u-boot-brain/drivers/phy/marvell/comphy_cp110.c
Stefan Roese 6ecc0b1cdf phy: marvell: add IGNORE COMPHY type
This type tells u-boot to preserve the COMPHY settings as is
it is usefull in situations where the COMPHY was initialized by
earlier firmware.
Note that IGNORE is different from UNCONNECTED since setting
UNCONNECTED type will disconnect the COMPHY in the COMPHY MUX
which is a desired behaviour

Signed-off-by: Yehuda Yitschak <yehuday@marvell.com>
Signed-off-by: Stefan Roese <sr@denx.de>
Signed-off-by: Igal Liberman <igall@marvell.com>
Reviewed-by: Stefan Roese <sr@denx.de>
2017-05-09 13:38:18 +02:00

1733 lines
59 KiB
C

/*
* Copyright (C) 2015-2016 Marvell International Ltd.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <fdtdec.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include "comphy.h"
#include "comphy_hpipe.h"
#include "sata.h"
#include "utmi_phy.h"
DECLARE_GLOBAL_DATA_PTR;
#define SD_ADDR(base, lane) (base + 0x1000 * lane)
#define HPIPE_ADDR(base, lane) (SD_ADDR(base, lane) + 0x800)
#define COMPHY_ADDR(base, lane) (base + 0x28 * lane)
struct utmi_phy_data {
void __iomem *utmi_base_addr;
void __iomem *usb_cfg_addr;
void __iomem *utmi_cfg_addr;
u32 utmi_phy_port;
};
/*
* For CP-110 we have 2 Selector registers "PHY Selectors",
* and "PIPE Selectors".
* PIPE selector include USB and PCIe options.
* PHY selector include the Ethernet and SATA options, every Ethernet
* option has different options, for example: serdes lane2 had option
* Eth_port_0 that include (SGMII0, XAUI0, RXAUI0, SFI)
*/
struct comphy_mux_data cp110_comphy_phy_mux_data[] = {
{4, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII2, 0x1}, /* Lane 0 */
{PHY_TYPE_XAUI2, 0x1}, {PHY_TYPE_SATA1, 0x4} } },
{4, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII3, 0x1}, /* Lane 1 */
{PHY_TYPE_XAUI3, 0x1}, {PHY_TYPE_SATA0, 0x4} } },
{6, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII0, 0x1}, /* Lane 2 */
{PHY_TYPE_XAUI0, 0x1}, {PHY_TYPE_RXAUI0, 0x1},
{PHY_TYPE_SFI, 0x1}, {PHY_TYPE_SATA0, 0x4} } },
{8, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII0, 0x1}, /* Lane 3 */
{PHY_TYPE_XAUI0, 0x1}, {PHY_TYPE_RXAUI0, 0x1},
{PHY_TYPE_SFI, 0x1}, {PHY_TYPE_XAUI1, 0x1},
{PHY_TYPE_RXAUI1, 0x1}, {PHY_TYPE_SATA1, 0x4} } },
{7, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_SGMII0, 0x2}, /* Lane 4 */
{PHY_TYPE_XAUI0, 0x1}, {PHY_TYPE_RXAUI0, 0x1}, {PHY_TYPE_SFI, 0x1},
{PHY_TYPE_SGMII2, 0x1}, {PHY_TYPE_XAUI2, 0x1} } },
{6, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_XAUI1, 0x1}, /* Lane 5 */
{PHY_TYPE_RXAUI1, 0x1}, {PHY_TYPE_SGMII3, 0x1},
{PHY_TYPE_XAUI3, 0x1}, {PHY_TYPE_SATA1, 0x4} } },
};
struct comphy_mux_data cp110_comphy_pipe_mux_data[] = {
{2, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_PEX0, 0x4} } }, /* Lane 0 */
{4, {{PHY_TYPE_UNCONNECTED, 0x0}, /* Lane 1 */
{PHY_TYPE_USB3_HOST0, 0x1}, {PHY_TYPE_USB3_DEVICE, 0x2},
{PHY_TYPE_PEX0, 0x4} } },
{3, {{PHY_TYPE_UNCONNECTED, 0x0}, /* Lane 2 */
{PHY_TYPE_USB3_HOST0, 0x1}, {PHY_TYPE_PEX0, 0x4} } },
{3, {{PHY_TYPE_UNCONNECTED, 0x0}, /* Lane 3 */
{PHY_TYPE_USB3_HOST1, 0x1}, {PHY_TYPE_PEX0, 0x4} } },
{4, {{PHY_TYPE_UNCONNECTED, 0x0}, /* Lane 4 */
{PHY_TYPE_USB3_HOST1, 0x1},
{PHY_TYPE_USB3_DEVICE, 0x2}, {PHY_TYPE_PEX1, 0x4} } },
{2, {{PHY_TYPE_UNCONNECTED, 0x0}, {PHY_TYPE_PEX2, 0x4} } }, /* Lane 5 */
};
static u32 polling_with_timeout(void __iomem *addr, u32 val,
u32 mask, unsigned long usec_timout)
{
u32 data;
do {
udelay(1);
data = readl(addr) & mask;
} while (data != val && --usec_timout > 0);
if (usec_timout == 0)
return data;
return 0;
}
static int comphy_pcie_power_up(u32 lane, u32 pcie_width, bool clk_src,
bool is_end_point, void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
u32 pcie_clk = 0; /* set input by default */
debug_enter();
/*
* ToDo:
* Add SAR (Sample-At-Reset) configuration for the PCIe clock
* direction. SAR code is currently not ported from Marvell
* U-Boot to mainline version.
*
* SerDes Lane 4/5 got the PCIe ref-clock #1,
* and SerDes Lane 0 got PCIe ref-clock #0
*/
debug("PCIe clock = %x\n", pcie_clk);
debug("PCIe RC = %d\n", !is_end_point);
debug("PCIe width = %d\n", pcie_width);
/* enable PCIe by4 and by2 */
if (lane == 0) {
if (pcie_width == 4) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_PCIE_X4_EN_OFFSET,
COMMON_PHY_SD_CTRL1_PCIE_X4_EN_MASK);
} else if (pcie_width == 2) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_PCIE_X2_EN_OFFSET,
COMMON_PHY_SD_CTRL1_PCIE_X2_EN_MASK);
}
}
/*
* If PCIe clock is output and clock source from SerDes lane 5,
* we need to configure the clock-source MUX.
* By default, the clock source is from lane 4
*/
if (pcie_clk && clk_src && (lane == 5)) {
reg_set((void __iomem *)DFX_DEV_GEN_CTRL12,
0x3 << DFX_DEV_GEN_PCIE_CLK_SRC_OFFSET,
DFX_DEV_GEN_PCIE_CLK_SRC_MASK);
}
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x1 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
mask |= COMMON_PHY_PHY_MODE_MASK;
data |= 0x0 << COMMON_PHY_PHY_MODE_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* release from hard reset */
mask = COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x1 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* Set PIPE soft reset */
mask = HPIPE_RST_CLK_CTRL_PIPE_RST_MASK;
data = 0x1 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET;
/* Set PHY datapath width mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_FIXED_PCLK_MASK;
data |= 0x1 << HPIPE_RST_CLK_CTRL_FIXED_PCLK_OFFSET;
/* Set Data bus width USB mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_PIPE_WIDTH_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_PIPE_WIDTH_OFFSET;
/* Set CORE_CLK output frequency for 250Mhz */
mask |= HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG, data, mask);
/* Set PLL ready delay for 0x2 */
data = 0x2 << HPIPE_CLK_SRC_LO_PLL_RDY_DL_OFFSET;
mask = HPIPE_CLK_SRC_LO_PLL_RDY_DL_MASK;
if (pcie_width != 1) {
data |= 0x1 << HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SEL_OFFSET;
mask |= HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SEL_MASK;
data |= 0x1 << HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SCALE_OFFSET;
mask |= HPIPE_CLK_SRC_LO_BUNDLE_PERIOD_SCALE_MASK;
}
reg_set(hpipe_addr + HPIPE_CLK_SRC_LO_REG, data, mask);
/* Set PIPE mode interface to PCIe3 - 0x1 & set lane order */
data = 0x1 << HPIPE_CLK_SRC_HI_MODE_PIPE_OFFSET;
mask = HPIPE_CLK_SRC_HI_MODE_PIPE_MASK;
if (pcie_width != 1) {
mask |= HPIPE_CLK_SRC_HI_LANE_STRT_MASK;
mask |= HPIPE_CLK_SRC_HI_LANE_MASTER_MASK;
mask |= HPIPE_CLK_SRC_HI_LANE_BREAK_MASK;
if (lane == 0) {
data |= 0x1 << HPIPE_CLK_SRC_HI_LANE_STRT_OFFSET;
data |= 0x1 << HPIPE_CLK_SRC_HI_LANE_MASTER_OFFSET;
} else if (lane == (pcie_width - 1)) {
data |= 0x1 << HPIPE_CLK_SRC_HI_LANE_BREAK_OFFSET;
}
}
reg_set(hpipe_addr + HPIPE_CLK_SRC_HI_REG, data, mask);
/* Config update polarity equalization */
reg_set(hpipe_addr + HPIPE_LANE_EQ_CFG1_REG,
0x1 << HPIPE_CFG_UPDATE_POLARITY_OFFSET,
HPIPE_CFG_UPDATE_POLARITY_MASK);
/* Set PIPE version 4 to mode enable */
reg_set(hpipe_addr + HPIPE_DFE_CTRL_28_REG,
0x1 << HPIPE_DFE_CTRL_28_PIPE4_OFFSET,
HPIPE_DFE_CTRL_28_PIPE4_MASK);
/* TODO: check if pcie clock is output/input - for bringup use input*/
/* Enable PIN clock 100M_125M */
mask = 0;
data = 0;
/* Only if clock is output, configure the clock-source mux */
if (pcie_clk) {
mask |= HPIPE_MISC_CLK100M_125M_MASK;
data |= 0x1 << HPIPE_MISC_CLK100M_125M_OFFSET;
}
/*
* Set PIN_TXDCLK_2X Clock Frequency Selection for outputs 500MHz
* clock
*/
mask |= HPIPE_MISC_TXDCLK_2X_MASK;
data |= 0x0 << HPIPE_MISC_TXDCLK_2X_OFFSET;
/* Enable 500MHz Clock */
mask |= HPIPE_MISC_CLK500_EN_MASK;
data |= 0x1 << HPIPE_MISC_CLK500_EN_OFFSET;
if (pcie_clk) { /* output */
/* Set reference clock comes from group 1 */
mask |= HPIPE_MISC_REFCLK_SEL_MASK;
data |= 0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET;
} else {
/* Set reference clock comes from group 2 */
mask |= HPIPE_MISC_REFCLK_SEL_MASK;
data |= 0x1 << HPIPE_MISC_REFCLK_SEL_OFFSET;
}
reg_set(hpipe_addr + HPIPE_MISC_REG, data, mask);
if (pcie_clk) { /* output */
/* Set reference frequcency select - 0x2 for 25MHz*/
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x2 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
} else {
/* Set reference frequcency select - 0x0 for 100MHz*/
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x0 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
}
/* Set PHY mode to PCIe */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x3 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* ref clock alignment */
if (pcie_width != 1) {
mask = HPIPE_LANE_ALIGN_OFF_MASK;
data = 0x0 << HPIPE_LANE_ALIGN_OFF_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_ALIGN_REG, data, mask);
}
/*
* Set the amount of time spent in the LoZ state - set for 0x7 only if
* the PCIe clock is output
*/
if (pcie_clk) {
reg_set(hpipe_addr + HPIPE_GLOBAL_PM_CTRL,
0x7 << HPIPE_GLOBAL_PM_RXDLOZ_WAIT_OFFSET,
HPIPE_GLOBAL_PM_RXDLOZ_WAIT_MASK);
}
/* Set Maximal PHY Generation Setting(8Gbps) */
mask = HPIPE_INTERFACE_GEN_MAX_MASK;
data = 0x2 << HPIPE_INTERFACE_GEN_MAX_OFFSET;
/* Set Link Train Mode (Tx training control pins are used) */
mask |= HPIPE_INTERFACE_LINK_TRAIN_MASK;
data |= 0x1 << HPIPE_INTERFACE_LINK_TRAIN_OFFSET;
reg_set(hpipe_addr + HPIPE_INTERFACE_REG, data, mask);
/* Set Idle_sync enable */
mask = HPIPE_PCIE_IDLE_SYNC_MASK;
data = 0x1 << HPIPE_PCIE_IDLE_SYNC_OFFSET;
/* Select bits for PCIE Gen3(32bit) */
mask |= HPIPE_PCIE_SEL_BITS_MASK;
data |= 0x2 << HPIPE_PCIE_SEL_BITS_OFFSET;
reg_set(hpipe_addr + HPIPE_PCIE_REG0, data, mask);
/* Enable Tx_adapt_g1 */
mask = HPIPE_TX_TRAIN_CTRL_G1_MASK;
data = 0x1 << HPIPE_TX_TRAIN_CTRL_G1_OFFSET;
/* Enable Tx_adapt_gn1 */
mask |= HPIPE_TX_TRAIN_CTRL_GN1_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_CTRL_GN1_OFFSET;
/* Disable Tx_adapt_g0 */
mask |= HPIPE_TX_TRAIN_CTRL_G0_MASK;
data |= 0x0 << HPIPE_TX_TRAIN_CTRL_G0_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_REG, data, mask);
/* Set reg_tx_train_chk_init */
mask = HPIPE_TX_TRAIN_CHK_INIT_MASK;
data = 0x0 << HPIPE_TX_TRAIN_CHK_INIT_OFFSET;
/* Enable TX_COE_FM_PIN_PCIE3_EN */
mask |= HPIPE_TX_TRAIN_COE_FM_PIN_PCIE3_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_COE_FM_PIN_PCIE3_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_REG, data, mask);
debug("stage: TRx training parameters\n");
/* Set Preset sweep configurations */
mask = HPIPE_TX_TX_STATUS_CHECK_MODE_MASK;
data = 0x1 << HPIPE_TX_STATUS_CHECK_MODE_OFFSET;
mask |= HPIPE_TX_NUM_OF_PRESET_MASK;
data |= 0x7 << HPIPE_TX_NUM_OF_PRESET_OFFSET;
mask |= HPIPE_TX_SWEEP_PRESET_EN_MASK;
data |= 0x1 << HPIPE_TX_SWEEP_PRESET_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_11_REG, data, mask);
/* Tx train start configuration */
mask = HPIPE_TX_TRAIN_START_SQ_EN_MASK;
data = 0x1 << HPIPE_TX_TRAIN_START_SQ_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_START_FRM_DET_EN_MASK;
data |= 0x0 << HPIPE_TX_TRAIN_START_FRM_DET_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_START_FRM_LOCK_EN_MASK;
data |= 0x0 << HPIPE_TX_TRAIN_START_FRM_LOCK_EN_OFFSET;
mask |= HPIPE_TX_TRAIN_WAIT_TIME_EN_MASK;
data |= 0x1 << HPIPE_TX_TRAIN_WAIT_TIME_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_5_REG, data, mask);
/* Enable Tx train P2P */
mask = HPIPE_TX_TRAIN_P2P_HOLD_MASK;
data = 0x1 << HPIPE_TX_TRAIN_P2P_HOLD_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_0_REG, data, mask);
/* Configure Tx train timeout */
mask = HPIPE_TRX_TRAIN_TIMER_MASK;
data = 0x17 << HPIPE_TRX_TRAIN_TIMER_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_4_REG, data, mask);
/* Disable G0/G1/GN1 adaptation */
mask = HPIPE_TX_TRAIN_CTRL_G1_MASK | HPIPE_TX_TRAIN_CTRL_GN1_MASK
| HPIPE_TX_TRAIN_CTRL_G0_OFFSET;
data = 0;
reg_set(hpipe_addr + HPIPE_TX_TRAIN_CTRL_REG, data, mask);
/* Disable DTL frequency loop */
mask = HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data = 0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Configure G3 DFE */
mask = HPIPE_G3_DFE_RES_MASK;
data = 0x3 << HPIPE_G3_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_4_REG, data, mask);
/* Force DFE resolution (use GEN table value) */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x1 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* Configure initial and final coefficient value for receiver */
mask = HPIPE_G3_RX_SELMUPI_MASK;
data = 0x1 << HPIPE_G3_RX_SELMUPI_OFFSET;
mask |= HPIPE_G3_RX_SELMUPF_MASK;
data |= 0x1 << HPIPE_G3_RX_SELMUPF_OFFSET;
mask |= HPIPE_G3_SETTING_BIT_MASK;
data |= 0x0 << HPIPE_G3_SETTING_BIT_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTINGS_1_REG, data, mask);
/* Trigger sampler enable pulse */
mask = HPIPE_SMAPLER_MASK;
data = 0x1 << HPIPE_SMAPLER_OFFSET;
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, data, mask);
udelay(5);
reg_set(hpipe_addr + HPIPE_SAMPLER_N_PROC_CALIB_CTRL_REG, 0, mask);
/* FFE resistor tuning for different bandwidth */
mask = HPIPE_G3_FFE_DEG_RES_LEVEL_MASK;
data = 0x1 << HPIPE_G3_FFE_DEG_RES_LEVEL_OFFSET;
mask |= HPIPE_G3_FFE_LOAD_RES_LEVEL_MASK;
data |= 0x1 << HPIPE_G3_FFE_LOAD_RES_LEVEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G3_SETTING_3_REG, data, mask);
if (!is_end_point) {
/* Set phy in root complex mode */
mask = HPIPE_CFG_PHY_RC_EP_MASK;
data = 0x1 << HPIPE_CFG_PHY_RC_EP_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_EQU_CONFIG_0_REG, data, mask);
}
debug("stage: Comphy power up\n");
/*
* For PCIe by4 or by2 - release from reset only after finish to
* configure all lanes
*/
if ((pcie_width == 1) || (lane == (pcie_width - 1))) {
u32 i, start_lane, end_lane;
if (pcie_width != 1) {
/* allows writing to all lanes in one write */
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x0 <<
COMMON_PHY_SD_CTRL1_COMPHY_0_4_PORT_OFFSET,
COMMON_PHY_SD_CTRL1_COMPHY_0_4_PORT_MASK);
start_lane = 0;
end_lane = pcie_width;
/*
* Release from PIPE soft reset
* for PCIe by4 or by2 - release from soft reset
* all lanes - can't use read modify write
*/
reg_set(HPIPE_ADDR(hpipe_base, 0) +
HPIPE_RST_CLK_CTRL_REG, 0x24, 0xffffffff);
} else {
start_lane = lane;
end_lane = lane + 1;
/*
* Release from PIPE soft reset
* for PCIe by4 or by2 - release from soft reset
* all lanes
*/
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG,
0x0 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET,
HPIPE_RST_CLK_CTRL_PIPE_RST_MASK);
}
if (pcie_width != 1) {
/* disable writing to all lanes with one write */
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x3210 <<
COMMON_PHY_SD_CTRL1_COMPHY_0_4_PORT_OFFSET,
COMMON_PHY_SD_CTRL1_COMPHY_0_4_PORT_MASK);
}
debug("stage: Check PLL\n");
/* Read lane status */
for (i = start_lane; i < end_lane; i++) {
addr = HPIPE_ADDR(hpipe_base, i) +
HPIPE_LANE_STATUS1_REG;
data = HPIPE_LANE_STATUS1_PCLK_EN_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
hpipe_addr + HPIPE_LANE_STATUS1_REG,
data);
error("HPIPE_LANE_STATUS1_PCLK_EN_MASK is 0\n");
ret = 0;
}
}
}
debug_exit();
return ret;
}
static int comphy_usb3_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x1 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
mask |= COMMON_PHY_PHY_MODE_MASK;
data |= 0x1 << COMMON_PHY_PHY_MODE_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* release from hard reset */
mask = COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x1 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* Set PIPE soft reset */
mask = HPIPE_RST_CLK_CTRL_PIPE_RST_MASK;
data = 0x1 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET;
/* Set PHY datapath width mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_FIXED_PCLK_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_FIXED_PCLK_OFFSET;
/* Set Data bus width USB mode for V0 */
mask |= HPIPE_RST_CLK_CTRL_PIPE_WIDTH_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_PIPE_WIDTH_OFFSET;
/* Set CORE_CLK output frequency for 250Mhz */
mask |= HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_MASK;
data |= 0x0 << HPIPE_RST_CLK_CTRL_CORE_FREQ_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG, data, mask);
/* Set PLL ready delay for 0x2 */
reg_set(hpipe_addr + HPIPE_CLK_SRC_LO_REG,
0x2 << HPIPE_CLK_SRC_LO_PLL_RDY_DL_OFFSET,
HPIPE_CLK_SRC_LO_PLL_RDY_DL_MASK);
/* Set reference clock to come from group 1 - 25Mhz */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Set reference frequcency select - 0x2 */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x2 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
/* Set PHY mode to USB - 0x5 */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x5 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Set the amount of time spent in the LoZ state - set for 0x7 */
reg_set(hpipe_addr + HPIPE_GLOBAL_PM_CTRL,
0x7 << HPIPE_GLOBAL_PM_RXDLOZ_WAIT_OFFSET,
HPIPE_GLOBAL_PM_RXDLOZ_WAIT_MASK);
/* Set max PHY generation setting - 5Gbps */
reg_set(hpipe_addr + HPIPE_INTERFACE_REG,
0x1 << HPIPE_INTERFACE_GEN_MAX_OFFSET,
HPIPE_INTERFACE_GEN_MAX_MASK);
/* Set select data width 20Bit (SEL_BITS[2:0]) */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x1 << HPIPE_LOOPBACK_SEL_OFFSET,
HPIPE_LOOPBACK_SEL_MASK);
/* select de-emphasize 3.5db */
reg_set(hpipe_addr + HPIPE_LANE_CONFIG0_REG,
0x1 << HPIPE_LANE_CONFIG0_TXDEEMPH0_OFFSET,
HPIPE_LANE_CONFIG0_TXDEEMPH0_MASK);
/* override tx margining from the MAC */
reg_set(hpipe_addr + HPIPE_TST_MODE_CTRL_REG,
0x1 << HPIPE_TST_MODE_CTRL_MODE_MARGIN_OFFSET,
HPIPE_TST_MODE_CTRL_MODE_MARGIN_MASK);
/* Start analog paramters from ETP(HW) */
debug("stage: Analog paramters from ETP(HW)\n");
/* Set Pin DFE_PAT_DIS -> Bit[1]: PIN_DFE_PAT_DIS = 0x0 */
mask = HPIPE_LANE_CFG4_DFE_CTRL_MASK;
data = 0x1 << HPIPE_LANE_CFG4_DFE_CTRL_OFFSET;
/* Set Override PHY DFE control pins for 0x1 */
mask |= HPIPE_LANE_CFG4_DFE_OVER_MASK;
data |= 0x1 << HPIPE_LANE_CFG4_DFE_OVER_OFFSET;
/* Set Spread Spectrum Clock Enable fot 0x1 */
mask |= HPIPE_LANE_CFG4_SSC_CTRL_MASK;
data |= 0x1 << HPIPE_LANE_CFG4_SSC_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_LANE_CFG4_REG, data, mask);
/* End of analog parameters */
debug("stage: Comphy power up\n");
/* Release from PIPE soft reset */
reg_set(hpipe_addr + HPIPE_RST_CLK_CTRL_REG,
0x0 << HPIPE_RST_CLK_CTRL_PIPE_RST_OFFSET,
HPIPE_RST_CLK_CTRL_PIPE_RST_MASK);
/* wait 15ms - for comphy calibration done */
debug("stage: Check PLL\n");
/* Read lane status */
addr = hpipe_addr + HPIPE_LANE_STATUS1_REG;
data = HPIPE_LANE_STATUS1_PCLK_EN_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
hpipe_addr + HPIPE_LANE_STATUS1_REG, data);
error("HPIPE_LANE_STATUS1_PCLK_EN_MASK is 0\n");
ret = 0;
}
debug_exit();
return ret;
}
static int comphy_sata_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base, int comphy_index)
{
u32 mask, data, i, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
void __iomem *sata_base = NULL;
int sata_node = -1; /* Set to -1 in order to read the first sata node */
debug_enter();
/*
* Assumption - each CP has only one SATA controller
* Calling fdt_node_offset_by_compatible first time (with sata_node = -1
* will return the first node always.
* In order to parse each CPs SATA node, fdt_node_offset_by_compatible
* must be called again (according to the CP id)
*/
for (i = 0; i < (comphy_index + 1); i++)
sata_node = fdt_node_offset_by_compatible(
gd->fdt_blob, sata_node, "marvell,armada-8k-ahci");
if (sata_node == 0) {
error("SATA node not found in FDT\n");
return 0;
}
sata_base = (void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, sata_node, "reg", 0, NULL, true);
if (sata_base == NULL) {
error("SATA address not found in FDT\n");
return 0;
}
debug("SATA address found in FDT %p\n", sata_base);
debug("stage: MAC configuration - power down comphy\n");
/*
* MAC configuration powe down comphy use indirect address for
* vendor spesific SATA control register
*/
reg_set(sata_base + SATA3_VENDOR_ADDRESS,
SATA_CONTROL_REG << SATA3_VENDOR_ADDR_OFSSET,
SATA3_VENDOR_ADDR_MASK);
/* SATA 0 power down */
mask = SATA3_CTRL_SATA0_PD_MASK;
data = 0x1 << SATA3_CTRL_SATA0_PD_OFFSET;
/* SATA 1 power down */
mask |= SATA3_CTRL_SATA1_PD_MASK;
data |= 0x1 << SATA3_CTRL_SATA1_PD_OFFSET;
/* SATA SSU disable */
mask |= SATA3_CTRL_SATA1_ENABLE_MASK;
data |= 0x0 << SATA3_CTRL_SATA1_ENABLE_OFFSET;
/* SATA port 1 disable */
mask |= SATA3_CTRL_SATA_SSU_MASK;
data |= 0x0 << SATA3_CTRL_SATA_SSU_OFFSET;
reg_set(sata_base + SATA3_VENDOR_DATA, data, mask);
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
mask |= COMMON_PHY_CFG1_PWR_ON_RESET_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PWR_ON_RESET_OFFSET;
mask |= COMMON_PHY_CFG1_CORE_RSTN_MASK;
data |= 0x0 << COMMON_PHY_CFG1_CORE_RSTN_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Set select data width 40Bit - SATA mode only */
reg_set(comphy_addr + COMMON_PHY_CFG6_REG,
0x1 << COMMON_PHY_CFG6_IF_40_SEL_OFFSET,
COMMON_PHY_CFG6_IF_40_SEL_MASK);
/* release from hard reset in SD external */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
debug("stage: Comphy configuration\n");
/* Start comphy Configuration */
/* Set reference clock to comes from group 1 - choose 25Mhz */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Reference frequency select set 1 (for SATA = 25Mhz) */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
/* PHY mode select (set SATA = 0x0 */
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x0 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Set max PHY generation setting - 6Gbps */
reg_set(hpipe_addr + HPIPE_INTERFACE_REG,
0x2 << HPIPE_INTERFACE_GEN_MAX_OFFSET,
HPIPE_INTERFACE_GEN_MAX_MASK);
/* Set select data width 40Bit (SEL_BITS[2:0]) */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x2 << HPIPE_LOOPBACK_SEL_OFFSET, HPIPE_LOOPBACK_SEL_MASK);
debug("stage: Analog paramters from ETP(HW)\n");
/*
* TODO: Set analog paramters from ETP(HW) - for now use the
* default datas
*/
/* DFE reset sequence */
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x1 << HPIPE_PWR_CTR_RST_DFE_OFFSET,
HPIPE_PWR_CTR_RST_DFE_MASK);
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x0 << HPIPE_PWR_CTR_RST_DFE_OFFSET,
HPIPE_PWR_CTR_RST_DFE_MASK);
/* SW reset for interupt logic */
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x1 << HPIPE_PWR_CTR_SFT_RST_OFFSET,
HPIPE_PWR_CTR_SFT_RST_MASK);
reg_set(hpipe_addr + HPIPE_PWR_CTR_REG,
0x0 << HPIPE_PWR_CTR_SFT_RST_OFFSET,
HPIPE_PWR_CTR_SFT_RST_MASK);
debug("stage: Comphy power up\n");
/*
* MAC configuration power up comphy - power up PLL/TX/RX
* use indirect address for vendor spesific SATA control register
*/
reg_set(sata_base + SATA3_VENDOR_ADDRESS,
SATA_CONTROL_REG << SATA3_VENDOR_ADDR_OFSSET,
SATA3_VENDOR_ADDR_MASK);
/* SATA 0 power up */
mask = SATA3_CTRL_SATA0_PD_MASK;
data = 0x0 << SATA3_CTRL_SATA0_PD_OFFSET;
/* SATA 1 power up */
mask |= SATA3_CTRL_SATA1_PD_MASK;
data |= 0x0 << SATA3_CTRL_SATA1_PD_OFFSET;
/* SATA SSU enable */
mask |= SATA3_CTRL_SATA1_ENABLE_MASK;
data |= 0x1 << SATA3_CTRL_SATA1_ENABLE_OFFSET;
/* SATA port 1 enable */
mask |= SATA3_CTRL_SATA_SSU_MASK;
data |= 0x1 << SATA3_CTRL_SATA_SSU_OFFSET;
reg_set(sata_base + SATA3_VENDOR_DATA, data, mask);
/* MBUS request size and interface select register */
reg_set(sata_base + SATA3_VENDOR_ADDRESS,
SATA_MBUS_SIZE_SELECT_REG << SATA3_VENDOR_ADDR_OFSSET,
SATA3_VENDOR_ADDR_MASK);
/* Mbus regret enable */
reg_set(sata_base + SATA3_VENDOR_DATA,
0x1 << SATA_MBUS_REGRET_EN_OFFSET, SATA_MBUS_REGRET_EN_MASK);
debug("stage: Check PLL\n");
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_TX_MASK &
SD_EXTERNAL_STATUS0_PLL_RX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
hpipe_addr + HPIPE_LANE_STATUS1_REG, data);
error("SD_EXTERNAL_STATUS0_PLL_TX is %d, SD_EXTERNAL_STATUS0_PLL_RX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK));
ret = 0;
}
debug_exit();
return ret;
}
static int comphy_sgmii_power_up(u32 lane, u32 sgmii_speed,
void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
if (sgmii_speed == PHY_SPEED_1_25G) {
data |= 0x6 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
data |= 0x6 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
} else {
/* 3.125G */
data |= 0x8 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
data |= 0x8 << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
}
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 1 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
mask = HPIPE_MISC_REFCLK_SEL_MASK;
data = 0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_MISC_REG, data, mask);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
mask = HPIPE_LOOPBACK_SEL_MASK;
data = 0x1 << HPIPE_LOOPBACK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG, data, mask);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x0 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
mask = HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data = 0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Set analog paramters from ETP(HW) - for now use the default datas */
debug("stage: Analog paramters from ETP(HW)\n");
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG,
0x1 << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET,
HPIPE_G1_SET_0_G1_TX_EMPH1_MASK);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* check PLL rx & tx ready */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_RX_MASK |
SD_EXTERNAL_STATUS0_PLL_TX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
error("SD_EXTERNAL_STATUS0_PLL_RX is %d, SD_EXTERNAL_STATUS0_PLL_TX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK));
ret = 0;
}
/* RX init */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n", sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
error("SD_EXTERNAL_STATUS0_RX_INIT is 0\n");
ret = 0;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static int comphy_sfi_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
data |= 0xE << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
data |= 0xE << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 0 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
mask = HPIPE_MISC_ICP_FORCE_MASK;
data = 0x1 << HPIPE_MISC_ICP_FORCE_OFFSET;
mask |= HPIPE_MISC_REFCLK_SEL_MASK;
data |= 0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_MISC_REG, data, mask);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
mask = HPIPE_LOOPBACK_SEL_MASK;
data = 0x1 << HPIPE_LOOPBACK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG, data, mask);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x1 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
mask = HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK;
data = 0x1 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG, data, mask);
/* Set analog paramters from ETP(HW) */
debug("stage: Analog paramters from ETP(HW)\n");
/* SERDES External Configuration 2 */
mask = SD_EXTERNAL_CONFIG2_PIN_DFE_EN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG2_PIN_DFE_EN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG2_REG, data, mask);
/* 0x7-DFE Resolution control */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x1 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
/* 0xd-G1_Setting_0 */
mask = HPIPE_G1_SET_0_G1_TX_AMP_MASK;
data = 0x1c << HPIPE_G1_SET_0_G1_TX_AMP_OFFSET;
mask |= HPIPE_G1_SET_0_G1_TX_EMPH1_MASK;
data |= 0xe << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG, data, mask);
/* Genration 1 setting 2 (G1_Setting_2) */
mask = HPIPE_G1_SET_2_G1_TX_EMPH0_MASK;
data = 0x0 << HPIPE_G1_SET_2_G1_TX_EMPH0_OFFSET;
mask |= HPIPE_G1_SET_2_G1_TX_EMPH0_EN_MASK;
data |= 0x1 << HPIPE_G1_SET_2_G1_TX_EMPH0_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_2_REG, data, mask);
/* Transmitter Slew Rate Control register (tx_reg1) */
mask = HPIPE_TX_REG1_TX_EMPH_RES_MASK;
data = 0x3 << HPIPE_TX_REG1_TX_EMPH_RES_OFFSET;
mask |= HPIPE_TX_REG1_SLC_EN_MASK;
data |= 0x3f << HPIPE_TX_REG1_SLC_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_TX_REG1_REG, data, mask);
/* Impedance Calibration Control register (cal_reg1) */
mask = HPIPE_CAL_REG_1_EXT_TXIMP_MASK;
data = 0xe << HPIPE_CAL_REG_1_EXT_TXIMP_OFFSET;
mask |= HPIPE_CAL_REG_1_EXT_TXIMP_EN_MASK;
data |= 0x1 << HPIPE_CAL_REG_1_EXT_TXIMP_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_CAL_REG1_REG, data, mask);
/* Generation 1 Setting 5 (g1_setting_5) */
mask = HPIPE_G1_SETTING_5_G1_ICP_MASK;
data = 0 << HPIPE_CAL_REG_1_EXT_TXIMP_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTING_5_REG, data, mask);
/* 0xE-G1_Setting_1 */
mask = HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data = 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPP_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPP_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_DFE_EN_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_DFE_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_1_REG, data, mask);
/* 0xA-DFE_Reg3 */
mask = HPIPE_DFE_F3_F5_DFE_EN_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_EN_OFFSET;
mask |= HPIPE_DFE_F3_F5_DFE_CTRL_MASK;
data |= 0x0 << HPIPE_DFE_F3_F5_DFE_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_F3_F5_REG, data, mask);
/* 0x111-G1_Setting_4 */
mask = HPIPE_G1_SETTINGS_4_G1_DFE_RES_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_4_G1_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_4_REG, data, mask);
/* Genration 1 setting 3 (G1_Setting_3) */
mask = HPIPE_G1_SETTINGS_3_G1_FBCK_SEL_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_3_G1_FBCK_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* check PLL rx & tx ready */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_RX_MASK |
SD_EXTERNAL_STATUS0_PLL_TX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n", sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
error("SD_EXTERNAL_STATUS0_PLL_RX is %d, SD_EXTERNAL_STATUS0_PLL_TX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK));
ret = 0;
}
/* RX init */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
error("SD_EXTERNAL_STATUS0_RX_INIT is 0\n");
ret = 0;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static int comphy_rxauii_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base)
{
u32 mask, data, ret = 1;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base, lane);
void __iomem *comphy_addr = COMPHY_ADDR(comphy_base, lane);
void __iomem *addr;
debug_enter();
debug("stage: RFU configurations - hard reset comphy\n");
/* RFU configurations - hard reset comphy */
mask = COMMON_PHY_CFG1_PWR_UP_MASK;
data = 0x1 << COMMON_PHY_CFG1_PWR_UP_OFFSET;
mask |= COMMON_PHY_CFG1_PIPE_SELECT_MASK;
data |= 0x0 << COMMON_PHY_CFG1_PIPE_SELECT_OFFSET;
reg_set(comphy_addr + COMMON_PHY_CFG1_REG, data, mask);
if (lane == 2) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_RXAUI0_OFFSET,
COMMON_PHY_SD_CTRL1_RXAUI0_MASK);
}
if (lane == 4) {
reg_set(comphy_base + COMMON_PHY_SD_CTRL1,
0x1 << COMMON_PHY_SD_CTRL1_RXAUI1_OFFSET,
COMMON_PHY_SD_CTRL1_RXAUI1_MASK);
}
/* Select Baud Rate of Comphy And PD_PLL/Tx/Rx */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_MASK;
data |= 0xB << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_MASK;
data |= 0xB << SD_EXTERNAL_CONFIG0_SD_PHY_GEN_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG0_HALF_BUS_MODE_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_MEDIA_MODE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_MEDIA_MODE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* release from hard reset */
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x0 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
mask = SD_EXTERNAL_CONFIG1_RESET_IN_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG1_RESET_IN_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RESET_CORE_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RESET_CORE_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
/* Wait 1ms - until band gap and ref clock ready */
mdelay(1);
/* Start comphy Configuration */
debug("stage: Comphy configuration\n");
/* set reference clock */
reg_set(hpipe_addr + HPIPE_MISC_REG,
0x0 << HPIPE_MISC_REFCLK_SEL_OFFSET,
HPIPE_MISC_REFCLK_SEL_MASK);
/* Power and PLL Control */
mask = HPIPE_PWR_PLL_REF_FREQ_MASK;
data = 0x1 << HPIPE_PWR_PLL_REF_FREQ_OFFSET;
mask |= HPIPE_PWR_PLL_PHY_MODE_MASK;
data |= 0x4 << HPIPE_PWR_PLL_PHY_MODE_OFFSET;
reg_set(hpipe_addr + HPIPE_PWR_PLL_REG, data, mask);
/* Loopback register */
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG,
0x1 << HPIPE_LOOPBACK_SEL_OFFSET, HPIPE_LOOPBACK_SEL_MASK);
/* rx control 1 */
mask = HPIPE_RX_CONTROL_1_RXCLK2X_SEL_MASK;
data = 0x1 << HPIPE_RX_CONTROL_1_RXCLK2X_SEL_OFFSET;
mask |= HPIPE_RX_CONTROL_1_CLK8T_EN_MASK;
data |= 0x1 << HPIPE_RX_CONTROL_1_CLK8T_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_RX_CONTROL_1_REG, data, mask);
/* DTL Control */
reg_set(hpipe_addr + HPIPE_PWR_CTR_DTL_REG,
0x0 << HPIPE_PWR_CTR_DTL_FLOOP_EN_OFFSET,
HPIPE_PWR_CTR_DTL_FLOOP_EN_MASK);
/* Set analog paramters from ETP(HW) */
debug("stage: Analog paramters from ETP(HW)\n");
/* SERDES External Configuration 2 */
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG2_REG,
0x1 << SD_EXTERNAL_CONFIG2_PIN_DFE_EN_OFFSET,
SD_EXTERNAL_CONFIG2_PIN_DFE_EN_MASK);
/* 0x7-DFE Resolution control */
reg_set(hpipe_addr + HPIPE_DFE_REG0, 0x1 << HPIPE_DFE_RES_FORCE_OFFSET,
HPIPE_DFE_RES_FORCE_MASK);
/* 0xd-G1_Setting_0 */
reg_set(hpipe_addr + HPIPE_G1_SET_0_REG,
0xd << HPIPE_G1_SET_0_G1_TX_EMPH1_OFFSET,
HPIPE_G1_SET_0_G1_TX_EMPH1_MASK);
/* 0xE-G1_Setting_1 */
mask = HPIPE_G1_SET_1_G1_RX_SELMUPI_MASK;
data = 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPI_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_SELMUPP_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_SELMUPP_OFFSET;
mask |= HPIPE_G1_SET_1_G1_RX_DFE_EN_MASK;
data |= 0x1 << HPIPE_G1_SET_1_G1_RX_DFE_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SET_1_REG, data, mask);
/* 0xA-DFE_Reg3 */
mask = HPIPE_DFE_F3_F5_DFE_EN_MASK;
data = 0x0 << HPIPE_DFE_F3_F5_DFE_EN_OFFSET;
mask |= HPIPE_DFE_F3_F5_DFE_CTRL_MASK;
data |= 0x0 << HPIPE_DFE_F3_F5_DFE_CTRL_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_F3_F5_REG, data, mask);
/* 0x111-G1_Setting_4 */
mask = HPIPE_G1_SETTINGS_4_G1_DFE_RES_MASK;
data = 0x1 << HPIPE_G1_SETTINGS_4_G1_DFE_RES_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_4_REG, data, mask);
debug("stage: RFU configurations- Power Up PLL,Tx,Rx\n");
/* SERDES External Configuration */
mask = SD_EXTERNAL_CONFIG0_SD_PU_PLL_MASK;
data = 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_PLL_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_RX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_RX_OFFSET;
mask |= SD_EXTERNAL_CONFIG0_SD_PU_TX_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG0_SD_PU_TX_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG0_REG, data, mask);
/* check PLL rx & tx ready */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_PLL_RX_MASK |
SD_EXTERNAL_STATUS0_PLL_TX_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 15000);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
error("SD_EXTERNAL_STATUS0_PLL_RX is %d, SD_EXTERNAL_STATUS0_PLL_TX is %d\n",
(data & SD_EXTERNAL_STATUS0_PLL_RX_MASK),
(data & SD_EXTERNAL_STATUS0_PLL_TX_MASK));
ret = 0;
}
/* RX init */
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG,
0x1 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET,
SD_EXTERNAL_CONFIG1_RX_INIT_MASK);
/* check that RX init done */
addr = sd_ip_addr + SD_EXTERNAL_STATUS0_REG;
data = SD_EXTERNAL_STATUS0_RX_INIT_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
debug("Read from reg = %p - value = 0x%x\n",
sd_ip_addr + SD_EXTERNAL_STATUS0_REG, data);
error("SD_EXTERNAL_STATUS0_RX_INIT is 0\n");
ret = 0;
}
debug("stage: RF Reset\n");
/* RF Reset */
mask = SD_EXTERNAL_CONFIG1_RX_INIT_MASK;
data = 0x0 << SD_EXTERNAL_CONFIG1_RX_INIT_OFFSET;
mask |= SD_EXTERNAL_CONFIG1_RF_RESET_IN_MASK;
data |= 0x1 << SD_EXTERNAL_CONFIG1_RF_RESET_IN_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_CONFIG1_REG, data, mask);
debug_exit();
return ret;
}
static void comphy_utmi_power_down(u32 utmi_index, void __iomem *utmi_base_addr,
void __iomem *usb_cfg_addr,
void __iomem *utmi_cfg_addr,
u32 utmi_phy_port)
{
u32 mask, data;
debug_enter();
debug("stage: UTMI %d - Power down transceiver (power down Phy), Power down PLL, and SuspendDM\n",
utmi_index);
/* Power down UTMI PHY */
reg_set(utmi_cfg_addr, 0x0 << UTMI_PHY_CFG_PU_OFFSET,
UTMI_PHY_CFG_PU_MASK);
/*
* If UTMI connected to USB Device, configure mux prior to PHY init
* (Device can be connected to UTMI0 or to UTMI1)
*/
if (utmi_phy_port == UTMI_PHY_TO_USB3_DEVICE0) {
debug("stage: UTMI %d - Enable Device mode and configure UTMI mux\n",
utmi_index);
/* USB3 Device UTMI enable */
mask = UTMI_USB_CFG_DEVICE_EN_MASK;
data = 0x1 << UTMI_USB_CFG_DEVICE_EN_OFFSET;
/* USB3 Device UTMI MUX */
mask |= UTMI_USB_CFG_DEVICE_MUX_MASK;
data |= utmi_index << UTMI_USB_CFG_DEVICE_MUX_OFFSET;
reg_set(usb_cfg_addr, data, mask);
}
/* Set Test suspendm mode */
mask = UTMI_CTRL_STATUS0_SUSPENDM_MASK;
data = 0x1 << UTMI_CTRL_STATUS0_SUSPENDM_OFFSET;
/* Enable Test UTMI select */
mask |= UTMI_CTRL_STATUS0_TEST_SEL_MASK;
data |= 0x1 << UTMI_CTRL_STATUS0_TEST_SEL_OFFSET;
reg_set(utmi_base_addr + UTMI_CTRL_STATUS0_REG, data, mask);
/* Wait for UTMI power down */
mdelay(1);
debug_exit();
return;
}
static void comphy_utmi_phy_config(u32 utmi_index, void __iomem *utmi_base_addr,
void __iomem *usb_cfg_addr,
void __iomem *utmi_cfg_addr,
u32 utmi_phy_port)
{
u32 mask, data;
debug_exit();
debug("stage: Configure UTMI PHY %d registers\n", utmi_index);
/* Reference Clock Divider Select */
mask = UTMI_PLL_CTRL_REFDIV_MASK;
data = 0x5 << UTMI_PLL_CTRL_REFDIV_OFFSET;
/* Feedback Clock Divider Select - 90 for 25Mhz*/
mask |= UTMI_PLL_CTRL_FBDIV_MASK;
data |= 0x60 << UTMI_PLL_CTRL_FBDIV_OFFSET;
/* Select LPFR - 0x0 for 25Mhz/5=5Mhz*/
mask |= UTMI_PLL_CTRL_SEL_LPFR_MASK;
data |= 0x0 << UTMI_PLL_CTRL_SEL_LPFR_OFFSET;
reg_set(utmi_base_addr + UTMI_PLL_CTRL_REG, data, mask);
/* Impedance Calibration Threshold Setting */
reg_set(utmi_base_addr + UTMI_CALIB_CTRL_REG,
0x6 << UTMI_CALIB_CTRL_IMPCAL_VTH_OFFSET,
UTMI_CALIB_CTRL_IMPCAL_VTH_MASK);
/* Set LS TX driver strength coarse control */
mask = UTMI_TX_CH_CTRL_DRV_EN_LS_MASK;
data = 0x3 << UTMI_TX_CH_CTRL_DRV_EN_LS_OFFSET;
/* Set LS TX driver fine adjustment */
mask |= UTMI_TX_CH_CTRL_IMP_SEL_LS_MASK;
data |= 0x3 << UTMI_TX_CH_CTRL_IMP_SEL_LS_OFFSET;
reg_set(utmi_base_addr + UTMI_TX_CH_CTRL_REG, data, mask);
/* Enable SQ */
mask = UTMI_RX_CH_CTRL0_SQ_DET_MASK;
data = 0x0 << UTMI_RX_CH_CTRL0_SQ_DET_OFFSET;
/* Enable analog squelch detect */
mask |= UTMI_RX_CH_CTRL0_SQ_ANA_DTC_MASK;
data |= 0x1 << UTMI_RX_CH_CTRL0_SQ_ANA_DTC_OFFSET;
reg_set(utmi_base_addr + UTMI_RX_CH_CTRL0_REG, data, mask);
/* Set External squelch calibration number */
mask = UTMI_RX_CH_CTRL1_SQ_AMP_CAL_MASK;
data = 0x1 << UTMI_RX_CH_CTRL1_SQ_AMP_CAL_OFFSET;
/* Enable the External squelch calibration */
mask |= UTMI_RX_CH_CTRL1_SQ_AMP_CAL_EN_MASK;
data |= 0x1 << UTMI_RX_CH_CTRL1_SQ_AMP_CAL_EN_OFFSET;
reg_set(utmi_base_addr + UTMI_RX_CH_CTRL1_REG, data, mask);
/* Set Control VDAT Reference Voltage - 0.325V */
mask = UTMI_CHGDTC_CTRL_VDAT_MASK;
data = 0x1 << UTMI_CHGDTC_CTRL_VDAT_OFFSET;
/* Set Control VSRC Reference Voltage - 0.6V */
mask |= UTMI_CHGDTC_CTRL_VSRC_MASK;
data |= 0x1 << UTMI_CHGDTC_CTRL_VSRC_OFFSET;
reg_set(utmi_base_addr + UTMI_CHGDTC_CTRL_REG, data, mask);
debug_exit();
return;
}
static int comphy_utmi_power_up(u32 utmi_index, void __iomem *utmi_base_addr,
void __iomem *usb_cfg_addr,
void __iomem *utmi_cfg_addr, u32 utmi_phy_port)
{
u32 data, mask, ret = 1;
void __iomem *addr;
debug_enter();
debug("stage: UTMI %d - Power up transceiver(Power up Phy), and exit SuspendDM\n",
utmi_index);
/* Power UP UTMI PHY */
reg_set(utmi_cfg_addr, 0x1 << UTMI_PHY_CFG_PU_OFFSET,
UTMI_PHY_CFG_PU_MASK);
/* Disable Test UTMI select */
reg_set(utmi_base_addr + UTMI_CTRL_STATUS0_REG,
0x0 << UTMI_CTRL_STATUS0_TEST_SEL_OFFSET,
UTMI_CTRL_STATUS0_TEST_SEL_MASK);
debug("stage: Polling for PLL and impedance calibration done, and PLL ready done\n");
addr = utmi_base_addr + UTMI_CALIB_CTRL_REG;
data = UTMI_CALIB_CTRL_IMPCAL_DONE_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
error("Impedance calibration is not done\n");
debug("Read from reg = %p - value = 0x%x\n", addr, data);
ret = 0;
}
data = UTMI_CALIB_CTRL_PLLCAL_DONE_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
error("PLL calibration is not done\n");
debug("Read from reg = %p - value = 0x%x\n", addr, data);
ret = 0;
}
addr = utmi_base_addr + UTMI_PLL_CTRL_REG;
data = UTMI_PLL_CTRL_PLL_RDY_MASK;
mask = data;
data = polling_with_timeout(addr, data, mask, 100);
if (data != 0) {
error("PLL is not ready\n");
debug("Read from reg = %p - value = 0x%x\n", addr, data);
ret = 0;
}
if (ret)
debug("Passed\n");
else
debug("\n");
debug_exit();
return ret;
}
/*
* comphy_utmi_phy_init initialize the UTMI PHY
* the init split in 3 parts:
* 1. Power down transceiver and PLL
* 2. UTMI PHY configure
* 3. Powe up transceiver and PLL
* Note: - Power down/up should be once for both UTMI PHYs
* - comphy_dedicated_phys_init call this function if at least there is
* one UTMI PHY exists in FDT blob. access to cp110_utmi_data[0] is
* legal
*/
static void comphy_utmi_phy_init(u32 utmi_phy_count,
struct utmi_phy_data *cp110_utmi_data)
{
u32 i;
debug_enter();
/* UTMI Power down */
for (i = 0; i < utmi_phy_count; i++) {
comphy_utmi_power_down(i, cp110_utmi_data[i].utmi_base_addr,
cp110_utmi_data[i].usb_cfg_addr,
cp110_utmi_data[i].utmi_cfg_addr,
cp110_utmi_data[i].utmi_phy_port);
}
/* PLL Power down */
debug("stage: UTMI PHY power down PLL\n");
for (i = 0; i < utmi_phy_count; i++) {
reg_set(cp110_utmi_data[i].usb_cfg_addr,
0x0 << UTMI_USB_CFG_PLL_OFFSET, UTMI_USB_CFG_PLL_MASK);
}
/* UTMI configure */
for (i = 0; i < utmi_phy_count; i++) {
comphy_utmi_phy_config(i, cp110_utmi_data[i].utmi_base_addr,
cp110_utmi_data[i].usb_cfg_addr,
cp110_utmi_data[i].utmi_cfg_addr,
cp110_utmi_data[i].utmi_phy_port);
}
/* UTMI Power up */
for (i = 0; i < utmi_phy_count; i++) {
if (!comphy_utmi_power_up(i, cp110_utmi_data[i].utmi_base_addr,
cp110_utmi_data[i].usb_cfg_addr,
cp110_utmi_data[i].utmi_cfg_addr,
cp110_utmi_data[i].utmi_phy_port)) {
error("Failed to initialize UTMI PHY %d\n", i);
continue;
}
printf("UTMI PHY %d initialized to ", i);
if (cp110_utmi_data[i].utmi_phy_port ==
UTMI_PHY_TO_USB3_DEVICE0)
printf("USB Device\n");
else
printf("USB Host%d\n",
cp110_utmi_data[i].utmi_phy_port);
}
/* PLL Power up */
debug("stage: UTMI PHY power up PLL\n");
for (i = 0; i < utmi_phy_count; i++) {
reg_set(cp110_utmi_data[i].usb_cfg_addr,
0x1 << UTMI_USB_CFG_PLL_OFFSET, UTMI_USB_CFG_PLL_MASK);
}
debug_exit();
return;
}
/*
* comphy_dedicated_phys_init initialize the dedicated PHYs
* - not muxed SerDes lanes e.g. UTMI PHY
*/
void comphy_dedicated_phys_init(void)
{
struct utmi_phy_data cp110_utmi_data[MAX_UTMI_PHY_COUNT];
int node;
int i;
debug_enter();
debug("Initialize USB UTMI PHYs\n");
/* Find the UTMI phy node in device tree and go over them */
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1,
"marvell,mvebu-utmi-2.6.0");
i = 0;
while (node > 0) {
/* get base address of UTMI phy */
cp110_utmi_data[i].utmi_base_addr =
(void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, node, "reg", 0, NULL, true);
if (cp110_utmi_data[i].utmi_base_addr == NULL) {
error("UTMI PHY base address is invalid\n");
i++;
continue;
}
/* get usb config address */
cp110_utmi_data[i].usb_cfg_addr =
(void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, node, "reg", 1, NULL, true);
if (cp110_utmi_data[i].usb_cfg_addr == NULL) {
error("UTMI PHY base address is invalid\n");
i++;
continue;
}
/* get UTMI config address */
cp110_utmi_data[i].utmi_cfg_addr =
(void __iomem *)fdtdec_get_addr_size_auto_noparent(
gd->fdt_blob, node, "reg", 2, NULL, true);
if (cp110_utmi_data[i].utmi_cfg_addr == NULL) {
error("UTMI PHY base address is invalid\n");
i++;
continue;
}
/*
* get the port number (to check if the utmi connected to
* host/device)
*/
cp110_utmi_data[i].utmi_phy_port = fdtdec_get_int(
gd->fdt_blob, node, "utmi-port", UTMI_PHY_INVALID);
if (cp110_utmi_data[i].utmi_phy_port == UTMI_PHY_INVALID) {
error("UTMI PHY port type is invalid\n");
i++;
continue;
}
node = fdt_node_offset_by_compatible(
gd->fdt_blob, node, "marvell,mvebu-utmi-2.6.0");
i++;
}
if (i > 0)
comphy_utmi_phy_init(i, cp110_utmi_data);
debug_exit();
}
static void comphy_mux_cp110_init(struct chip_serdes_phy_config *ptr_chip_cfg,
struct comphy_map *serdes_map)
{
void __iomem *comphy_base_addr;
struct comphy_map comphy_map_pipe_data[MAX_LANE_OPTIONS];
struct comphy_map comphy_map_phy_data[MAX_LANE_OPTIONS];
u32 lane, comphy_max_count;
comphy_max_count = ptr_chip_cfg->comphy_lanes_count;
comphy_base_addr = ptr_chip_cfg->comphy_base_addr;
/*
* Copy the SerDes map configuration for PIPE map and PHY map
* the comphy_mux_init modify the type of the lane if the type
* is not valid because we have 2 selectores run the
* comphy_mux_init twice and after that update the original
* serdes_map
*/
for (lane = 0; lane < comphy_max_count; lane++) {
comphy_map_pipe_data[lane].type = serdes_map[lane].type;
comphy_map_pipe_data[lane].speed = serdes_map[lane].speed;
comphy_map_phy_data[lane].type = serdes_map[lane].type;
comphy_map_phy_data[lane].speed = serdes_map[lane].speed;
}
ptr_chip_cfg->mux_data = cp110_comphy_phy_mux_data;
comphy_mux_init(ptr_chip_cfg, comphy_map_phy_data,
comphy_base_addr + COMMON_SELECTOR_PHY_OFFSET);
ptr_chip_cfg->mux_data = cp110_comphy_pipe_mux_data;
comphy_mux_init(ptr_chip_cfg, comphy_map_pipe_data,
comphy_base_addr + COMMON_SELECTOR_PIPE_OFFSET);
/* Fix the type after check the PHY and PIPE configuration */
for (lane = 0; lane < comphy_max_count; lane++) {
if ((comphy_map_pipe_data[lane].type == PHY_TYPE_UNCONNECTED) &&
(comphy_map_phy_data[lane].type == PHY_TYPE_UNCONNECTED))
serdes_map[lane].type = PHY_TYPE_UNCONNECTED;
}
}
int comphy_cp110_init(struct chip_serdes_phy_config *ptr_chip_cfg,
struct comphy_map *serdes_map)
{
struct comphy_map *ptr_comphy_map;
void __iomem *comphy_base_addr, *hpipe_base_addr;
u32 comphy_max_count, lane, ret = 0;
u32 pcie_width = 0;
debug_enter();
comphy_max_count = ptr_chip_cfg->comphy_lanes_count;
comphy_base_addr = ptr_chip_cfg->comphy_base_addr;
hpipe_base_addr = ptr_chip_cfg->hpipe3_base_addr;
/* Config Comphy mux configuration */
comphy_mux_cp110_init(ptr_chip_cfg, serdes_map);
/* Check if the first 4 lanes configured as By-4 */
for (lane = 0, ptr_comphy_map = serdes_map; lane < 4;
lane++, ptr_comphy_map++) {
if (ptr_comphy_map->type != PHY_TYPE_PEX0)
break;
pcie_width++;
}
for (lane = 0, ptr_comphy_map = serdes_map; lane < comphy_max_count;
lane++, ptr_comphy_map++) {
debug("Initialize serdes number %d\n", lane);
debug("Serdes type = 0x%x\n", ptr_comphy_map->type);
if (lane == 4) {
/*
* PCIe lanes above the first 4 lanes, can be only
* by1
*/
pcie_width = 1;
}
switch (ptr_comphy_map->type) {
case PHY_TYPE_UNCONNECTED:
case PHY_TYPE_IGNORE:
continue;
break;
case PHY_TYPE_PEX0:
case PHY_TYPE_PEX1:
case PHY_TYPE_PEX2:
case PHY_TYPE_PEX3:
ret = comphy_pcie_power_up(
lane, pcie_width, ptr_comphy_map->clk_src,
serdes_map->end_point,
hpipe_base_addr, comphy_base_addr);
break;
case PHY_TYPE_SATA0:
case PHY_TYPE_SATA1:
case PHY_TYPE_SATA2:
case PHY_TYPE_SATA3:
ret = comphy_sata_power_up(
lane, hpipe_base_addr, comphy_base_addr,
ptr_chip_cfg->comphy_index);
break;
case PHY_TYPE_USB3_HOST0:
case PHY_TYPE_USB3_HOST1:
case PHY_TYPE_USB3_DEVICE:
ret = comphy_usb3_power_up(lane, hpipe_base_addr,
comphy_base_addr);
break;
case PHY_TYPE_SGMII0:
case PHY_TYPE_SGMII1:
case PHY_TYPE_SGMII2:
case PHY_TYPE_SGMII3:
if (ptr_comphy_map->speed == PHY_SPEED_INVALID) {
debug("Warning: SGMII PHY speed in lane %d is invalid, set PHY speed to 1.25G\n",
lane);
ptr_comphy_map->speed = PHY_SPEED_1_25G;
}
ret = comphy_sgmii_power_up(
lane, ptr_comphy_map->speed, hpipe_base_addr,
comphy_base_addr);
break;
case PHY_TYPE_SFI:
ret = comphy_sfi_power_up(lane, hpipe_base_addr,
comphy_base_addr);
break;
case PHY_TYPE_RXAUI0:
case PHY_TYPE_RXAUI1:
ret = comphy_rxauii_power_up(lane, hpipe_base_addr,
comphy_base_addr);
break;
default:
debug("Unknown SerDes type, skip initialize SerDes %d\n",
lane);
break;
}
if (ret == 0) {
/*
* If interface wans't initialiuzed, set the lane to
* PHY_TYPE_UNCONNECTED state.
*/
ptr_comphy_map->type = PHY_TYPE_UNCONNECTED;
error("PLL is not locked - Failed to initialize lane %d\n",
lane);
}
}
debug_exit();
return 0;
}