster = in_le32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type &&
TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
wake_secondary_core_n(i, j,
cluster_cores);
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
}
#elif defined(CONFIG_FSL_LSCH2)
scfg_out32(&scfg->scratchrw[0], (u32)(gd->relocaddr >> 32));
scfg_out32(&scfg->scratchrw[1], (u32)gd->relocaddr);
asm volatile("dsb st" : : : "memory");
gur_out32(&gur->brrl, cores);
asm volatile("dsb st" : : : "memory");
/* Bootup online cores */
scfg_out32(&scfg->corebcr, cores);
#endif
/* This is needed as a precautionary measure.
* If some code before this has accidentally released the secondary
* cores then the pre-bootloader code will trap them in a "wfe" unless
* the scratchrw[6] is set. In this case we need a sev here to get these
* cores moving again.
*/
asm volatile("sev");
while (timeout--) {
flush_dcache_range((unsigned long)table, (unsigned long)table +
CONFIG_MAX_CPUS * 64);
for (i = 1; i < CONFIG_MAX_CPUS; i++) {
if (table[i * WORDS_PER_SPIN_TABLE_ENTRY +
SPIN_TABLE_ELEM_STATUS_IDX])
cpu_up_mask |= 1 << i;
}
if (hweight32(cpu_up_mask) == hweight32(cores))
break;
udelay(10);
}
if (timeout <= 0) {
printf("Not all cores (0x%x) are up (0x%x)\n",
cores, cpu_up_mask);
return 1;
}
printf("All (%d) cores are up.\n", hweight32(cores));
return 0;
}
int is_core_valid(unsigned int core)
{
return !!((1 << core) & cpu_mask());
}
static int is_pos_valid(unsigned int pos)
{
return !!((1 << pos) & cpu_pos_mask());
}
int is_core_online(u64 cpu_id)
{
u64 *table;
int pos = id_to_core(cpu_id);
table = (u64 *)get_spin_tbl_addr() + pos * WORDS_PER_SPIN_TABLE_ENTRY;
return table[SPIN_TABLE_ELEM_STATUS_IDX] == 1;
}
int cpu_reset(int nr)
{
puts("Feature is not implemented.\n");
return 0;
}
int cpu_disable(int nr)
{
puts("Feature is not implemented.\n");
return 0;
}
static int core_to_pos(int nr)
{
u32 cores = cpu_pos_mask();
int i, count = 0;
if (nr == 0) {
return 0;
} else if (nr >= hweight32(cores)) {
puts("Not a valid core number.\n");
return -1;
}
for (i = 1; i < 32; i++) {
if (is_pos_valid(i)) {
count++;
if (count == nr)
break;
}
}
if (count != nr)
return -1;
return i;
}
int cpu_status(int nr)
{
u64 *table;
int pos;
if (nr == 0) {
table = (u64 *)get_spin_tbl_addr();
printf("table base @ 0x%p\n", table);
} else {
pos = core_to_pos(nr);
if (pos < 0)
return -1;
table = (u64 *)get_spin_tbl_addr() + pos *
WORDS_PER_SPIN_TABLE_ENTRY;
printf("table @ 0x%p\n", table);
printf(" addr - 0x%016llx\n",
table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX]);
printf(" status - 0x%016llx\n",
table[SPIN_TABLE_ELEM_STATUS_IDX]);
printf(" lpid - 0x%016llx\n",
table[SPIN_TABLE_ELEM_LPID_IDX]);
}
return 0;
}
int cpu_release(int nr, int argc, char * const argv[])
{
u64 boot_addr;
u64 *table = (u64 *)get_spin_tbl_addr();
int pos;
pos = core_to_pos(nr);
if (pos <= 0)
return -1;
table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
boot_addr = simple_strtoull(argv[0], NULL, 16);
table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX] = boot_addr;
flush_dcache_range((unsigned long)table,
(unsigned long)table + SPIN_TABLE_ELEM_SIZE);
asm volatile("dsb st");
smp_kick_all_cpus(); /* only those with entry addr set will run */
/*
* When the first release command runs, all cores are set to go. Those
* without a valid entry address will be trapped by "wfe". "sev" kicks
* them off to check the address again. When set, they continue to run.
*/
asm volatile("sev");
return 0;
}