u-boot-brain/lib_avr32/bootm.c
Marian Balakowicz cb1c489690 Restore the ability to continue booting after legacy image overwrite
Before new uImage code was merged, bootm code allowed for the kernel image to
get overwritten during decompresion. new uImage introduced a check for image
overwrites and refused to boot the image that got overwritten. This patch
restores the old behavior. It also adds a warning when the image overwriten is
a multi-image file, because in such case accessing componentes other than the
first one will fail.

Signed-off-by: Marian Balakowicz <m8@semihalf.com>
2008-04-17 23:59:05 -07:00

241 lines
5.6 KiB
C

/*
* Copyright (C) 2004-2006 Atmel Corporation
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <command.h>
#include <image.h>
#include <zlib.h>
#include <asm/byteorder.h>
#include <asm/addrspace.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/arch/clk.h>
DECLARE_GLOBAL_DATA_PTR;
/* CPU-specific hook to allow flushing of caches, etc. */
extern void prepare_to_boot(void);
extern int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
static struct tag *setup_start_tag(struct tag *params)
{
params->hdr.tag = ATAG_CORE;
params->hdr.size = tag_size(tag_core);
params->u.core.flags = 0;
params->u.core.pagesize = 4096;
params->u.core.rootdev = 0;
return tag_next(params);
}
static struct tag *setup_memory_tags(struct tag *params)
{
bd_t *bd = gd->bd;
int i;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
params->hdr.tag = ATAG_MEM;
params->hdr.size = tag_size(tag_mem_range);
params->u.mem_range.addr = bd->bi_dram[i].start;
params->u.mem_range.size = bd->bi_dram[i].size;
params = tag_next(params);
}
return params;
}
static struct tag *setup_commandline_tag(struct tag *params, char *cmdline)
{
if (!cmdline)
return params;
/* eat leading white space */
while (*cmdline == ' ') cmdline++;
/*
* Don't include tags for empty command lines; let the kernel
* use its default command line.
*/
if (*cmdline == '\0')
return params;
params->hdr.tag = ATAG_CMDLINE;
params->hdr.size =
(sizeof (struct tag_header) + strlen(cmdline) + 1 + 3) >> 2;
strcpy(params->u.cmdline.cmdline, cmdline);
return tag_next(params);
}
static struct tag *setup_ramdisk_tag(struct tag *params,
unsigned long rd_start,
unsigned long rd_end)
{
if (rd_start == rd_end)
return params;
params->hdr.tag = ATAG_RDIMG;
params->hdr.size = tag_size(tag_mem_range);
params->u.mem_range.addr = rd_start;
params->u.mem_range.size = rd_end - rd_start;
return tag_next(params);
}
static struct tag *setup_clock_tags(struct tag *params)
{
params->hdr.tag = ATAG_CLOCK;
params->hdr.size = tag_size(tag_clock);
params->u.clock.clock_id = ACLOCK_BOOTCPU;
params->u.clock.clock_flags = 0;
params->u.clock.clock_hz = gd->cpu_hz;
#ifdef CONFIG_AT32AP7000
/*
* New kernels don't need this, but we should be backwards
* compatible for a while...
*/
params = tag_next(params);
params->hdr.tag = ATAG_CLOCK;
params->hdr.size = tag_size(tag_clock);
params->u.clock.clock_id = ACLOCK_HSB;
params->u.clock.clock_flags = 0;
params->u.clock.clock_hz = get_hsb_clk_rate();
#endif
return tag_next(params);
}
static struct tag *setup_ethernet_tag(struct tag *params,
char *addr, int index)
{
char *s, *e;
int i;
params->hdr.tag = ATAG_ETHERNET;
params->hdr.size = tag_size(tag_ethernet);
params->u.ethernet.mac_index = index;
params->u.ethernet.mii_phy_addr = gd->bd->bi_phy_id[index];
s = addr;
for (i = 0; i < 6; i++) {
params->u.ethernet.hw_address[i] = simple_strtoul(s, &e, 16);
s = e + 1;
}
return tag_next(params);
}
static struct tag *setup_ethernet_tags(struct tag *params)
{
char name[16] = "ethaddr";
char *addr;
int i = 0;
do {
addr = getenv(name);
if (addr)
params = setup_ethernet_tag(params, addr, i);
sprintf(name, "eth%daddr", ++i);
} while (i < 4);
return params;
}
static void setup_end_tag(struct tag *params)
{
params->hdr.tag = ATAG_NONE;
params->hdr.size = 0;
}
void do_bootm_linux(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[],
bootm_headers_t *images)
{
ulong initrd_start, initrd_end;
ulong ep = 0;
void (*theKernel)(int magic, void *tagtable);
struct tag *params, *params_start;
char *commandline = getenv("bootargs");
int ret;
/* find kernel entry point */
if (images->legacy_hdr_valid) {
ep = image_get_ep (&images->legacy_hdr_os_copy);
#if defined(CONFIG_FIT)
} else if (images->fit_uname_os) {
ret = fit_image_get_entry (images->fit_hdr_os,
images->fit_noffset_os, &ep);
if (ret) {
puts ("Can't get entry point property!\n");
goto error;
}
#endif
} else {
puts ("Could not find kernel entry point!\n");
goto error;
}
theKernel = (void *)ep;
ret = boot_get_ramdisk (argc, argv, images, IH_ARCH_AVR32,
&initrd_start, &initrd_end);
if (ret)
goto error;
show_boot_progress (15);
params = params_start = (struct tag *)gd->bd->bi_boot_params;
params = setup_start_tag(params);
params = setup_memory_tags(params);
if (initrd_start) {
params = setup_ramdisk_tag(params,
PHYSADDR(initrd_start),
PHYSADDR(initrd_end));
}
params = setup_commandline_tag(params, commandline);
params = setup_clock_tags(params);
params = setup_ethernet_tags(params);
setup_end_tag(params);
if (!images->autostart)
return ;
printf("\nStarting kernel at %p (params at %p)...\n\n",
theKernel, params_start);
prepare_to_boot();
theKernel(ATAG_MAGIC, params_start);
/* does not return */
return;
error:
if (images->autostart)
do_reset (cmdtp, flag, argc, argv);
return;
}