u-boot-brain/drivers/mtd/nand/nand_spl_simple.c
Scott Wood 17cb4b8f32 mtd: nand: Add+use mtd_to/from_nand and nand_get/set_controller_data
These functions are part of the Linux 4.6 sync.  They are being added
before the main sync patch in order to make it easier to address the
issue across all NAND drivers (many/most of which do not closely track
their Linux counterparts) separately from other merge issues.

Signed-off-by: Scott Wood <oss@buserror.net>
2016-06-03 20:27:48 -05:00

274 lines
6.8 KiB
C

/*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <nand.h>
#include <asm/io.h>
#include <linux/mtd/nand_ecc.h>
static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
static struct mtd_info *mtd;
static struct nand_chip nand_chip;
#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
CONFIG_SYS_NAND_ECCSIZE)
#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
/*
* NAND command for small page NAND devices (512)
*/
static int nand_command(int block, int page, uint32_t offs,
u8 cmd)
{
struct nand_chip *this = mtd_to_nand(mtd);
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
while (!this->dev_ready(mtd))
;
/* Begin command latch cycle */
this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
/* Set ALE and clear CLE to start address cycle */
/* Column address */
this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
NAND_CTRL_ALE); /* A[24:17] */
#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
/* One more address cycle for devices > 32MiB */
this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[28:25] */
#endif
/* Latch in address */
this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
while (!this->dev_ready(mtd))
;
return 0;
}
#else
/*
* NAND command for large page NAND devices (2k)
*/
static int nand_command(int block, int page, uint32_t offs,
u8 cmd)
{
struct nand_chip *this = mtd_to_nand(mtd);
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
void (*hwctrl)(struct mtd_info *mtd, int cmd,
unsigned int ctrl) = this->cmd_ctrl;
while (!this->dev_ready(mtd))
;
/* Emulate NAND_CMD_READOOB */
if (cmd == NAND_CMD_READOOB) {
offs += CONFIG_SYS_NAND_PAGE_SIZE;
cmd = NAND_CMD_READ0;
}
/* Shift the offset from byte addressing to word addressing. */
if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
offs >>= 1;
/* Begin command latch cycle */
hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
/* Set ALE and clear CLE to start address cycle */
/* Column address */
hwctrl(mtd, offs & 0xff,
NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
/* Row address */
hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
hwctrl(mtd, ((page_addr >> 8) & 0xff),
NAND_CTRL_ALE); /* A[27:20] */
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
/* One more address cycle for devices > 128MiB */
hwctrl(mtd, (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[31:28] */
#endif
/* Latch in address */
hwctrl(mtd, NAND_CMD_READSTART,
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
while (!this->dev_ready(mtd))
;
return 0;
}
#endif
static int nand_is_bad_block(int block)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_char bb_data[2];
nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS,
NAND_CMD_READOOB);
/*
* Read one byte (or two if it's a 16 bit chip).
*/
if (this->options & NAND_BUSWIDTH_16) {
this->read_buf(mtd, bb_data, 2);
if (bb_data[0] != 0xff || bb_data[1] != 0xff)
return 1;
} else {
this->read_buf(mtd, bb_data, 1);
if (bb_data[0] != 0xff)
return 1;
}
return 0;
}
#if defined(CONFIG_SYS_NAND_HW_ECC_OOBFIRST)
static int nand_read_page(int block, int page, uchar *dst)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_char ecc_calc[ECCTOTAL];
u_char ecc_code[ECCTOTAL];
u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
int i;
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
int eccsteps = ECCSTEPS;
uint8_t *p = dst;
nand_command(block, page, 0, NAND_CMD_READOOB);
this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
nand_command(block, page, 0, NAND_CMD_READ0);
/* Pick the ECC bytes out of the oob data */
for (i = 0; i < ECCTOTAL; i++)
ecc_code[i] = oob_data[nand_ecc_pos[i]];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
this->ecc.hwctl(mtd, NAND_ECC_READ);
this->read_buf(mtd, p, eccsize);
this->ecc.calculate(mtd, p, &ecc_calc[i]);
this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
}
return 0;
}
#else
static int nand_read_page(int block, int page, void *dst)
{
struct nand_chip *this = mtd_to_nand(mtd);
u_char ecc_calc[ECCTOTAL];
u_char ecc_code[ECCTOTAL];
u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
int i;
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
int eccsteps = ECCSTEPS;
uint8_t *p = dst;
nand_command(block, page, 0, NAND_CMD_READ0);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
if (this->ecc.mode != NAND_ECC_SOFT)
this->ecc.hwctl(mtd, NAND_ECC_READ);
this->read_buf(mtd, p, eccsize);
this->ecc.calculate(mtd, p, &ecc_calc[i]);
}
this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
/* Pick the ECC bytes out of the oob data */
for (i = 0; i < ECCTOTAL; i++)
ecc_code[i] = oob_data[nand_ecc_pos[i]];
eccsteps = ECCSTEPS;
p = dst;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
/* No chance to do something with the possible error message
* from correct_data(). We just hope that all possible errors
* are corrected by this routine.
*/
this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
}
return 0;
}
#endif
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
{
unsigned int block, lastblock;
unsigned int page;
/*
* offs has to be aligned to a page address!
*/
block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
while (block <= lastblock) {
if (!nand_is_bad_block(block)) {
/*
* Skip bad blocks
*/
while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
nand_read_page(block, page, dst);
dst += CONFIG_SYS_NAND_PAGE_SIZE;
page++;
}
page = 0;
} else {
lastblock++;
}
block++;
}
return 0;
}
/* nand_init() - initialize data to make nand usable by SPL */
void nand_init(void)
{
/*
* Init board specific nand support
*/
mtd = &nand_chip.mtd;
nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
(void __iomem *)CONFIG_SYS_NAND_BASE;
board_nand_init(&nand_chip);
#ifdef CONFIG_SPL_NAND_SOFTECC
if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
nand_chip.ecc.calculate = nand_calculate_ecc;
nand_chip.ecc.correct = nand_correct_data;
}
#endif
if (nand_chip.select_chip)
nand_chip.select_chip(mtd, 0);
}
/* Unselect after operation */
void nand_deselect(void)
{
if (nand_chip.select_chip)
nand_chip.select_chip(mtd, -1);
}