u-boot-brain/drivers/usb/gadget/designware_udc.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

1019 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Based on drivers/usb/gadget/omap1510_udc.c
* TI OMAP1510 USB bus interface driver
*
* (C) Copyright 2009
* Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
*/
#include <common.h>
#include <asm/io.h>
#include <usbdevice.h>
#include "ep0.h"
#include <usb/designware_udc.h>
#include <usb/udc.h>
#include <asm/arch/hardware.h>
#define UDC_INIT_MDELAY 80 /* Device settle delay */
/* Some kind of debugging output... */
#ifndef DEBUG_DWUSBTTY
#define UDCDBG(str)
#define UDCDBGA(fmt, args...)
#else
#define UDCDBG(str) serial_printf(str "\n")
#define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args)
#endif
static struct urb *ep0_urb;
static struct usb_device_instance *udc_device;
static struct plug_regs *const plug_regs_p =
(struct plug_regs * const)CONFIG_SYS_PLUG_BASE;
static struct udc_regs *const udc_regs_p =
(struct udc_regs * const)CONFIG_SYS_USBD_BASE;
static struct udc_endp_regs *const outep_regs_p =
&((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0];
static struct udc_endp_regs *const inep_regs_p =
&((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0];
/*
* udc_state_transition - Write the next packet to TxFIFO.
* @initial: Initial state.
* @final: Final state.
*
* Helper function to implement device state changes. The device states and
* the events that transition between them are:
*
* STATE_ATTACHED
* || /\
* \/ ||
* DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET
* || /\
* \/ ||
* STATE_POWERED
* || /\
* \/ ||
* DEVICE_RESET DEVICE_POWER_INTERRUPTION
* || /\
* \/ ||
* STATE_DEFAULT
* || /\
* \/ ||
* DEVICE_ADDRESS_ASSIGNED DEVICE_RESET
* || /\
* \/ ||
* STATE_ADDRESSED
* || /\
* \/ ||
* DEVICE_CONFIGURED DEVICE_DE_CONFIGURED
* || /\
* \/ ||
* STATE_CONFIGURED
*
* udc_state_transition transitions up (in the direction from STATE_ATTACHED
* to STATE_CONFIGURED) from the specified initial state to the specified final
* state, passing through each intermediate state on the way. If the initial
* state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
* no state transitions will take place.
*
* udc_state_transition also transitions down (in the direction from
* STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
* specified final state, passing through each intermediate state on the way.
* If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
* state, then no state transitions will take place.
*
* This function must only be called with interrupts disabled.
*/
static void udc_state_transition(usb_device_state_t initial,
usb_device_state_t final)
{
if (initial < final) {
switch (initial) {
case STATE_ATTACHED:
usbd_device_event_irq(udc_device,
DEVICE_HUB_CONFIGURED, 0);
if (final == STATE_POWERED)
break;
case STATE_POWERED:
usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
if (final == STATE_DEFAULT)
break;
case STATE_DEFAULT:
usbd_device_event_irq(udc_device,
DEVICE_ADDRESS_ASSIGNED, 0);
if (final == STATE_ADDRESSED)
break;
case STATE_ADDRESSED:
usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
case STATE_CONFIGURED:
break;
default:
break;
}
} else if (initial > final) {
switch (initial) {
case STATE_CONFIGURED:
usbd_device_event_irq(udc_device,
DEVICE_DE_CONFIGURED, 0);
if (final == STATE_ADDRESSED)
break;
case STATE_ADDRESSED:
usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
if (final == STATE_DEFAULT)
break;
case STATE_DEFAULT:
usbd_device_event_irq(udc_device,
DEVICE_POWER_INTERRUPTION, 0);
if (final == STATE_POWERED)
break;
case STATE_POWERED:
usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
case STATE_ATTACHED:
break;
default:
break;
}
}
}
/* Stall endpoint */
static void udc_stall_ep(u32 ep_num)
{
writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
&inep_regs_p[ep_num].endp_cntl);
writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
&outep_regs_p[ep_num].endp_cntl);
}
static void *get_fifo(int ep_num, int in)
{
u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE;
switch (ep_num) {
case UDC_EP3:
fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn);
/* break intentionally left out */
case UDC_EP1:
fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn);
/* break intentionally left out */
case UDC_EP0:
default:
if (in) {
fifo_ptr +=
readl(&outep_regs_p[2].endp_maxpacksize) >> 16;
/* break intentionally left out */
} else {
break;
}
case UDC_EP2:
fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16;
/* break intentionally left out */
}
return (void *)fifo_ptr;
}
static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len)
{
u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0);
u32 i, nw, nb;
u32 *wrdp;
u8 *bytp;
u32 tmp[128];
if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY)
return -1;
nw = len / sizeof(u32);
nb = len % sizeof(u32);
/* use tmp buf if bufp is not word aligned */
if ((int)bufp & 0x3)
wrdp = (u32 *)&tmp[0];
else
wrdp = (u32 *)bufp;
for (i = 0; i < nw; i++) {
writel(readl(fifo_ptr), wrdp);
wrdp++;
}
bytp = (u8 *)wrdp;
for (i = 0; i < nb; i++) {
writeb(readb(fifo_ptr), bytp);
fifo_ptr++;
bytp++;
}
readl(&outep_regs_p[epNum].write_done);
/* copy back tmp buffer to bufp if bufp is not word aligned */
if ((int)bufp & 0x3)
memcpy(bufp, tmp, len);
return 0;
}
static void usbputpcktofifo(int epNum, u8 *bufp, u32 len)
{
u32 i, nw, nb;
u32 *wrdp;
u8 *bytp;
u8 *fifo_ptr = get_fifo(epNum, 1);
nw = len / sizeof(int);
nb = len % sizeof(int);
wrdp = (u32 *)bufp;
for (i = 0; i < nw; i++) {
writel(*wrdp, fifo_ptr);
wrdp++;
}
bytp = (u8 *)wrdp;
for (i = 0; i < nb; i++) {
writeb(*bytp, fifo_ptr);
fifo_ptr++;
bytp++;
}
}
/*
* dw_write_noniso_tx_fifo - Write the next packet to TxFIFO.
* @endpoint: Endpoint pointer.
*
* If the endpoint has an active tx_urb, then the next packet of data from the
* URB is written to the tx FIFO. The total amount of data in the urb is given
* by urb->actual_length. The maximum amount of data that can be sent in any
* one packet is given by endpoint->tx_packetSize. The number of data bytes
* from this URB that have already been transmitted is given by endpoint->sent.
* endpoint->last is updated by this routine with the number of data bytes
* transmitted in this packet.
*
*/
static void dw_write_noniso_tx_fifo(struct usb_endpoint_instance
*endpoint)
{
struct urb *urb = endpoint->tx_urb;
int align;
if (urb) {
u32 last;
UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d",
urb->buffer, urb->buffer_length, urb->actual_length);
last = min_t(u32, urb->actual_length - endpoint->sent,
endpoint->tx_packetSize);
if (last) {
u8 *cp = urb->buffer + endpoint->sent;
/*
* This ensures that USBD packet fifo is accessed
* - through word aligned pointer or
* - through non word aligned pointer but only
* with a max length to make the next packet
* word aligned
*/
align = ((ulong)cp % sizeof(int));
if (align)
last = min(last, sizeof(int) - align);
UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d",
endpoint->sent, endpoint->tx_packetSize, last);
usbputpcktofifo(endpoint->endpoint_address &
USB_ENDPOINT_NUMBER_MASK, cp, last);
}
endpoint->last = last;
}
}
/*
* Handle SETUP USB interrupt.
* This function implements TRM Figure 14-14.
*/
static void dw_udc_setup(struct usb_endpoint_instance *endpoint)
{
u8 *datap = (u8 *)&ep0_urb->device_request;
int ep_addr = endpoint->endpoint_address;
UDCDBG("-> Entering device setup");
usbgetpckfromfifo(ep_addr, datap, 8);
/* Try to process setup packet */
if (ep0_recv_setup(ep0_urb)) {
/* Not a setup packet, stall next EP0 transaction */
udc_stall_ep(0);
UDCDBG("can't parse setup packet, still waiting for setup");
return;
}
/* Check direction */
if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
== USB_REQ_HOST2DEVICE) {
UDCDBG("control write on EP0");
if (le16_to_cpu(ep0_urb->device_request.wLength)) {
/* Stall this request */
UDCDBG("Stalling unsupported EP0 control write data "
"stage.");
udc_stall_ep(0);
}
} else {
UDCDBG("control read on EP0");
/*
* The ep0_recv_setup function has already placed our response
* packet data in ep0_urb->buffer and the packet length in
* ep0_urb->actual_length.
*/
endpoint->tx_urb = ep0_urb;
endpoint->sent = 0;
/*
* Write packet data to the FIFO. dw_write_noniso_tx_fifo
* will update endpoint->last with the number of bytes written
* to the FIFO.
*/
dw_write_noniso_tx_fifo(endpoint);
writel(0x0, &inep_regs_p[ep_addr].write_done);
}
udc_unset_nak(endpoint->endpoint_address);
UDCDBG("<- Leaving device setup");
}
/*
* Handle endpoint 0 RX interrupt
*/
static void dw_udc_ep0_rx(struct usb_endpoint_instance *endpoint)
{
u8 dummy[64];
UDCDBG("RX on EP0");
/* Check direction */
if ((ep0_urb->device_request.bmRequestType
& USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
/*
* This rx interrupt must be for a control write data
* stage packet.
*
* We don't support control write data stages.
* We should never end up here.
*/
UDCDBG("Stalling unexpected EP0 control write "
"data stage packet");
udc_stall_ep(0);
} else {
/*
* This rx interrupt must be for a control read status
* stage packet.
*/
UDCDBG("ACK on EP0 control read status stage packet");
u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff;
usbgetpckfromfifo(0, dummy, len);
}
}
/*
* Handle endpoint 0 TX interrupt
*/
static void dw_udc_ep0_tx(struct usb_endpoint_instance *endpoint)
{
struct usb_device_request *request = &ep0_urb->device_request;
int ep_addr;
UDCDBG("TX on EP0");
/* Check direction */
if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
USB_REQ_HOST2DEVICE) {
/*
* This tx interrupt must be for a control write status
* stage packet.
*/
UDCDBG("ACK on EP0 control write status stage packet");
} else {
/*
* This tx interrupt must be for a control read data
* stage packet.
*/
int wLength = le16_to_cpu(request->wLength);
/*
* Update our count of bytes sent so far in this
* transfer.
*/
endpoint->sent += endpoint->last;
/*
* We are finished with this transfer if we have sent
* all of the bytes in our tx urb (urb->actual_length)
* unless we need a zero-length terminating packet. We
* need a zero-length terminating packet if we returned
* fewer bytes than were requested (wLength) by the host,
* and the number of bytes we returned is an exact
* multiple of the packet size endpoint->tx_packetSize.
*/
if ((endpoint->sent == ep0_urb->actual_length) &&
((ep0_urb->actual_length == wLength) ||
(endpoint->last != endpoint->tx_packetSize))) {
/* Done with control read data stage. */
UDCDBG("control read data stage complete");
} else {
/*
* We still have another packet of data to send
* in this control read data stage or else we
* need a zero-length terminating packet.
*/
UDCDBG("ACK control read data stage packet");
dw_write_noniso_tx_fifo(endpoint);
ep_addr = endpoint->endpoint_address;
writel(0x0, &inep_regs_p[ep_addr].write_done);
}
}
}
static struct usb_endpoint_instance *dw_find_ep(int ep)
{
int i;
for (i = 0; i < udc_device->bus->max_endpoints; i++) {
if ((udc_device->bus->endpoint_array[i].endpoint_address &
USB_ENDPOINT_NUMBER_MASK) == ep)
return &udc_device->bus->endpoint_array[i];
}
return NULL;
}
/*
* Handle RX transaction on non-ISO endpoint.
* The ep argument is a physical endpoint number for a non-ISO IN endpoint
* in the range 1 to 15.
*/
static void dw_udc_epn_rx(int ep)
{
int nbytes = 0;
struct urb *urb;
struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
if (endpoint) {
urb = endpoint->rcv_urb;
if (urb) {
u8 *cp = urb->buffer + urb->actual_length;
nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) &
0xfff;
usbgetpckfromfifo(ep, cp, nbytes);
usbd_rcv_complete(endpoint, nbytes, 0);
}
}
}
/*
* Handle TX transaction on non-ISO endpoint.
* The ep argument is a physical endpoint number for a non-ISO IN endpoint
* in the range 16 to 30.
*/
static void dw_udc_epn_tx(int ep)
{
struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
if (!endpoint)
return;
/*
* We need to transmit a terminating zero-length packet now if
* we have sent all of the data in this URB and the transfer
* size was an exact multiple of the packet size.
*/
if (endpoint->tx_urb &&
(endpoint->last == endpoint->tx_packetSize) &&
(endpoint->tx_urb->actual_length - endpoint->sent -
endpoint->last == 0)) {
/* handle zero length packet here */
writel(0x0, &inep_regs_p[ep].write_done);
}
if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
/* retire the data that was just sent */
usbd_tx_complete(endpoint);
/*
* Check to see if we have more data ready to transmit
* now.
*/
if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
/* write data to FIFO */
dw_write_noniso_tx_fifo(endpoint);
writel(0x0, &inep_regs_p[ep].write_done);
} else if (endpoint->tx_urb
&& (endpoint->tx_urb->actual_length == 0)) {
/* udc_set_nak(ep); */
}
}
}
/*
* Start of public functions.
*/
/* Called to start packet transmission. */
int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
{
udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK);
return 0;
}
/* Start to initialize h/w stuff */
int udc_init(void)
{
int i;
u32 plug_st;
udc_device = NULL;
UDCDBG("starting");
readl(&plug_regs_p->plug_pending);
for (i = 0; i < UDC_INIT_MDELAY; i++)
udelay(1000);
plug_st = readl(&plug_regs_p->plug_state);
writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state);
writel(~0x0, &udc_regs_p->endp_int);
writel(~0x0, &udc_regs_p->dev_int_mask);
writel(~0x0, &udc_regs_p->endp_int_mask);
#ifndef CONFIG_USBD_HS
writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
#else
writel(DEV_CONF_HS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
#endif
writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
/* Clear all interrupts pending */
writel(DEV_INT_MSK, &udc_regs_p->dev_int);
return 0;
}
int is_usbd_high_speed(void)
{
return (readl(&udc_regs_p->dev_stat) & DEV_STAT_ENUM) ? 0 : 1;
}
/*
* udc_setup_ep - setup endpoint
* Associate a physical endpoint with endpoint_instance
*/
void udc_setup_ep(struct usb_device_instance *device,
u32 ep, struct usb_endpoint_instance *endpoint)
{
UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address);
int ep_addr;
int ep_num, ep_type;
int packet_size;
int buffer_size;
int attributes;
char *tt;
u32 endp_intmask;
if ((ep != 0) && (udc_device->device_state < STATE_ADDRESSED))
return;
tt = env_get("usbtty");
if (!tt)
tt = "generic";
ep_addr = endpoint->endpoint_address;
ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
/* IN endpoint */
packet_size = endpoint->tx_packetSize;
buffer_size = packet_size * 2;
attributes = endpoint->tx_attributes;
} else {
/* OUT endpoint */
packet_size = endpoint->rcv_packetSize;
buffer_size = packet_size * 2;
attributes = endpoint->rcv_attributes;
}
switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_CONTROL:
ep_type = ENDP_EPTYPE_CNTL;
break;
case USB_ENDPOINT_XFER_BULK:
default:
ep_type = ENDP_EPTYPE_BULK;
break;
case USB_ENDPOINT_XFER_INT:
ep_type = ENDP_EPTYPE_INT;
break;
case USB_ENDPOINT_XFER_ISOC:
ep_type = ENDP_EPTYPE_ISO;
break;
}
struct udc_endp_regs *out_p = &outep_regs_p[ep_num];
struct udc_endp_regs *in_p = &inep_regs_p[ep_num];
if (!ep_addr) {
/* Setup endpoint 0 */
buffer_size = packet_size;
writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK,
&in_p->endp_cntl);
writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK,
&out_p->endp_cntl);
writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl);
writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
writel(packet_size, &in_p->endp_maxpacksize);
writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl);
writel(packet_size | ((buffer_size / sizeof(int)) << 16),
&out_p->endp_maxpacksize);
} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
/* Setup the IN endpoint */
writel(0x0, &in_p->endp_status);
writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl);
writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
writel(packet_size, &in_p->endp_maxpacksize);
if (!strcmp(tt, "cdc_acm")) {
if (ep_type == ENDP_EPTYPE_INT) {
/* Conf no. 1 Interface no. 0 */
writel((packet_size << 19) |
ENDP_EPDIR_IN | (1 << 7) |
(0 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
} else {
/* Conf no. 1 Interface no. 1 */
writel((packet_size << 19) |
ENDP_EPDIR_IN | (1 << 7) |
(1 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
}
} else {
/* Conf no. 1 Interface no. 0 */
writel((packet_size << 19) |
ENDP_EPDIR_IN | (1 << 7) |
(0 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
}
} else {
/* Setup the OUT endpoint */
writel(0x0, &out_p->endp_status);
writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl);
writel(packet_size | ((buffer_size / sizeof(int)) << 16),
&out_p->endp_maxpacksize);
if (!strcmp(tt, "cdc_acm")) {
writel((packet_size << 19) |
ENDP_EPDIR_OUT | (1 << 7) |
(1 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
} else {
writel((packet_size << 19) |
ENDP_EPDIR_OUT | (1 << 7) |
(0 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
}
}
endp_intmask = readl(&udc_regs_p->endp_int_mask);
endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num);
writel(endp_intmask, &udc_regs_p->endp_int_mask);
}
/* Turn on the USB connection by enabling the pullup resistor */
void udc_connect(void)
{
u32 plug_st, dev_cntl;
dev_cntl = readl(&udc_regs_p->dev_cntl);
dev_cntl |= DEV_CNTL_SOFTDISCONNECT;
writel(dev_cntl, &udc_regs_p->dev_cntl);
udelay(1000);
dev_cntl = readl(&udc_regs_p->dev_cntl);
dev_cntl &= ~DEV_CNTL_SOFTDISCONNECT;
writel(dev_cntl, &udc_regs_p->dev_cntl);
plug_st = readl(&plug_regs_p->plug_state);
plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
writel(plug_st, &plug_regs_p->plug_state);
}
/* Turn off the USB connection by disabling the pullup resistor */
void udc_disconnect(void)
{
u32 plug_st;
writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
plug_st = readl(&plug_regs_p->plug_state);
plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
writel(plug_st, &plug_regs_p->plug_state);
}
/* Switch on the UDC */
void udc_enable(struct usb_device_instance *device)
{
UDCDBGA("enable device %p, status %d", device, device->status);
/* Save the device structure pointer */
udc_device = device;
/* Setup ep0 urb */
if (!ep0_urb) {
ep0_urb =
usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array);
} else {
serial_printf("udc_enable: ep0_urb already allocated %p\n",
ep0_urb);
}
writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
}
/**
* udc_startup - allow udc code to do any additional startup
*/
void udc_startup_events(struct usb_device_instance *device)
{
/* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
usbd_device_event_irq(device, DEVICE_INIT, 0);
/*
* The DEVICE_CREATE event puts the USB device in the state
* STATE_ATTACHED.
*/
usbd_device_event_irq(device, DEVICE_CREATE, 0);
/*
* Some USB controller driver implementations signal
* DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
* DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
* and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
* The DW USB client controller has the capability to detect when the
* USB cable is connected to a powered USB bus, so we will defer the
* DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later.
*/
udc_enable(device);
}
/*
* Plug detection interrupt handling
*/
static void dw_udc_plug_irq(void)
{
if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) {
/*
* USB cable attached
* Turn off PHY reset bit (PLUG detect).
* Switch PHY opmode to normal operation (PLUG detect).
*/
udc_connect();
writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
UDCDBG("device attached and powered");
udc_state_transition(udc_device->device_state, STATE_POWERED);
} else {
writel(~0x0, &udc_regs_p->dev_int_mask);
UDCDBG("device detached or unpowered");
udc_state_transition(udc_device->device_state, STATE_ATTACHED);
}
}
/*
* Device interrupt handling
*/
static void dw_udc_dev_irq(void)
{
if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) {
writel(~0x0, &udc_regs_p->endp_int_mask);
writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH,
&inep_regs_p[0].endp_cntl);
writel(DEV_INT_USBRESET, &udc_regs_p->dev_int);
/*
* This endpoint0 specific register can be programmed only
* after the phy clock is initialized
*/
writel((EP0_MAX_PACKET_SIZE << 19) | ENDP_EPTYPE_CNTL,
&udc_regs_p->udc_endp_reg[0]);
UDCDBG("device reset in progess");
udc_state_transition(udc_device->device_state, STATE_DEFAULT);
}
/* Device Enumeration completed */
if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) {
writel(DEV_INT_ENUM, &udc_regs_p->dev_int);
/* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */
writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001,
&udc_regs_p->endp_int_mask);
UDCDBG("default -> addressed");
udc_state_transition(udc_device->device_state, STATE_ADDRESSED);
}
/* The USB will be in SUSPEND in 3 ms */
if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) {
writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int);
UDCDBG("entering inactive state");
/* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */
}
/* SetConfiguration command received */
if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) {
writel(DEV_INT_SETCFG, &udc_regs_p->dev_int);
UDCDBG("entering configured state");
udc_state_transition(udc_device->device_state,
STATE_CONFIGURED);
}
/* SetInterface command received */
if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF)
writel(DEV_INT_SETINTF, &udc_regs_p->dev_int);
/* USB Suspend detected on cable */
if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) {
writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int);
UDCDBG("entering suspended state");
usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0);
}
/* USB Start-Of-Frame detected on cable */
if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF)
writel(DEV_INT_SOF, &udc_regs_p->dev_int);
}
/*
* Endpoint interrupt handling
*/
static void dw_udc_endpoint_irq(void)
{
while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) {
writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int);
if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK)
== ENDP_STATUS_OUT_SETUP) {
dw_udc_setup(udc_device->bus->endpoint_array + 0);
writel(ENDP_STATUS_OUT_SETUP,
&outep_regs_p[0].endp_status);
} else if ((readl(&outep_regs_p[0].endp_status) &
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
dw_udc_ep0_rx(udc_device->bus->endpoint_array + 0);
writel(ENDP_STATUS_OUT_DATA,
&outep_regs_p[0].endp_status);
} else if ((readl(&outep_regs_p[0].endp_status) &
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
/* NONE received */
}
writel(0x0, &outep_regs_p[0].endp_status);
}
if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) {
dw_udc_ep0_tx(udc_device->bus->endpoint_array + 0);
writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status);
writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int);
}
if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) {
u32 epnum = 0;
u32 ep_int = readl(&udc_regs_p->endp_int) &
ENDP_INT_NONISOOUT_MSK;
ep_int >>= 16;
while (0x0 == (ep_int & 0x1)) {
ep_int >>= 1;
epnum++;
}
writel((1 << 16) << epnum, &udc_regs_p->endp_int);
if ((readl(&outep_regs_p[epnum].endp_status) &
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
dw_udc_epn_rx(epnum);
writel(ENDP_STATUS_OUT_DATA,
&outep_regs_p[epnum].endp_status);
} else if ((readl(&outep_regs_p[epnum].endp_status) &
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
writel(0x0, &outep_regs_p[epnum].endp_status);
}
}
if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) {
u32 epnum = 0;
u32 ep_int = readl(&udc_regs_p->endp_int) &
ENDP_INT_NONISOIN_MSK;
while (0x0 == (ep_int & 0x1)) {
ep_int >>= 1;
epnum++;
}
if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) {
writel(ENDP_STATUS_IN,
&outep_regs_p[epnum].endp_status);
dw_udc_epn_tx(epnum);
writel(ENDP_STATUS_IN,
&outep_regs_p[epnum].endp_status);
}
writel((1 << epnum), &udc_regs_p->endp_int);
}
}
/*
* UDC interrupts
*/
void udc_irq(void)
{
/*
* Loop while we have interrupts.
* If we don't do this, the input chain
* polling delay is likely to miss
* host requests.
*/
while (readl(&plug_regs_p->plug_pending))
dw_udc_plug_irq();
while (readl(&udc_regs_p->dev_int))
dw_udc_dev_irq();
if (readl(&udc_regs_p->endp_int))
dw_udc_endpoint_irq();
}
/* Flow control */
void udc_set_nak(int epid)
{
writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
&inep_regs_p[epid].endp_cntl);
writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
&outep_regs_p[epid].endp_cntl);
}
void udc_unset_nak(int epid)
{
u32 val;
val = readl(&inep_regs_p[epid].endp_cntl);
val &= ~ENDP_CNTL_SNAK;
val |= ENDP_CNTL_CNAK;
writel(val, &inep_regs_p[epid].endp_cntl);
val = readl(&outep_regs_p[epid].endp_cntl);
val &= ~ENDP_CNTL_SNAK;
val |= ENDP_CNTL_CNAK;
writel(val, &outep_regs_p[epid].endp_cntl);
}