u-boot-brain/arch/arm/cpu/armv7/omap-common/clocks-common.c
SRICHARAN R 5f14d9197e OMAP5: clocks: Change clock settings as required for ES1.0 silicon.
Aligning all the clock related settings like the dpll frequencies, their
respective clock outputs, etc to the ideal values recommended for
OMAP5430 ES1.0 silicon.

Signed-off-by: R Sricharan <r.sricharan@ti.com>
2012-05-15 08:31:23 +02:00

594 lines
16 KiB
C

/*
*
* Clock initialization for OMAP4
*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Aneesh V <aneesh@ti.com>
*
* Based on previous work by:
* Santosh Shilimkar <santosh.shilimkar@ti.com>
* Rajendra Nayak <rnayak@ti.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/omap_common.h>
#include <asm/gpio.h>
#include <asm/arch/clocks.h>
#include <asm/arch/sys_proto.h>
#include <asm/utils.h>
#include <asm/omap_gpio.h>
#ifndef CONFIG_SPL_BUILD
/*
* printing to console doesn't work unless
* this code is executed from SPL
*/
#define printf(fmt, args...)
#define puts(s)
#endif
static inline u32 __get_sys_clk_index(void)
{
u32 ind;
/*
* For ES1 the ROM code calibration of sys clock is not reliable
* due to hw issue. So, use hard-coded value. If this value is not
* correct for any board over-ride this function in board file
* From ES2.0 onwards you will get this information from
* CM_SYS_CLKSEL
*/
if (omap_revision() == OMAP4430_ES1_0)
ind = OMAP_SYS_CLK_IND_38_4_MHZ;
else {
/* SYS_CLKSEL - 1 to match the dpll param array indices */
ind = (readl(&prcm->cm_sys_clksel) &
CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1;
}
return ind;
}
u32 get_sys_clk_index(void)
__attribute__ ((weak, alias("__get_sys_clk_index")));
u32 get_sys_clk_freq(void)
{
u8 index = get_sys_clk_index();
return sys_clk_array[index];
}
static inline void do_bypass_dpll(u32 *const base)
{
struct dpll_regs *dpll_regs = (struct dpll_regs *)base;
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
CM_CLKMODE_DPLL_DPLL_EN_MASK,
DPLL_EN_FAST_RELOCK_BYPASS <<
CM_CLKMODE_DPLL_EN_SHIFT);
}
static inline void wait_for_bypass(u32 *const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll,
LDELAY)) {
printf("Bypassing DPLL failed %p\n", base);
}
}
static inline void do_lock_dpll(u32 *const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
CM_CLKMODE_DPLL_DPLL_EN_MASK,
DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
}
static inline void wait_for_lock(u32 *const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
&dpll_regs->cm_idlest_dpll, LDELAY)) {
printf("DPLL locking failed for %p\n", base);
hang();
}
}
inline u32 check_for_lock(u32 *const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK;
return lock;
}
static void do_setup_dpll(u32 *const base, const struct dpll_params *params,
u8 lock, char *dpll)
{
u32 temp, M, N;
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
temp = readl(&dpll_regs->cm_clksel_dpll);
if (check_for_lock(base)) {
/*
* The Dpll has already been locked by rom code using CH.
* Check if M,N are matching with Ideal nominal opp values.
* If matches, skip the rest otherwise relock.
*/
M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT;
N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT;
if ((M != (params->m)) || (N != (params->n))) {
debug("\n %s Dpll locked, but not for ideal M = %d,"
"N = %d values, current values are M = %d,"
"N= %d" , dpll, params->m, params->n,
M, N);
} else {
/* Dpll locked with ideal values for nominal opps. */
debug("\n %s Dpll already locked with ideal"
"nominal opp values", dpll);
goto setup_post_dividers;
}
}
bypass_dpll(base);
/* Set M & N */
temp &= ~CM_CLKSEL_DPLL_M_MASK;
temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;
temp &= ~CM_CLKSEL_DPLL_N_MASK;
temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;
writel(temp, &dpll_regs->cm_clksel_dpll);
/* Lock */
if (lock)
do_lock_dpll(base);
setup_post_dividers:
setup_post_dividers(base, params);
/* Wait till the DPLL locks */
if (lock)
wait_for_lock(base);
}
u32 omap_ddr_clk(void)
{
u32 ddr_clk, sys_clk_khz, omap_rev, divider;
const struct dpll_params *core_dpll_params;
omap_rev = omap_revision();
sys_clk_khz = get_sys_clk_freq() / 1000;
core_dpll_params = get_core_dpll_params();
debug("sys_clk %d\n ", sys_clk_khz * 1000);
/* Find Core DPLL locked frequency first */
ddr_clk = sys_clk_khz * 2 * core_dpll_params->m /
(core_dpll_params->n + 1);
if (omap_rev < OMAP5430_ES1_0) {
/*
* DDR frequency is PHY_ROOT_CLK/2
* PHY_ROOT_CLK = Fdpll/2/M2
*/
divider = 4;
} else {
/*
* DDR frequency is PHY_ROOT_CLK
* PHY_ROOT_CLK = Fdpll/2/M2
*/
divider = 2;
}
ddr_clk = ddr_clk / divider / core_dpll_params->m2;
ddr_clk *= 1000; /* convert to Hz */
debug("ddr_clk %d\n ", ddr_clk);
return ddr_clk;
}
/*
* Lock MPU dpll
*
* Resulting MPU frequencies:
* 4430 ES1.0 : 600 MHz
* 4430 ES2.x : 792 MHz (OPP Turbo)
* 4460 : 920 MHz (OPP Turbo) - DCC disabled
*/
void configure_mpu_dpll(void)
{
const struct dpll_params *params;
struct dpll_regs *mpu_dpll_regs;
u32 omap_rev;
omap_rev = omap_revision();
/*
* DCC and clock divider settings for 4460.
* DCC is required, if more than a certain frequency is required.
* For, 4460 > 1GHZ.
* 5430 > 1.4GHZ.
*/
if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) {
mpu_dpll_regs =
(struct dpll_regs *)&prcm->cm_clkmode_dpll_mpu;
bypass_dpll(&prcm->cm_clkmode_dpll_mpu);
clrbits_le32(&prcm->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
setbits_le32(&prcm->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll,
CM_CLKSEL_DCC_EN_MASK);
}
setbits_le32(&prcm->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
setbits_le32(&prcm->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
params = get_mpu_dpll_params();
do_setup_dpll(&prcm->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu");
debug("MPU DPLL locked\n");
}
#ifdef CONFIG_USB_EHCI_OMAP
static void setup_usb_dpll(void)
{
const struct dpll_params *params;
u32 sys_clk_khz, sd_div, num, den;
sys_clk_khz = get_sys_clk_freq() / 1000;
/*
* USB:
* USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction
* DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250)
* - where CLKINP is sys_clk in MHz
* Use CLKINP in KHz and adjust the denominator accordingly so
* that we have enough accuracy and at the same time no overflow
*/
params = get_usb_dpll_params();
num = params->m * sys_clk_khz;
den = (params->n + 1) * 250 * 1000;
num += den - 1;
sd_div = num / den;
clrsetbits_le32(&prcm->cm_clksel_dpll_usb,
CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK,
sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT);
/* Now setup the dpll with the regular function */
do_setup_dpll(&prcm->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb");
}
#endif
static void setup_dplls(void)
{
u32 temp;
const struct dpll_params *params;
debug("setup_dplls\n");
/* CORE dpll */
params = get_core_dpll_params(); /* default - safest */
/*
* Do not lock the core DPLL now. Just set it up.
* Core DPLL will be locked after setting up EMIF
* using the FREQ_UPDATE method(freq_update_core())
*/
do_setup_dpll(&prcm->cm_clkmode_dpll_core, params, DPLL_NO_LOCK,
"core");
/* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */
temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) |
(CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) |
(CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT);
writel(temp, &prcm->cm_clksel_core);
debug("Core DPLL configured\n");
/* lock PER dpll */
params = get_per_dpll_params();
do_setup_dpll(&prcm->cm_clkmode_dpll_per,
params, DPLL_LOCK, "per");
debug("PER DPLL locked\n");
/* MPU dpll */
configure_mpu_dpll();
#ifdef CONFIG_USB_EHCI_OMAP
setup_usb_dpll();
#endif
}
#ifdef CONFIG_SYS_CLOCKS_ENABLE_ALL
static void setup_non_essential_dplls(void)
{
u32 abe_ref_clk;
const struct dpll_params *params;
/* IVA */
clrsetbits_le32(&prcm->cm_bypclk_dpll_iva,
CM_BYPCLK_DPLL_IVA_CLKSEL_MASK, DPLL_IVA_CLKSEL_CORE_X2_DIV_2);
params = get_iva_dpll_params();
do_setup_dpll(&prcm->cm_clkmode_dpll_iva, params, DPLL_LOCK, "iva");
/* Configure ABE dpll */
params = get_abe_dpll_params();
#ifdef CONFIG_SYS_OMAP_ABE_SYSCK
abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_SYSCLK;
#else
abe_ref_clk = CM_ABE_PLL_REF_CLKSEL_CLKSEL_32KCLK;
/*
* We need to enable some additional options to achieve
* 196.608MHz from 32768 Hz
*/
setbits_le32(&prcm->cm_clkmode_dpll_abe,
CM_CLKMODE_DPLL_DRIFTGUARD_EN_MASK|
CM_CLKMODE_DPLL_RELOCK_RAMP_EN_MASK|
CM_CLKMODE_DPLL_LPMODE_EN_MASK|
CM_CLKMODE_DPLL_REGM4XEN_MASK);
/* Spend 4 REFCLK cycles at each stage */
clrsetbits_le32(&prcm->cm_clkmode_dpll_abe,
CM_CLKMODE_DPLL_RAMP_RATE_MASK,
1 << CM_CLKMODE_DPLL_RAMP_RATE_SHIFT);
#endif
/* Select the right reference clk */
clrsetbits_le32(&prcm->cm_abe_pll_ref_clksel,
CM_ABE_PLL_REF_CLKSEL_CLKSEL_MASK,
abe_ref_clk << CM_ABE_PLL_REF_CLKSEL_CLKSEL_SHIFT);
/* Lock the dpll */
do_setup_dpll(&prcm->cm_clkmode_dpll_abe, params, DPLL_LOCK, "abe");
}
#endif
void do_scale_tps62361(int gpio, u32 reg, u32 volt_mv)
{
u32 step;
int ret = 0;
/* See if we can first get the GPIO if needed */
if (gpio >= 0)
ret = gpio_request(gpio, "TPS62361_VSEL0_GPIO");
if (ret < 0) {
printf("%s: gpio %d request failed %d\n", __func__, gpio, ret);
gpio = -1;
}
/* Pull the GPIO low to select SET0 register, while we program SET1 */
if (gpio >= 0)
gpio_direction_output(gpio, 0);
step = volt_mv - TPS62361_BASE_VOLT_MV;
step /= 10;
debug("do_scale_tps62361: volt - %d step - 0x%x\n", volt_mv, step);
if (omap_vc_bypass_send_value(TPS62361_I2C_SLAVE_ADDR, reg, step))
puts("Scaling voltage failed for vdd_mpu from TPS\n");
/* Pull the GPIO high to select SET1 register */
if (gpio >= 0)
gpio_direction_output(gpio, 1);
}
void do_scale_vcore(u32 vcore_reg, u32 volt_mv)
{
u32 offset_code;
u32 step = 12660; /* 12.66 mV represented in uV */
u32 offset = volt_mv;
/* convert to uV for better accuracy in the calculations */
offset *= 1000;
if (omap_revision() == OMAP4430_ES1_0)
offset -= PHOENIX_SMPS_BASE_VOLT_STD_MODE_UV;
else
offset -= PHOENIX_SMPS_BASE_VOLT_STD_MODE_WITH_OFFSET_UV;
offset_code = (offset + step - 1) / step;
/* The code starts at 1 not 0 */
offset_code++;
debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv,
offset_code);
if (omap_vc_bypass_send_value(SMPS_I2C_SLAVE_ADDR,
vcore_reg, offset_code))
printf("Scaling voltage failed for 0x%x\n", vcore_reg);
}
static inline void enable_clock_domain(u32 *const clkctrl_reg, u32 enable_mode)
{
clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
debug("Enable clock domain - %p\n", clkctrl_reg);
}
static inline void wait_for_clk_enable(u32 *clkctrl_addr)
{
u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
u32 bound = LDELAY;
while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
(idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {
clkctrl = readl(clkctrl_addr);
idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
MODULE_CLKCTRL_IDLEST_SHIFT;
if (--bound == 0) {
printf("Clock enable failed for 0x%p idlest 0x%x\n",
clkctrl_addr, clkctrl);
return;
}
}
}
static inline void enable_clock_module(u32 *const clkctrl_addr, u32 enable_mode,
u32 wait_for_enable)
{
clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
debug("Enable clock module - %p\n", clkctrl_addr);
if (wait_for_enable)
wait_for_clk_enable(clkctrl_addr);
}
void freq_update_core(void)
{
u32 freq_config1 = 0;
const struct dpll_params *core_dpll_params;
core_dpll_params = get_core_dpll_params();
/* Put EMIF clock domain in sw wakeup mode */
enable_clock_domain(&prcm->cm_memif_clkstctrl,
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
wait_for_clk_enable(&prcm->cm_memif_emif_1_clkctrl);
wait_for_clk_enable(&prcm->cm_memif_emif_2_clkctrl);
freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK |
SHADOW_FREQ_CONFIG1_DLL_RESET_MASK;
freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) &
SHADOW_FREQ_CONFIG1_DPLL_EN_MASK;
freq_config1 |= (core_dpll_params->m2 <<
SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) &
SHADOW_FREQ_CONFIG1_M2_DIV_MASK;
writel(freq_config1, &prcm->cm_shadow_freq_config1);
if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0,
&prcm->cm_shadow_freq_config1, LDELAY)) {
puts("FREQ UPDATE procedure failed!!");
hang();
}
/* Put EMIF clock domain back in hw auto mode */
enable_clock_domain(&prcm->cm_memif_clkstctrl,
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
wait_for_clk_enable(&prcm->cm_memif_emif_1_clkctrl);
wait_for_clk_enable(&prcm->cm_memif_emif_2_clkctrl);
}
void bypass_dpll(u32 *const base)
{
do_bypass_dpll(base);
wait_for_bypass(base);
}
void lock_dpll(u32 *const base)
{
do_lock_dpll(base);
wait_for_lock(base);
}
void setup_clocks_for_console(void)
{
/* Do not add any spl_debug prints in this function */
clrsetbits_le32(&prcm->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
CD_CLKCTRL_CLKTRCTRL_SHIFT);
/* Enable all UARTs - console will be on one of them */
clrsetbits_le32(&prcm->cm_l4per_uart1_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32(&prcm->cm_l4per_uart2_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32(&prcm->cm_l4per_uart3_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32(&prcm->cm_l4per_uart3_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32(&prcm->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
CD_CLKCTRL_CLKTRCTRL_HW_AUTO <<
CD_CLKCTRL_CLKTRCTRL_SHIFT);
}
void do_enable_clocks(u32 *const *clk_domains,
u32 *const *clk_modules_hw_auto,
u32 *const *clk_modules_explicit_en,
u8 wait_for_enable)
{
u32 i, max = 100;
/* Put the clock domains in SW_WKUP mode */
for (i = 0; (i < max) && clk_domains[i]; i++) {
enable_clock_domain(clk_domains[i],
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
}
/* Clock modules that need to be put in HW_AUTO */
for (i = 0; (i < max) && clk_modules_hw_auto[i]; i++) {
enable_clock_module(clk_modules_hw_auto[i],
MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
wait_for_enable);
};
/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
for (i = 0; (i < max) && clk_modules_explicit_en[i]; i++) {
enable_clock_module(clk_modules_explicit_en[i],
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
wait_for_enable);
};
/* Put the clock domains in HW_AUTO mode now */
for (i = 0; (i < max) && clk_domains[i]; i++) {
enable_clock_domain(clk_domains[i],
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
}
}
void prcm_init(void)
{
switch (omap_hw_init_context()) {
case OMAP_INIT_CONTEXT_SPL:
case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
enable_basic_clocks();
scale_vcores();
setup_dplls();
#ifdef CONFIG_SYS_CLOCKS_ENABLE_ALL
setup_non_essential_dplls();
enable_non_essential_clocks();
#endif
break;
default:
break;
}
if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context())
enable_basic_uboot_clocks();
}