u-boot-brain/board/BuR/common/common.c
Jean-Jacques Hiblot d5abcf94c7 ti: boot: Register the MMC controllers in SPL in the same way as in u-boot
To keep a consistent MMC device mapping in SPL and in u-boot, let's
register the MMC controllers the same way in u-boot and in the SPL.
In terms of boot time, it doesn't hurt to register more controllers than
needed because the MMC device is initialized only prior being accessed for
the first time.
Having the same device mapping in SPL and u-boot allows us to use the
environment in SPL whatever the MMC boot device.

Signed-off-by: Jean-Jacques Hiblot <jjhiblot@ti.com>
2017-03-19 22:17:14 -04:00

697 lines
18 KiB
C

/*
* common.c
*
* common board functions for B&R boards
*
* Copyright (C) 2013 Hannes Schmelzer <oe5hpm@oevsv.at>
* Bernecker & Rainer Industrieelektronik GmbH - http://www.br-automation.com
*
* SPDX-License-Identifier: GPL-2.0+
*
*/
#include <version.h>
#include <common.h>
#include <errno.h>
#include <asm/arch/cpu.h>
#include <asm/arch/hardware.h>
#include <asm/arch/omap.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <i2c.h>
#include <miiphy.h>
#include <cpsw.h>
#include <power/tps65217.h>
#include <lcd.h>
#include <fs.h>
#ifdef CONFIG_USE_FDT
#include <fdt_support.h>
#endif
#include "bur_common.h"
#include "../../../drivers/video/am335x-fb.h"
#include <nand.h>
#include <fdt_simplefb.h>
static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_USE_FDT
#define FDTPROP(b, c) fdt_getprop_u32_default(gd->fdt_blob, b, c, ~0UL)
#define PATHTIM "/panel/display-timings/default"
#define PATHINF "/panel/panel-info"
#endif
/* --------------------------------------------------------------------------*/
#if defined(CONFIG_LCD) && defined(CONFIG_AM335X_LCD) && \
!defined(CONFIG_SPL_BUILD)
void lcdbacklight(int on)
{
#ifdef CONFIG_USE_FDT
if (gd->fdt_blob == NULL) {
printf("%s: don't have a valid gd->fdt_blob!\n", __func__);
return;
}
unsigned int driver = FDTPROP(PATHINF, "brightdrv");
unsigned int bright = FDTPROP(PATHINF, "brightdef");
unsigned int pwmfrq = FDTPROP(PATHINF, "brightfdim");
#else
unsigned int driver = getenv_ulong("ds1_bright_drv", 16, 0UL);
unsigned int bright = getenv_ulong("ds1_bright_def", 10, 50);
unsigned int pwmfrq = getenv_ulong("ds1_pwmfreq", 10, ~0UL);
#endif
unsigned int tmp;
struct gptimer *timerhw;
if (on)
bright = bright != ~0UL ? bright : 50;
else
bright = 0;
switch (driver) {
case 2:
timerhw = (struct gptimer *)DM_TIMER5_BASE;
break;
default:
timerhw = (struct gptimer *)DM_TIMER6_BASE;
}
switch (driver) {
case 0: /* PMIC LED-Driver */
/* brightness level */
tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
TPS65217_WLEDCTRL2, bright, 0xFF);
/* current sink */
tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
TPS65217_WLEDCTRL1,
bright != 0 ? 0x0A : 0x02,
0xFF);
break;
case 1:
case 2: /* PWM using timer */
if (pwmfrq != ~0UL) {
timerhw->tiocp_cfg = TCFG_RESET;
udelay(10);
while (timerhw->tiocp_cfg & TCFG_RESET)
;
tmp = ~0UL-(V_OSCK/pwmfrq); /* bottom value */
timerhw->tldr = tmp;
timerhw->tcrr = tmp;
tmp = tmp + ((V_OSCK/pwmfrq)/100) * bright;
timerhw->tmar = tmp;
timerhw->tclr = (TCLR_PT | (2 << TCLR_TRG_SHIFT) |
TCLR_CE | TCLR_AR | TCLR_ST);
} else {
puts("invalid pwmfrq in env/dtb! skip PWM-setup.\n");
}
break;
default:
puts("no suitable backlightdriver in env/dtb!\n");
break;
}
}
int load_lcdtiming(struct am335x_lcdpanel *panel)
{
struct am335x_lcdpanel pnltmp;
#ifdef CONFIG_USE_FDT
u32 dtbprop;
char buf[32];
const char *nodep = 0;
int nodeoff;
if (gd->fdt_blob == NULL) {
printf("%s: don't have a valid gd->fdt_blob!\n", __func__);
return -1;
}
memcpy(&pnltmp, (void *)panel, sizeof(struct am335x_lcdpanel));
pnltmp.hactive = FDTPROP(PATHTIM, "hactive");
pnltmp.vactive = FDTPROP(PATHTIM, "vactive");
pnltmp.bpp = FDTPROP(PATHINF, "bpp");
pnltmp.hfp = FDTPROP(PATHTIM, "hfront-porch");
pnltmp.hbp = FDTPROP(PATHTIM, "hback-porch");
pnltmp.hsw = FDTPROP(PATHTIM, "hsync-len");
pnltmp.vfp = FDTPROP(PATHTIM, "vfront-porch");
pnltmp.vbp = FDTPROP(PATHTIM, "vback-porch");
pnltmp.vsw = FDTPROP(PATHTIM, "vsync-len");
pnltmp.pup_delay = FDTPROP(PATHTIM, "pupdelay");
pnltmp.pon_delay = FDTPROP(PATHTIM, "pondelay");
/* calc. proper clk-divisor */
dtbprop = FDTPROP(PATHTIM, "clock-frequency");
if (dtbprop != ~0UL)
pnltmp.pxl_clk_div = 192000000 / dtbprop;
else
pnltmp.pxl_clk_div = ~0UL;
/* check polarity of control-signals */
dtbprop = FDTPROP(PATHTIM, "hsync-active");
if (dtbprop == 0)
pnltmp.pol |= HSYNC_INVERT;
dtbprop = FDTPROP(PATHTIM, "vsync-active");
if (dtbprop == 0)
pnltmp.pol |= VSYNC_INVERT;
dtbprop = FDTPROP(PATHINF, "sync-ctrl");
if (dtbprop == 1)
pnltmp.pol |= HSVS_CONTROL;
dtbprop = FDTPROP(PATHINF, "sync-edge");
if (dtbprop == 1)
pnltmp.pol |= HSVS_RISEFALL;
dtbprop = FDTPROP(PATHTIM, "pixelclk-active");
if (dtbprop == 0)
pnltmp.pol |= PXCLK_INVERT;
dtbprop = FDTPROP(PATHTIM, "de-active");
if (dtbprop == 0)
pnltmp.pol |= DE_INVERT;
nodeoff = fdt_path_offset(gd->fdt_blob, "/factory-settings");
if (nodeoff >= 0) {
nodep = fdt_getprop(gd->fdt_blob, nodeoff, "rotation", NULL);
if (nodep != 0) {
if (strcmp(nodep, "cw") == 0)
panel_info.vl_rot = 1;
else if (strcmp(nodep, "ud") == 0)
panel_info.vl_rot = 2;
else if (strcmp(nodep, "ccw") == 0)
panel_info.vl_rot = 3;
else
panel_info.vl_rot = 0;
}
} else {
puts("no 'factory-settings / rotation' in dtb!\n");
}
snprintf(buf, sizeof(buf), "fbcon=rotate:%d", panel_info.vl_rot);
setenv("optargs_rot", buf);
#else
pnltmp.hactive = getenv_ulong("ds1_hactive", 10, ~0UL);
pnltmp.vactive = getenv_ulong("ds1_vactive", 10, ~0UL);
pnltmp.bpp = getenv_ulong("ds1_bpp", 10, ~0UL);
pnltmp.hfp = getenv_ulong("ds1_hfp", 10, ~0UL);
pnltmp.hbp = getenv_ulong("ds1_hbp", 10, ~0UL);
pnltmp.hsw = getenv_ulong("ds1_hsw", 10, ~0UL);
pnltmp.vfp = getenv_ulong("ds1_vfp", 10, ~0UL);
pnltmp.vbp = getenv_ulong("ds1_vbp", 10, ~0UL);
pnltmp.vsw = getenv_ulong("ds1_vsw", 10, ~0UL);
pnltmp.pxl_clk_div = getenv_ulong("ds1_pxlclkdiv", 10, ~0UL);
pnltmp.pol = getenv_ulong("ds1_pol", 16, ~0UL);
pnltmp.pup_delay = getenv_ulong("ds1_pupdelay", 10, ~0UL);
pnltmp.pon_delay = getenv_ulong("ds1_tondelay", 10, ~0UL);
panel_info.vl_rot = getenv_ulong("ds1_rotation", 10, 0);
#endif
if (
~0UL == (pnltmp.hactive) ||
~0UL == (pnltmp.vactive) ||
~0UL == (pnltmp.bpp) ||
~0UL == (pnltmp.hfp) ||
~0UL == (pnltmp.hbp) ||
~0UL == (pnltmp.hsw) ||
~0UL == (pnltmp.vfp) ||
~0UL == (pnltmp.vbp) ||
~0UL == (pnltmp.vsw) ||
~0UL == (pnltmp.pxl_clk_div) ||
~0UL == (pnltmp.pol) ||
~0UL == (pnltmp.pup_delay) ||
~0UL == (pnltmp.pon_delay)
) {
puts("lcd-settings in env/dtb incomplete!\n");
printf("display-timings:\n"
"================\n"
"hactive: %d\n"
"vactive: %d\n"
"bpp : %d\n"
"hfp : %d\n"
"hbp : %d\n"
"hsw : %d\n"
"vfp : %d\n"
"vbp : %d\n"
"vsw : %d\n"
"pxlclk : %d\n"
"pol : 0x%08x\n"
"pondly : %d\n",
pnltmp.hactive, pnltmp.vactive, pnltmp.bpp,
pnltmp.hfp, pnltmp.hbp, pnltmp.hsw,
pnltmp.vfp, pnltmp.vbp, pnltmp.vsw,
pnltmp.pxl_clk_div, pnltmp.pol, pnltmp.pon_delay);
return -1;
}
debug("lcd-settings in env complete, taking over.\n");
memcpy((void *)panel,
(void *)&pnltmp,
sizeof(struct am335x_lcdpanel));
return 0;
}
#ifdef CONFIG_USE_FDT
static int load_devicetree(void)
{
int rc;
loff_t dtbsize;
u32 dtbaddr = getenv_ulong("dtbaddr", 16, 0UL);
if (dtbaddr == 0) {
printf("%s: don't have a valid <dtbaddr> in env!\n", __func__);
return -1;
}
#ifdef CONFIG_NAND
dtbsize = 0x20000;
rc = nand_read_skip_bad(nand_info[0], 0x40000, (size_t *)&dtbsize,
NULL, 0x20000, (u_char *)dtbaddr);
#else
char *dtbname = getenv("dtb");
char *dtbdev = getenv("dtbdev");
char *dtppart = getenv("dtbpart");
if (!dtbdev || !dtbdev || !dtbname) {
printf("%s: <dtbdev>/<dtbpart>/<dtb> missing.\n", __func__);
return -1;
}
if (fs_set_blk_dev(dtbdev, dtppart, FS_TYPE_EXT)) {
puts("load_devicetree: set_blk_dev failed.\n");
return -1;
}
rc = fs_read(dtbname, (u32)dtbaddr, 0, 0, &dtbsize);
#endif
if (rc == 0) {
gd->fdt_blob = (void *)dtbaddr;
gd->fdt_size = dtbsize;
debug("loaded %d bytes of dtb onto 0x%08x\n",
(u32)dtbsize, (u32)gd->fdt_blob);
return dtbsize;
}
printf("%s: load dtb failed!\n", __func__);
return -1;
}
static const char *dtbmacaddr(u32 ifno)
{
int node, len;
char enet[16];
const char *mac;
const char *path;
if (gd->fdt_blob == NULL) {
printf("%s: don't have a valid gd->fdt_blob!\n", __func__);
return NULL;
}
node = fdt_path_offset(gd->fdt_blob, "/aliases");
if (node < 0)
return NULL;
sprintf(enet, "ethernet%d", ifno);
path = fdt_getprop(gd->fdt_blob, node, enet, NULL);
if (!path) {
printf("no alias for %s\n", enet);
return NULL;
}
node = fdt_path_offset(gd->fdt_blob, path);
mac = fdt_getprop(gd->fdt_blob, node, "mac-address", &len);
if (mac && is_valid_ethaddr((u8 *)mac))
return mac;
return NULL;
}
static void br_summaryscreen_printdtb(char *prefix,
char *name,
char *suffix)
{
char buf[32] = { 0 };
const char *nodep = buf;
char *mac = 0;
int nodeoffset;
int len;
if (gd->fdt_blob == NULL) {
printf("%s: don't have a valid gd->fdt_blob!\n", __func__);
return;
}
if (strcmp(name, "brmac1") == 0) {
mac = (char *)dtbmacaddr(0);
if (mac)
sprintf(buf, "%pM", mac);
} else if (strcmp(name, "brmac2") == 0) {
mac = (char *)dtbmacaddr(1);
if (mac)
sprintf(buf, "%pM", mac);
} else {
nodeoffset = fdt_path_offset(gd->fdt_blob,
"/factory-settings");
if (nodeoffset < 0) {
puts("no 'factory-settings' in dtb!\n");
return;
}
nodep = fdt_getprop(gd->fdt_blob, nodeoffset, name, &len);
}
if (nodep && strlen(nodep) > 1)
lcd_printf("%s %s %s", prefix, nodep, suffix);
else
lcd_printf("\n");
}
int ft_board_setup(void *blob, bd_t *bd)
{
int nodeoffset;
nodeoffset = fdt_path_offset(blob, "/factory-settings");
if (nodeoffset < 0) {
puts("set bootloader version 'factory-settings' not in dtb!\n");
return -1;
}
if (fdt_setprop(blob, nodeoffset, "bl-version",
PLAIN_VERSION, strlen(PLAIN_VERSION)) != 0) {
puts("set bootloader version 'bl-version' prop. not in dtb!\n");
return -1;
}
/*
* if no simplefb is requested through environment, we don't set up
* one, instead we turn off backlight.
*/
if (getenv_ulong("simplefb", 10, 0) == 0) {
lcdbacklight(0);
return 0;
}
/* Setup simplefb devicetree node, also adapt memory-node,
* upper limit for kernel e.g. linux is memtop-framebuffer alligned
* to a full megabyte.
*/
u64 start = gd->bd->bi_dram[0].start;
u64 size = (gd->fb_base - start) & ~0xFFFFF;
int rc = fdt_fixup_memory_banks(blob, &start, &size, 1);
if (rc) {
puts("cannot setup simplefb: Error reserving memory!\n");
return rc;
}
rc = lcd_dt_simplefb_enable_existing_node(blob);
if (rc) {
puts("cannot setup simplefb: error enabling simplefb node!\n");
return rc;
}
return 0;
}
#else
static void br_summaryscreen_printenv(char *prefix,
char *name, char *altname,
char *suffix)
{
char *envval = getenv(name);
if (0 != envval) {
lcd_printf("%s %s %s", prefix, envval, suffix);
} else if (0 != altname) {
envval = getenv(altname);
if (0 != envval)
lcd_printf("%s %s %s", prefix, envval, suffix);
} else {
lcd_printf("\n");
}
}
#endif
void br_summaryscreen(void)
{
#ifdef CONFIG_USE_FDT
br_summaryscreen_printdtb(" - B&R -", "order-no", "-\n");
br_summaryscreen_printdtb(" Serial/Rev :", "serial-no", " /");
br_summaryscreen_printdtb(" ", "hw-revision", "\n");
br_summaryscreen_printdtb(" MAC (IF1) :", "brmac1", "\n");
br_summaryscreen_printdtb(" MAC (IF2) :", "brmac2", "\n");
lcd_puts(" Bootloader : " PLAIN_VERSION "\n");
lcd_puts("\n");
#else
br_summaryscreen_printenv(" - B&R -", "br_orderno", 0, "-\n");
br_summaryscreen_printenv(" Serial/Rev :", "br_serial", 0, "\n");
br_summaryscreen_printenv(" MAC (IF1) :", "br_mac1", "ethaddr", "\n");
br_summaryscreen_printenv(" MAC (IF2) :", "br_mac2", 0, "\n");
lcd_puts(" Bootloader : " PLAIN_VERSION "\n");
lcd_puts("\n");
#endif
}
void lcdpower(int on)
{
u32 pin, swval, i;
#ifdef CONFIG_USE_FDT
if (gd->fdt_blob == NULL) {
printf("%s: don't have a valid gd->fdt_blob!\n", __func__);
return;
}
pin = FDTPROP(PATHINF, "pwrpin");
#else
pin = getenv_ulong("ds1_pwr", 16, ~0UL);
#endif
if (pin == ~0UL) {
puts("no pwrpin in dtb/env, cannot powerup display!\n");
return;
}
for (i = 0; i < 3; i++) {
if (pin != 0) {
swval = pin & 0x80 ? 0 : 1;
if (on)
gpio_direction_output(pin & 0x7F, swval);
else
gpio_direction_output(pin & 0x7F, !swval);
debug("switched pin %d to %d\n", pin & 0x7F, swval);
}
pin >>= 8;
}
}
vidinfo_t panel_info = {
.vl_col = 1366, /*
* give full resolution for allocating enough
* memory
*/
.vl_row = 768,
.vl_bpix = 5,
.priv = 0
};
void lcd_ctrl_init(void *lcdbase)
{
struct am335x_lcdpanel lcd_panel;
#ifdef CONFIG_USE_FDT
/* TODO: is there a better place to load the dtb ? */
load_devicetree();
#endif
memset(&lcd_panel, 0, sizeof(struct am335x_lcdpanel));
if (load_lcdtiming(&lcd_panel) != 0)
return;
lcd_panel.panel_power_ctrl = &lcdpower;
if (0 != am335xfb_init(&lcd_panel))
printf("ERROR: failed to initialize video!");
/*
* modifiy panel info to 'real' resolution, to operate correct with
* lcd-framework.
*/
panel_info.vl_col = lcd_panel.hactive;
panel_info.vl_row = lcd_panel.vactive;
lcd_set_flush_dcache(1);
}
void lcd_enable(void)
{
br_summaryscreen();
lcdbacklight(1);
}
#elif CONFIG_SPL_BUILD
#else
#error "LCD-support with a suitable FB-Driver is mandatory !"
#endif /* CONFIG_LCD */
#ifdef CONFIG_SPL_BUILD
void pmicsetup(u32 mpupll)
{
int mpu_vdd;
int usb_cur_lim;
if (i2c_probe(TPS65217_CHIP_PM)) {
puts("PMIC (0x24) not found! skip further initalization.\n");
return;
}
/* Get the frequency which is defined by device fuses */
dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
printf("detected max. frequency: %d - ", dpll_mpu_opp100.m);
if (0 != mpupll) {
dpll_mpu_opp100.m = MPUPLL_M_1000;
printf("retuning MPU-PLL to: %d MHz.\n", dpll_mpu_opp100.m);
} else {
puts("ok.\n");
}
/*
* Increase USB current limit to 1300mA or 1800mA and set
* the MPU voltage controller as needed.
*/
if (dpll_mpu_opp100.m == MPUPLL_M_1000) {
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA;
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
} else {
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
}
if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE, TPS65217_POWER_PATH,
usb_cur_lim, TPS65217_USB_INPUT_CUR_LIMIT_MASK))
puts("tps65217_reg_write failure\n");
/* Set DCDC3 (CORE) voltage to 1.125V */
if (tps65217_voltage_update(TPS65217_DEFDCDC3,
TPS65217_DCDC_VOLT_SEL_1125MV)) {
puts("tps65217_voltage_update failure\n");
return;
}
/* Set CORE Frequencies to OPP100 */
do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
/* Set DCDC2 (MPU) voltage */
if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
puts("tps65217_voltage_update failure\n");
return;
}
/* Set LDO3 to 1.8V */
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS1,
TPS65217_LDO_VOLTAGE_OUT_1_8,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
/* Set LDO4 to 3.3V */
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS2,
TPS65217_LDO_VOLTAGE_OUT_3_3,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
/* Set MPU Frequency to what we detected now that voltages are set */
do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_opp100);
/* Set PWR_EN bit in Status Register */
tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
TPS65217_STATUS, TPS65217_PWR_OFF, TPS65217_PWR_OFF);
}
void set_uart_mux_conf(void)
{
enable_uart0_pin_mux();
}
void set_mux_conf_regs(void)
{
enable_board_pin_mux();
}
#endif /* CONFIG_SPL_BUILD */
#if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
static void cpsw_control(int enabled)
{
/* VTP can be added here */
return;
}
/* describing port offsets of TI's CPSW block */
static struct cpsw_slave_data cpsw_slaves[] = {
{
.slave_reg_ofs = 0x208,
.sliver_reg_ofs = 0xd80,
.phy_addr = 1,
},
{
.slave_reg_ofs = 0x308,
.sliver_reg_ofs = 0xdc0,
.phy_addr = 2,
},
};
static struct cpsw_platform_data cpsw_data = {
.mdio_base = CPSW_MDIO_BASE,
.cpsw_base = CPSW_BASE,
.mdio_div = 0xff,
.channels = 8,
.cpdma_reg_ofs = 0x800,
.slaves = 1,
.slave_data = cpsw_slaves,
.ale_reg_ofs = 0xd00,
.ale_entries = 1024,
.host_port_reg_ofs = 0x108,
.hw_stats_reg_ofs = 0x900,
.bd_ram_ofs = 0x2000,
.mac_control = (1 << 5),
.control = cpsw_control,
.host_port_num = 0,
.version = CPSW_CTRL_VERSION_2,
};
#endif /* CONFIG_DRIVER_TI_CPSW, ... */
#if defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)
int board_eth_init(bd_t *bis)
{
int rv = 0;
char mac_addr[6];
const char *mac = 0;
uint32_t mac_hi, mac_lo;
/* try reading mac address from efuse */
mac_lo = readl(&cdev->macid0l);
mac_hi = readl(&cdev->macid0h);
mac_addr[0] = mac_hi & 0xFF;
mac_addr[1] = (mac_hi & 0xFF00) >> 8;
mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
mac_addr[4] = mac_lo & 0xFF;
mac_addr[5] = (mac_lo & 0xFF00) >> 8;
if (!getenv("ethaddr")) {
#if !defined(CONFIG_SPL_BUILD) && defined(CONFIG_USE_FDT)
printf("<ethaddr> not set. trying DTB ... ");
mac = dtbmacaddr(0);
#endif
if (!mac) {
printf("<ethaddr> not set. validating E-fuse MAC ... ");
if (is_valid_ethaddr((const u8 *)mac_addr))
mac = (const char *)mac_addr;
}
if (mac) {
printf("using: %pM on ", mac);
eth_setenv_enetaddr("ethaddr", (const u8 *)mac);
}
}
writel(MII_MODE_ENABLE, &cdev->miisel);
cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_MII;
cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_MII;
rv = cpsw_register(&cpsw_data);
if (rv < 0) {
printf("Error %d registering CPSW switch\n", rv);
return 0;
}
return rv;
}
#endif /* defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD) */
#if defined(CONFIG_GENERIC_MMC)
int board_mmc_init(bd_t *bis)
{
return omap_mmc_init(1, 0, 0, -1, -1);
}
#endif
int overwrite_console(void)
{
return 1;
}