u-boot-brain/drivers/video/tegra124/display.c
Simon Glass 2dcf143398 dm: video: Repurpose the 'displayport' uclass to 'display'
The current DisplayPort uclass is too specific. The operations it provides
are shared with other types of output devices, such as HDMI and LVDS LCD
displays.

Generalise the uclass so that it can be used with these devices as well.
Adjust the uclass to handle the EDID reading and conversion to
display_timing internally.

Also update nyan-big which is affected by this.

Signed-off-by: Simon Glass <sjg@chromium.org>
2016-01-21 20:42:36 -07:00

465 lines
13 KiB
C

/*
* Copyright 2014 Google Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*
* Extracted from Chromium coreboot commit 3f59b13d
*/
#include <common.h>
#include <dm.h>
#include <edid.h>
#include <errno.h>
#include <display.h>
#include <edid.h>
#include <fdtdec.h>
#include <lcd.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/pwm.h>
#include <asm/arch-tegra/dc.h>
#include "displayport.h"
DECLARE_GLOBAL_DATA_PTR;
/* return in 1000ths of a Hertz */
static int tegra_dc_calc_refresh(const struct display_timing *timing)
{
int h_total, v_total, refresh;
int pclk = timing->pixelclock.typ;
h_total = timing->hactive.typ + timing->hfront_porch.typ +
timing->hback_porch.typ + timing->hsync_len.typ;
v_total = timing->vactive.typ + timing->vfront_porch.typ +
timing->vback_porch.typ + timing->vsync_len.typ;
if (!pclk || !h_total || !v_total)
return 0;
refresh = pclk / h_total;
refresh *= 1000;
refresh /= v_total;
return refresh;
}
static void print_mode(const struct display_timing *timing)
{
int refresh = tegra_dc_calc_refresh(timing);
debug("MODE:%dx%d@%d.%03uHz pclk=%d\n",
timing->hactive.typ, timing->vactive.typ, refresh / 1000,
refresh % 1000, timing->pixelclock.typ);
}
static int update_display_mode(struct dc_ctlr *disp_ctrl,
const struct display_timing *timing,
int href_to_sync, int vref_to_sync)
{
print_mode(timing);
writel(0x1, &disp_ctrl->disp.disp_timing_opt);
writel(vref_to_sync << 16 | href_to_sync,
&disp_ctrl->disp.ref_to_sync);
writel(timing->vsync_len.typ << 16 | timing->hsync_len.typ,
&disp_ctrl->disp.sync_width);
writel(((timing->vback_porch.typ - vref_to_sync) << 16) |
timing->hback_porch.typ, &disp_ctrl->disp.back_porch);
writel(((timing->vfront_porch.typ + vref_to_sync) << 16) |
timing->hfront_porch.typ, &disp_ctrl->disp.front_porch);
writel(timing->hactive.typ | (timing->vactive.typ << 16),
&disp_ctrl->disp.disp_active);
/**
* We want to use PLLD_out0, which is PLLD / 2:
* PixelClock = (PLLD / 2) / ShiftClockDiv / PixelClockDiv.
*
* Currently most panels work inside clock range 50MHz~100MHz, and PLLD
* has some requirements to have VCO in range 500MHz~1000MHz (see
* clock.c for more detail). To simplify calculation, we set
* PixelClockDiv to 1 and ShiftClockDiv to 1. In future these values
* may be calculated by clock_display, to allow wider frequency range.
*
* Note ShiftClockDiv is a 7.1 format value.
*/
const u32 shift_clock_div = 1;
writel((PIXEL_CLK_DIVIDER_PCD1 << PIXEL_CLK_DIVIDER_SHIFT) |
((shift_clock_div - 1) * 2) << SHIFT_CLK_DIVIDER_SHIFT,
&disp_ctrl->disp.disp_clk_ctrl);
debug("%s: PixelClock=%u, ShiftClockDiv=%u\n", __func__,
timing->pixelclock.typ, shift_clock_div);
return 0;
}
static u32 tegra_dc_poll_register(void *reg,
u32 mask, u32 exp_val, u32 poll_interval_us, u32 timeout_us)
{
u32 temp = timeout_us;
u32 reg_val = 0;
do {
udelay(poll_interval_us);
reg_val = readl(reg);
if (timeout_us > poll_interval_us)
timeout_us -= poll_interval_us;
else
break;
} while ((reg_val & mask) != exp_val);
if ((reg_val & mask) == exp_val)
return 0; /* success */
return temp;
}
int tegra_dc_sor_general_act(struct dc_ctlr *disp_ctrl)
{
writel(GENERAL_ACT_REQ, &disp_ctrl->cmd.state_ctrl);
if (tegra_dc_poll_register(&disp_ctrl->cmd.state_ctrl,
GENERAL_ACT_REQ, 0, 100,
DC_POLL_TIMEOUT_MS * 1000)) {
debug("dc timeout waiting for DC to stop\n");
return -ETIMEDOUT;
}
return 0;
}
static struct display_timing min_mode = {
.hsync_len = { .typ = 1 },
.vsync_len = { .typ = 1 },
.hback_porch = { .typ = 20 },
.vback_porch = { .typ = 0 },
.hactive = { .typ = 16 },
.vactive = { .typ = 16 },
.hfront_porch = { .typ = 1 },
.vfront_porch = { .typ = 2 },
};
/* Disable windows and set minimum raster timings */
void tegra_dc_sor_disable_win_short_raster(struct dc_ctlr *disp_ctrl,
int *dc_reg_ctx)
{
const int href_to_sync = 0, vref_to_sync = 1;
int selected_windows, i;
selected_windows = readl(&disp_ctrl->cmd.disp_win_header);
/* Store and clear window options */
for (i = 0; i < DC_N_WINDOWS; ++i) {
writel(WINDOW_A_SELECT << i, &disp_ctrl->cmd.disp_win_header);
dc_reg_ctx[i] = readl(&disp_ctrl->win.win_opt);
writel(0, &disp_ctrl->win.win_opt);
writel(WIN_A_ACT_REQ << i, &disp_ctrl->cmd.state_ctrl);
}
writel(selected_windows, &disp_ctrl->cmd.disp_win_header);
/* Store current raster timings and set minimum timings */
dc_reg_ctx[i++] = readl(&disp_ctrl->disp.ref_to_sync);
writel(href_to_sync | (vref_to_sync << 16),
&disp_ctrl->disp.ref_to_sync);
dc_reg_ctx[i++] = readl(&disp_ctrl->disp.sync_width);
writel(min_mode.hsync_len.typ | (min_mode.vsync_len.typ << 16),
&disp_ctrl->disp.sync_width);
dc_reg_ctx[i++] = readl(&disp_ctrl->disp.back_porch);
writel(min_mode.hback_porch.typ | (min_mode.vback_porch.typ << 16),
&disp_ctrl->disp.back_porch);
dc_reg_ctx[i++] = readl(&disp_ctrl->disp.front_porch);
writel(min_mode.hfront_porch.typ | (min_mode.vfront_porch.typ << 16),
&disp_ctrl->disp.front_porch);
dc_reg_ctx[i++] = readl(&disp_ctrl->disp.disp_active);
writel(min_mode.hactive.typ | (min_mode.vactive.typ << 16),
&disp_ctrl->disp.disp_active);
writel(GENERAL_ACT_REQ, &disp_ctrl->cmd.state_ctrl);
}
/* Restore previous windows status and raster timings */
void tegra_dc_sor_restore_win_and_raster(struct dc_ctlr *disp_ctrl,
int *dc_reg_ctx)
{
int selected_windows, i;
selected_windows = readl(&disp_ctrl->cmd.disp_win_header);
for (i = 0; i < DC_N_WINDOWS; ++i) {
writel(WINDOW_A_SELECT << i, &disp_ctrl->cmd.disp_win_header);
writel(dc_reg_ctx[i], &disp_ctrl->win.win_opt);
writel(WIN_A_ACT_REQ << i, &disp_ctrl->cmd.state_ctrl);
}
writel(selected_windows, &disp_ctrl->cmd.disp_win_header);
writel(dc_reg_ctx[i++], &disp_ctrl->disp.ref_to_sync);
writel(dc_reg_ctx[i++], &disp_ctrl->disp.sync_width);
writel(dc_reg_ctx[i++], &disp_ctrl->disp.back_porch);
writel(dc_reg_ctx[i++], &disp_ctrl->disp.front_porch);
writel(dc_reg_ctx[i++], &disp_ctrl->disp.disp_active);
writel(GENERAL_UPDATE, &disp_ctrl->cmd.state_ctrl);
}
static int tegra_depth_for_bpp(int bpp)
{
switch (bpp) {
case 32:
return COLOR_DEPTH_R8G8B8A8;
case 16:
return COLOR_DEPTH_B5G6R5;
default:
debug("Unsupported LCD bit depth");
return -1;
}
}
static int update_window(struct dc_ctlr *disp_ctrl,
u32 frame_buffer, int fb_bits_per_pixel,
const struct display_timing *timing)
{
const u32 colour_white = 0xffffff;
int colour_depth;
u32 val;
writel(WINDOW_A_SELECT, &disp_ctrl->cmd.disp_win_header);
writel(((timing->vactive.typ << 16) | timing->hactive.typ),
&disp_ctrl->win.size);
writel(((timing->vactive.typ << 16) |
(timing->hactive.typ * fb_bits_per_pixel / 8)),
&disp_ctrl->win.prescaled_size);
writel(((timing->hactive.typ * fb_bits_per_pixel / 8 + 31) /
32 * 32), &disp_ctrl->win.line_stride);
colour_depth = tegra_depth_for_bpp(fb_bits_per_pixel);
if (colour_depth == -1)
return -EINVAL;
writel(colour_depth, &disp_ctrl->win.color_depth);
writel(frame_buffer, &disp_ctrl->winbuf.start_addr);
writel(0x1000 << V_DDA_INC_SHIFT | 0x1000 << H_DDA_INC_SHIFT,
&disp_ctrl->win.dda_increment);
writel(colour_white, &disp_ctrl->disp.blend_background_color);
writel(CTRL_MODE_C_DISPLAY << CTRL_MODE_SHIFT,
&disp_ctrl->cmd.disp_cmd);
writel(WRITE_MUX_ACTIVE, &disp_ctrl->cmd.state_access);
val = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
val |= GENERAL_UPDATE | WIN_A_UPDATE;
writel(val, &disp_ctrl->cmd.state_ctrl);
/* Enable win_a */
val = readl(&disp_ctrl->win.win_opt);
writel(val | WIN_ENABLE, &disp_ctrl->win.win_opt);
return 0;
}
static int tegra_dc_init(struct dc_ctlr *disp_ctrl)
{
/* do not accept interrupts during initialization */
writel(0x00000000, &disp_ctrl->cmd.int_mask);
writel(WRITE_MUX_ASSEMBLY | READ_MUX_ASSEMBLY,
&disp_ctrl->cmd.state_access);
writel(WINDOW_A_SELECT, &disp_ctrl->cmd.disp_win_header);
writel(0x00000000, &disp_ctrl->win.win_opt);
writel(0x00000000, &disp_ctrl->win.byte_swap);
writel(0x00000000, &disp_ctrl->win.buffer_ctrl);
writel(0x00000000, &disp_ctrl->win.pos);
writel(0x00000000, &disp_ctrl->win.h_initial_dda);
writel(0x00000000, &disp_ctrl->win.v_initial_dda);
writel(0x00000000, &disp_ctrl->win.dda_increment);
writel(0x00000000, &disp_ctrl->win.dv_ctrl);
writel(0x01000000, &disp_ctrl->win.blend_layer_ctrl);
writel(0x00000000, &disp_ctrl->win.blend_match_select);
writel(0x00000000, &disp_ctrl->win.blend_nomatch_select);
writel(0x00000000, &disp_ctrl->win.blend_alpha_1bit);
writel(0x00000000, &disp_ctrl->winbuf.start_addr_hi);
writel(0x00000000, &disp_ctrl->winbuf.addr_h_offset);
writel(0x00000000, &disp_ctrl->winbuf.addr_v_offset);
writel(0x00000000, &disp_ctrl->com.crc_checksum);
writel(0x00000000, &disp_ctrl->com.pin_output_enb[0]);
writel(0x00000000, &disp_ctrl->com.pin_output_enb[1]);
writel(0x00000000, &disp_ctrl->com.pin_output_enb[2]);
writel(0x00000000, &disp_ctrl->com.pin_output_enb[3]);
writel(0x00000000, &disp_ctrl->disp.disp_signal_opt0);
return 0;
}
static void dump_config(int panel_bpp, struct display_timing *timing)
{
printf("timing->hactive.typ = %d\n", timing->hactive.typ);
printf("timing->vactive.typ = %d\n", timing->vactive.typ);
printf("timing->pixelclock.typ = %d\n", timing->pixelclock.typ);
printf("timing->hfront_porch.typ = %d\n", timing->hfront_porch.typ);
printf("timing->hsync_len.typ = %d\n", timing->hsync_len.typ);
printf("timing->hback_porch.typ = %d\n", timing->hback_porch.typ);
printf("timing->vfront_porch.typ %d\n", timing->vfront_porch.typ);
printf("timing->vsync_len.typ = %d\n", timing->vsync_len.typ);
printf("timing->vback_porch.typ = %d\n", timing->vback_porch.typ);
printf("panel_bits_per_pixel = %d\n", panel_bpp);
}
static int display_update_config_from_edid(struct udevice *dp_dev,
int *panel_bppp,
struct display_timing *timing)
{
int ret;
ret = display_read_timing(dp_dev, timing);
if (ret)
return ret;
return 0;
}
/* Somewhat torturous method */
static int get_backlight_info(const void *blob, struct gpio_desc *vdd,
struct gpio_desc *enable, int *pwmp)
{
int sor, panel, backlight, power;
const u32 *prop;
int len;
int ret;
*pwmp = 0;
sor = fdtdec_next_compatible(blob, 0, COMPAT_NVIDIA_TEGRA124_SOR);
if (sor < 0)
return -ENOENT;
panel = fdtdec_lookup_phandle(blob, sor, "nvidia,panel");
if (panel < 0)
return -ENOENT;
backlight = fdtdec_lookup_phandle(blob, panel, "backlight");
if (backlight < 0)
return -ENOENT;
ret = gpio_request_by_name_nodev(blob, backlight, "enable-gpios", 0,
enable, GPIOD_IS_OUT);
if (ret)
return ret;
prop = fdt_getprop(blob, backlight, "pwms", &len);
if (!prop || len != 3 * sizeof(u32))
return -EINVAL;
*pwmp = fdt32_to_cpu(prop[1]);
power = fdtdec_lookup_phandle(blob, backlight, "power-supply");
if (power < 0)
return -ENOENT;
ret = gpio_request_by_name_nodev(blob, power, "gpio", 0, vdd,
GPIOD_IS_OUT);
if (ret)
goto err;
return 0;
err:
dm_gpio_free(NULL, enable);
return ret;
}
int display_init(void *lcdbase, int fb_bits_per_pixel,
struct display_timing *timing)
{
struct dc_ctlr *dc_ctlr;
const void *blob = gd->fdt_blob;
struct udevice *dp_dev;
const int href_to_sync = 1, vref_to_sync = 1;
int panel_bpp = 18; /* default 18 bits per pixel */
u32 plld_rate;
struct gpio_desc vdd_gpio, enable_gpio;
int pwm;
int node;
int ret;
ret = uclass_get_device(UCLASS_DISPLAY, 0, &dp_dev);
if (ret)
return ret;
node = fdtdec_next_compatible(blob, 0, COMPAT_NVIDIA_TEGRA124_DC);
if (node < 0)
return -ENOENT;
dc_ctlr = (struct dc_ctlr *)fdtdec_get_addr(blob, node, "reg");
if (fdtdec_decode_display_timing(blob, node, 0, timing))
return -EINVAL;
ret = display_update_config_from_edid(dp_dev, &panel_bpp, timing);
if (ret) {
debug("%s: Failed to decode EDID, using defaults\n", __func__);
dump_config(panel_bpp, timing);
}
if (!get_backlight_info(blob, &vdd_gpio, &enable_gpio, &pwm)) {
dm_gpio_set_value(&vdd_gpio, 1);
debug("%s: backlight vdd setting gpio %08x to %d\n",
__func__, gpio_get_number(&vdd_gpio), 1);
}
/*
* The plld is programmed with the assumption of the SHIFT_CLK_DIVIDER
* and PIXEL_CLK_DIVIDER are zero (divide by 1). See the
* update_display_mode() for detail.
*/
plld_rate = clock_set_display_rate(timing->pixelclock.typ * 2);
if (plld_rate == 0) {
printf("dc: clock init failed\n");
return -EIO;
} else if (plld_rate != timing->pixelclock.typ * 2) {
debug("dc: plld rounded to %u\n", plld_rate);
timing->pixelclock.typ = plld_rate / 2;
}
/* Init dc */
ret = tegra_dc_init(dc_ctlr);
if (ret) {
debug("dc: init failed\n");
return ret;
}
/* Configure dc mode */
ret = update_display_mode(dc_ctlr, timing, href_to_sync, vref_to_sync);
if (ret) {
debug("dc: failed to configure display mode\n");
return ret;
}
/* Enable dp */
ret = display_enable(dp_dev, panel_bpp, timing);
if (ret)
return ret;
ret = update_window(dc_ctlr, (ulong)lcdbase, fb_bits_per_pixel, timing);
if (ret)
return ret;
/* Set up Tegra PWM to drive the panel backlight */
pwm_enable(pwm, 0, 220, 0x2e);
udelay(10 * 1000);
if (dm_gpio_is_valid(&enable_gpio)) {
dm_gpio_set_value(&enable_gpio, 1);
debug("%s: backlight enable setting gpio %08x to %d\n",
__func__, gpio_get_number(&enable_gpio), 1);
}
return 0;
}