u-boot-brain/test/py/u_boot_spawn.py
Stephen Warren 44ac762b14 test/py: fix spawn.expect multiple match handling
Multiple patterns may be passed to spawn.expect(). The pattern which
matches at the earliest position should be designated as the match. This
aspect works correctly. When multiple patterns match at the same position,
priority should be given the the earliest entry in the list of patterns.
This aspect does not work correctly. This patch fixes it.

Signed-off-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Simon Glass <sjg@chromium.org>
2016-01-28 21:01:24 -07:00

180 lines
5.0 KiB
Python

# Copyright (c) 2015-2016, NVIDIA CORPORATION. All rights reserved.
#
# SPDX-License-Identifier: GPL-2.0
# Logic to spawn a sub-process and interact with its stdio.
import os
import re
import pty
import signal
import select
import time
class Timeout(Exception):
"""An exception sub-class that indicates that a timeout occurred."""
pass
class Spawn(object):
"""Represents the stdio of a freshly created sub-process. Commands may be
sent to the process, and responses waited for.
"""
def __init__(self, args):
"""Spawn (fork/exec) the sub-process.
Args:
args: array of processs arguments. argv[0] is the command to execute.
Returns:
Nothing.
"""
self.waited = False
self.buf = ''
self.logfile_read = None
self.before = ''
self.after = ''
self.timeout = None
(self.pid, self.fd) = pty.fork()
if self.pid == 0:
try:
# For some reason, SIGHUP is set to SIG_IGN at this point when
# run under "go" (www.go.cd). Perhaps this happens under any
# background (non-interactive) system?
signal.signal(signal.SIGHUP, signal.SIG_DFL)
os.execvp(args[0], args)
except:
print 'CHILD EXECEPTION:'
import traceback
traceback.print_exc()
finally:
os._exit(255)
self.poll = select.poll()
self.poll.register(self.fd, select.POLLIN | select.POLLPRI | select.POLLERR | select.POLLHUP | select.POLLNVAL)
def kill(self, sig):
"""Send unix signal "sig" to the child process.
Args:
sig: The signal number to send.
Returns:
Nothing.
"""
os.kill(self.pid, sig)
def isalive(self):
"""Determine whether the child process is still running.
Args:
None.
Returns:
Boolean indicating whether process is alive.
"""
if self.waited:
return False
w = os.waitpid(self.pid, os.WNOHANG)
if w[0] == 0:
return True
self.waited = True
return False
def send(self, data):
"""Send data to the sub-process's stdin.
Args:
data: The data to send to the process.
Returns:
Nothing.
"""
os.write(self.fd, data)
def expect(self, patterns):
"""Wait for the sub-process to emit specific data.
This function waits for the process to emit one pattern from the
supplied list of patterns, or for a timeout to occur.
Args:
patterns: A list of strings or regex objects that we expect to
see in the sub-process' stdout.
Returns:
The index within the patterns array of the pattern the process
emitted.
Notable exceptions:
Timeout, if the process did not emit any of the patterns within
the expected time.
"""
for pi in xrange(len(patterns)):
if type(patterns[pi]) == type(''):
patterns[pi] = re.compile(patterns[pi])
tstart_s = time.time()
try:
while True:
earliest_m = None
earliest_pi = None
for pi in xrange(len(patterns)):
pattern = patterns[pi]
m = pattern.search(self.buf)
if not m:
continue
if earliest_m and m.start() >= earliest_m.start():
continue
earliest_m = m
earliest_pi = pi
if earliest_m:
pos = earliest_m.start()
posafter = earliest_m.end() + 1
self.before = self.buf[:pos]
self.after = self.buf[pos:posafter]
self.buf = self.buf[posafter:]
return earliest_pi
tnow_s = time.time()
tdelta_ms = (tnow_s - tstart_s) * 1000
if tdelta_ms > self.timeout:
raise Timeout()
events = self.poll.poll(self.timeout - tdelta_ms)
if not events:
raise Timeout()
c = os.read(self.fd, 1024)
if not c:
raise EOFError()
if self.logfile_read:
self.logfile_read.write(c)
self.buf += c
finally:
if self.logfile_read:
self.logfile_read.flush()
def close(self):
"""Close the stdio connection to the sub-process.
This also waits a reasonable time for the sub-process to stop running.
Args:
None.
Returns:
Nothing.
"""
os.close(self.fd)
for i in xrange(100):
if not self.isalive():
break
time.sleep(0.1)