u-boot-brain/drivers/mtd/nand/raw/zynq_nand.c
Simon Glass 65e25bea59 dm: Rename DM_GET_DRIVER() to DM_DRIVER_GET()
In the spirit of using the same base name for all of these related macros,
rename this to have the operation at the end. This is not widely used so
the impact is fairly small.

Signed-off-by: Simon Glass <sjg@chromium.org>
2021-01-05 12:26:35 -07:00

1302 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 Xilinx, Inc.
*
* Xilinx Zynq NAND Flash Controller Driver
* This driver is based on plat_nand.c and mxc_nand.c drivers
*/
#include <common.h>
#include <log.h>
#include <malloc.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <nand.h>
#include <linux/ioport.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <dm.h>
/* The NAND flash driver defines */
#define ZYNQ_NAND_CMD_PHASE 1
#define ZYNQ_NAND_DATA_PHASE 2
#define ZYNQ_NAND_ECC_SIZE 512
#define ZYNQ_NAND_SET_OPMODE_8BIT (0 << 0)
#define ZYNQ_NAND_SET_OPMODE_16BIT (1 << 0)
#define ZYNQ_NAND_ECC_STATUS (1 << 6)
#define ZYNQ_MEMC_CLRCR_INT_CLR1 (1 << 4)
#define ZYNQ_MEMC_SR_RAW_INT_ST1 (1 << 6)
#define ZYNQ_MEMC_SR_INT_ST1 (1 << 4)
#define ZYNQ_MEMC_NAND_ECC_MODE_MASK 0xC
/* Flash memory controller operating parameters */
#define ZYNQ_NAND_CLR_CONFIG ((0x1 << 1) | /* Disable interrupt */ \
(0x1 << 4) | /* Clear interrupt */ \
(0x1 << 6)) /* Disable ECC interrupt */
#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
/* Assuming 50MHz clock (20ns cycle time) and 3V operation */
#define ZYNQ_NAND_SET_CYCLES ((0x2 << 20) | /* t_rr from nand_cycles */ \
(0x2 << 17) | /* t_ar from nand_cycles */ \
(0x1 << 14) | /* t_clr from nand_cycles */ \
(0x3 << 11) | /* t_wp from nand_cycles */ \
(0x2 << 8) | /* t_rea from nand_cycles */ \
(0x5 << 4) | /* t_wc from nand_cycles */ \
(0x5 << 0)) /* t_rc from nand_cycles */
#endif
#define ZYNQ_NAND_DIRECT_CMD ((0x4 << 23) | /* Chip 0 from interface 1 */ \
(0x2 << 21)) /* UpdateRegs operation */
#define ZYNQ_NAND_ECC_CONFIG ((0x1 << 2) | /* ECC available on APB */ \
(0x1 << 4) | /* ECC read at end of page */ \
(0x0 << 5)) /* No Jumping */
#define ZYNQ_NAND_ECC_CMD1 ((0x80) | /* Write command */ \
(0x00 << 8) | /* Read command */ \
(0x30 << 16) | /* Read End command */ \
(0x1 << 24)) /* Read End command calid */
#define ZYNQ_NAND_ECC_CMD2 ((0x85) | /* Write col change cmd */ \
(0x05 << 8) | /* Read col change cmd */ \
(0xE0 << 16) | /* Read col change end cmd */ \
(0x1 << 24)) /* Read col change
end cmd valid */
/* AXI Address definitions */
#define START_CMD_SHIFT 3
#define END_CMD_SHIFT 11
#define END_CMD_VALID_SHIFT 20
#define ADDR_CYCLES_SHIFT 21
#define CLEAR_CS_SHIFT 21
#define ECC_LAST_SHIFT 10
#define COMMAND_PHASE (0 << 19)
#define DATA_PHASE (1 << 19)
#define ONDIE_ECC_FEATURE_ADDR 0x90
#define ONDIE_ECC_FEATURE_ENABLE 0x08
#define ZYNQ_NAND_ECC_LAST (1 << ECC_LAST_SHIFT) /* Set ECC_Last */
#define ZYNQ_NAND_CLEAR_CS (1 << CLEAR_CS_SHIFT) /* Clear chip select */
/* ECC block registers bit position and bit mask */
#define ZYNQ_NAND_ECC_BUSY (1 << 6) /* ECC block is busy */
#define ZYNQ_NAND_ECC_MASK 0x00FFFFFF /* ECC value mask */
#define ZYNQ_NAND_ROW_ADDR_CYCL_MASK 0x0F
#define ZYNQ_NAND_COL_ADDR_CYCL_MASK 0xF0
#define ZYNQ_NAND_MIO_NUM_NAND_8BIT 13
#define ZYNQ_NAND_MIO_NUM_NAND_16BIT 8
enum zynq_nand_bus_width {
NAND_BW_UNKNOWN = -1,
NAND_BW_8BIT,
NAND_BW_16BIT,
};
#ifndef NAND_CMD_LOCK_TIGHT
#define NAND_CMD_LOCK_TIGHT 0x2c
#endif
#ifndef NAND_CMD_LOCK_STATUS
#define NAND_CMD_LOCK_STATUS 0x7a
#endif
/* SMC register set */
struct zynq_nand_smc_regs {
u32 csr; /* 0x00 */
u32 reserved0[2];
u32 cfr; /* 0x0C */
u32 dcr; /* 0x10 */
u32 scr; /* 0x14 */
u32 sor; /* 0x18 */
u32 reserved1[249];
u32 esr; /* 0x400 */
u32 emcr; /* 0x404 */
u32 emcmd1r; /* 0x408 */
u32 emcmd2r; /* 0x40C */
u32 reserved2[2];
u32 eval0r; /* 0x418 */
};
/*
* struct nand_config - Defines the NAND flash driver instance
* @parts: Pointer to the mtd_partition structure
* @nand_base: Virtual address of the NAND flash device
* @end_cmd_pending: End command is pending
* @end_cmd: End command
*/
struct nand_config {
void __iomem *nand_base;
u8 end_cmd_pending;
u8 end_cmd;
};
struct nand_drv {
struct zynq_nand_smc_regs *reg;
struct nand_config config;
};
struct zynq_nand_info {
struct udevice *dev;
struct nand_drv nand_ctrl;
struct nand_chip nand_chip;
};
/*
* struct zynq_nand_command_format - Defines NAND flash command format
* @start_cmd: First cycle command (Start command)
* @end_cmd: Second cycle command (Last command)
* @addr_cycles: Number of address cycles required to send the address
* @end_cmd_valid: The second cycle command is valid for cmd or data phase
*/
struct zynq_nand_command_format {
u8 start_cmd;
u8 end_cmd;
u8 addr_cycles;
u8 end_cmd_valid;
};
/* The NAND flash operations command format */
static const struct zynq_nand_command_format zynq_nand_commands[] = {
{NAND_CMD_READ0, NAND_CMD_READSTART, 5, ZYNQ_NAND_CMD_PHASE},
{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, ZYNQ_NAND_CMD_PHASE},
{NAND_CMD_READID, NAND_CMD_NONE, 1, 0},
{NAND_CMD_STATUS, NAND_CMD_NONE, 0, 0},
{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, ZYNQ_NAND_DATA_PHASE},
{NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0},
{NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, ZYNQ_NAND_CMD_PHASE},
{NAND_CMD_RESET, NAND_CMD_NONE, 0, 0},
{NAND_CMD_PARAM, NAND_CMD_NONE, 1, 0},
{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 0},
{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0},
{NAND_CMD_LOCK, NAND_CMD_NONE, 0, 0},
{NAND_CMD_LOCK_TIGHT, NAND_CMD_NONE, 0, 0},
{NAND_CMD_UNLOCK1, NAND_CMD_NONE, 3, 0},
{NAND_CMD_UNLOCK2, NAND_CMD_NONE, 3, 0},
{NAND_CMD_LOCK_STATUS, NAND_CMD_NONE, 3, 0},
{NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
/* Add all the flash commands supported by the flash device */
};
/* Define default oob placement schemes for large and small page devices */
static struct nand_ecclayout nand_oob_16 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{ .offset = 8, .length = 8 }
}
};
static struct nand_ecclayout nand_oob_64 = {
.eccbytes = 12,
.eccpos = {
52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63},
.oobfree = {
{ .offset = 2, .length = 50 }
}
};
static struct nand_ecclayout ondie_nand_oob_64 = {
.eccbytes = 32,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
24, 25, 26, 27, 28, 29, 30, 31,
40, 41, 42, 43, 44, 45, 46, 47,
56, 57, 58, 59, 60, 61, 62, 63
},
.oobfree = {
{ .offset = 4, .length = 4 },
{ .offset = 20, .length = 4 },
{ .offset = 36, .length = 4 },
{ .offset = 52, .length = 4 }
}
};
/* bbt decriptors for chips with on-die ECC and
chips with 64-byte OOB */
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 4,
.len = 4,
.veroffs = 20,
.maxblocks = 4,
.pattern = mirror_pattern
};
/*
* zynq_nand_waitfor_ecc_completion - Wait for ECC completion
*
* returns: status for command completion, -1 for Timeout
*/
static int zynq_nand_waitfor_ecc_completion(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(nand_chip);
unsigned long timeout;
u32 status;
/* Wait max 10us */
timeout = 10;
status = readl(&smc->reg->esr);
while (status & ZYNQ_NAND_ECC_BUSY) {
status = readl(&smc->reg->esr);
if (timeout == 0)
return -1;
timeout--;
udelay(1);
}
return status;
}
/*
* zynq_nand_init_nand_flash - Initialize NAND controller
* @option: Device property flags
*
* This function initializes the NAND flash interface on the NAND controller.
*
* returns: 0 on success or error value on failure
*/
static int zynq_nand_init_nand_flash(struct mtd_info *mtd, int option)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(nand_chip);
u32 status;
/* disable interrupts */
writel(ZYNQ_NAND_CLR_CONFIG, &smc->reg->cfr);
#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
/* Initialize the NAND interface by setting cycles and operation mode */
writel(ZYNQ_NAND_SET_CYCLES, &smc->reg->scr);
#endif
if (option & NAND_BUSWIDTH_16)
writel(ZYNQ_NAND_SET_OPMODE_16BIT, &smc->reg->sor);
else
writel(ZYNQ_NAND_SET_OPMODE_8BIT, &smc->reg->sor);
writel(ZYNQ_NAND_DIRECT_CMD, &smc->reg->dcr);
/* Wait till the ECC operation is complete */
status = zynq_nand_waitfor_ecc_completion(mtd);
if (status < 0) {
printf("%s: Timeout\n", __func__);
return status;
}
/* Set the command1 and command2 register */
writel(ZYNQ_NAND_ECC_CMD1, &smc->reg->emcmd1r);
writel(ZYNQ_NAND_ECC_CMD2, &smc->reg->emcmd2r);
return 0;
}
/*
* zynq_nand_calculate_hwecc - Calculate Hardware ECC
* @mtd: Pointer to the mtd_info structure
* @data: Pointer to the page data
* @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored
*
* This function retrieves the Hardware ECC data from the controller and returns
* ECC data back to the MTD subsystem.
*
* returns: 0 on success or error value on failure
*/
static int zynq_nand_calculate_hwecc(struct mtd_info *mtd, const u8 *data,
u8 *ecc_code)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(nand_chip);
u32 ecc_value = 0;
u8 ecc_reg, ecc_byte;
u32 ecc_status;
/* Wait till the ECC operation is complete */
ecc_status = zynq_nand_waitfor_ecc_completion(mtd);
if (ecc_status < 0) {
printf("%s: Timeout\n", __func__);
return ecc_status;
}
for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
/* Read ECC value for each block */
ecc_value = readl(&smc->reg->eval0r + ecc_reg);
/* Get the ecc status from ecc read value */
ecc_status = (ecc_value >> 24) & 0xFF;
/* ECC value valid */
if (ecc_status & ZYNQ_NAND_ECC_STATUS) {
for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
/* Copy ECC bytes to MTD buffer */
*ecc_code = ecc_value & 0xFF;
ecc_value = ecc_value >> 8;
ecc_code++;
}
} else {
debug("%s: ecc status failed\n", __func__);
}
}
return 0;
}
/*
* onehot - onehot function
* @value: value to check for onehot
*
* This function checks whether a value is onehot or not.
* onehot is if and only if one bit is set.
*
* FIXME: Try to move this in common.h
*/
static bool onehot(unsigned short value)
{
bool onehot;
onehot = value && !(value & (value - 1));
return onehot;
}
/*
* zynq_nand_correct_data - ECC correction function
* @mtd: Pointer to the mtd_info structure
* @buf: Pointer to the page data
* @read_ecc: Pointer to the ECC value read from spare data area
* @calc_ecc: Pointer to the calculated ECC value
*
* This function corrects the ECC single bit errors & detects 2-bit errors.
*
* returns: 0 if no ECC errors found
* 1 if single bit error found and corrected.
* -1 if multiple ECC errors found.
*/
static int zynq_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
unsigned char *read_ecc, unsigned char *calc_ecc)
{
unsigned char bit_addr;
unsigned int byte_addr;
unsigned short ecc_odd, ecc_even;
unsigned short read_ecc_lower, read_ecc_upper;
unsigned short calc_ecc_lower, calc_ecc_upper;
read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
ecc_odd = read_ecc_lower ^ calc_ecc_lower;
ecc_even = read_ecc_upper ^ calc_ecc_upper;
if ((ecc_odd == 0) && (ecc_even == 0))
return 0; /* no error */
if (ecc_odd == (~ecc_even & 0xfff)) {
/* bits [11:3] of error code is byte offset */
byte_addr = (ecc_odd >> 3) & 0x1ff;
/* bits [2:0] of error code is bit offset */
bit_addr = ecc_odd & 0x7;
/* Toggling error bit */
buf[byte_addr] ^= (1 << bit_addr);
return 1;
}
if (onehot(ecc_odd | ecc_even))
return 1; /* one error in parity */
return -1; /* Uncorrectable error */
}
/*
* zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
* @sndcmd: flag whether to issue read command or not
*/
static int zynq_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
unsigned long data_phase_addr = 0;
int data_width = 4;
u8 *p;
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
p = chip->oob_poi;
chip->read_buf(mtd, p, (mtd->oobsize - data_width));
p += mtd->oobsize - data_width;
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
chip->read_buf(mtd, p, data_width);
return 0;
}
/*
* zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to write
*/
static int zynq_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int status = 0, data_width = 4;
const u8 *buf = chip->oob_poi;
unsigned long data_phase_addr = 0;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
chip->write_buf(mtd, buf, (mtd->oobsize - data_width));
buf += mtd->oobsize - data_width;
data_phase_addr = (unsigned long)chip->IO_ADDR_W;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
chip->write_buf(mtd, buf, data_width);
/* Send command to program the OOB data */
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/*
* zynq_nand_read_page_raw - [Intern] read raw page data without ecc
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to read
*/
static int zynq_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
unsigned long data_width = 4;
unsigned long data_phase_addr = 0;
u8 *p;
chip->read_buf(mtd, buf, mtd->writesize);
p = chip->oob_poi;
chip->read_buf(mtd, p, (mtd->oobsize - data_width));
p += (mtd->oobsize - data_width);
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
chip->read_buf(mtd, p, data_width);
return 0;
}
static int zynq_nand_read_page_raw_nooob(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf, int oob_required, int page)
{
chip->read_buf(mtd, buf, mtd->writesize);
return 0;
}
static int zynq_nand_read_subpage_raw(struct mtd_info *mtd,
struct nand_chip *chip, u32 data_offs,
u32 readlen, u8 *buf, int page)
{
if (data_offs != 0) {
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_offs, -1);
buf += data_offs;
}
chip->read_buf(mtd, buf, readlen);
return 0;
}
/*
* zynq_nand_write_page_raw - [Intern] raw page write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static int zynq_nand_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, const u8 *buf, int oob_required, int page)
{
unsigned long data_width = 4;
unsigned long data_phase_addr = 0;
u8 *p;
chip->write_buf(mtd, buf, mtd->writesize);
p = chip->oob_poi;
chip->write_buf(mtd, p, (mtd->oobsize - data_width));
p += (mtd->oobsize - data_width);
data_phase_addr = (unsigned long)chip->IO_ADDR_W;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
chip->write_buf(mtd, p, data_width);
return 0;
}
/*
* nand_write_page_hwecc - Hardware ECC based page write function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* This functions writes data and hardware generated ECC values in to the page.
*/
static int zynq_nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const u8 *buf, int oob_required, int page)
{
int i, eccsteps, eccsize = chip->ecc.size;
u8 *ecc_calc = chip->buffers->ecccalc;
const u8 *p = buf;
u32 *eccpos = chip->ecc.layout->eccpos;
unsigned long data_phase_addr = 0;
unsigned long data_width = 4;
u8 *oob_ptr;
for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
chip->write_buf(mtd, p, eccsize);
p += eccsize;
}
chip->write_buf(mtd, p, (eccsize - data_width));
p += eccsize - data_width;
/* Set ECC Last bit to 1 */
data_phase_addr = (unsigned long) chip->IO_ADDR_W;
data_phase_addr |= ZYNQ_NAND_ECC_LAST;
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
chip->write_buf(mtd, p, data_width);
/* Wait for ECC to be calculated and read the error values */
p = buf;
chip->ecc.calculate(mtd, p, &ecc_calc[0]);
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);
/* Clear ECC last bit */
data_phase_addr = (unsigned long)chip->IO_ADDR_W;
data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
/* Write the spare area with ECC bytes */
oob_ptr = chip->oob_poi;
chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
data_phase_addr = (unsigned long)chip->IO_ADDR_W;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
oob_ptr += (mtd->oobsize - data_width);
chip->write_buf(mtd, oob_ptr, data_width);
return 0;
}
/*
* zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page
* write function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*/
static int zynq_nand_write_page_swecc(struct mtd_info *mtd,
struct nand_chip *chip, const u8 *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
u8 *ecc_calc = chip->buffers->ecccalc;
const u8 *p = buf;
u32 *eccpos = chip->ecc.layout->eccpos;
/* Software ecc calculation */
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
}
/*
* nand_read_page_hwecc - Hardware ECC based page read function
* @mtd: Pointer to the mtd info structure
* @chip: Pointer to the NAND chip info structure
* @buf: Pointer to the buffer to store read data
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to read
*
* This functions reads data and checks the data integrity by comparing hardware
* generated ECC values and read ECC values from spare area.
*
* returns: 0 always and updates ECC operation status in to MTD structure
*/
static int zynq_nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf, int oob_required, int page)
{
int i, stat, eccsteps, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
u8 *p = buf;
u8 *ecc_calc = chip->buffers->ecccalc;
u8 *ecc_code = chip->buffers->ecccode;
u32 *eccpos = chip->ecc.layout->eccpos;
unsigned long data_phase_addr = 0;
unsigned long data_width = 4;
u8 *oob_ptr;
for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
chip->read_buf(mtd, p, eccsize);
p += eccsize;
}
chip->read_buf(mtd, p, (eccsize - data_width));
p += eccsize - data_width;
/* Set ECC Last bit to 1 */
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr |= ZYNQ_NAND_ECC_LAST;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
chip->read_buf(mtd, p, data_width);
/* Read the calculated ECC value */
p = buf;
chip->ecc.calculate(mtd, p, &ecc_calc[0]);
/* Clear ECC last bit */
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
/* Read the stored ECC value */
oob_ptr = chip->oob_poi;
chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
/* de-assert chip select */
data_phase_addr = (unsigned long)chip->IO_ADDR_R;
data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
oob_ptr += (mtd->oobsize - data_width);
chip->read_buf(mtd, oob_ptr, data_width);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);
eccsteps = chip->ecc.steps;
p = buf;
/* Check ECC error for all blocks and correct if it is correctable */
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
return 0;
}
/*
* zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page
* read function
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @page: page number to read
*/
static int zynq_nand_read_page_swecc(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf, int oob_required, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
u8 *p = buf;
u8 *ecc_calc = chip->buffers->ecccalc;
u8 *ecc_code = chip->buffers->ecccode;
u32 *eccpos = chip->ecc.layout->eccpos;
chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
return 0;
}
/*
* zynq_nand_select_chip - Select the flash device
* @mtd: Pointer to the mtd_info structure
* @chip: Chip number to be selected
*
* This function is empty as the NAND controller handles chip select line
* internally based on the chip address passed in command and data phase.
*/
static void zynq_nand_select_chip(struct mtd_info *mtd, int chip)
{
/* Not support multiple chips yet */
}
/*
* zynq_nand_cmd_function - Send command to NAND device
* @mtd: Pointer to the mtd_info structure
* @command: The command to be sent to the flash device
* @column: The column address for this command, -1 if none
* @page_addr: The page address for this command, -1 if none
*/
static void zynq_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(chip);
const struct zynq_nand_command_format *curr_cmd = NULL;
u8 addr_cycles = 0;
struct nand_config *xnand = &smc->config;
void *cmd_addr;
unsigned long cmd_data = 0;
unsigned long cmd_phase_addr = 0;
unsigned long data_phase_addr = 0;
u8 end_cmd = 0;
u8 end_cmd_valid = 0;
u32 index;
if (xnand->end_cmd_pending) {
/* Check for end command if this command request is same as the
* pending command then return
*/
if (xnand->end_cmd == command) {
xnand->end_cmd = 0;
xnand->end_cmd_pending = 0;
return;
}
}
/* Emulate NAND_CMD_READOOB for large page device */
if ((mtd->writesize > ZYNQ_NAND_ECC_SIZE) &&
(command == NAND_CMD_READOOB)) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* Get the command format */
for (index = 0; index < ARRAY_SIZE(zynq_nand_commands); index++)
if (command == zynq_nand_commands[index].start_cmd)
break;
if (index == ARRAY_SIZE(zynq_nand_commands)) {
printf("%s: Unsupported start cmd %02x\n", __func__, command);
return;
}
curr_cmd = &zynq_nand_commands[index];
/* Clear interrupt */
writel(ZYNQ_MEMC_CLRCR_INT_CLR1, &smc->reg->cfr);
/* Get the command phase address */
if (curr_cmd->end_cmd_valid == ZYNQ_NAND_CMD_PHASE)
end_cmd_valid = 1;
if (curr_cmd->end_cmd == (u8)NAND_CMD_NONE)
end_cmd = 0x0;
else
end_cmd = curr_cmd->end_cmd;
if (command == NAND_CMD_READ0 ||
command == NAND_CMD_SEQIN) {
addr_cycles = chip->onfi_params.addr_cycles &
ZYNQ_NAND_ROW_ADDR_CYCL_MASK;
addr_cycles += ((chip->onfi_params.addr_cycles &
ZYNQ_NAND_COL_ADDR_CYCL_MASK) >> 4);
} else {
addr_cycles = curr_cmd->addr_cycles;
}
cmd_phase_addr = (unsigned long)xnand->nand_base |
(addr_cycles << ADDR_CYCLES_SHIFT) |
(end_cmd_valid << END_CMD_VALID_SHIFT) |
(COMMAND_PHASE) |
(end_cmd << END_CMD_SHIFT) |
(curr_cmd->start_cmd << START_CMD_SHIFT);
cmd_addr = (void __iomem *)cmd_phase_addr;
/* Get the data phase address */
end_cmd_valid = 0;
data_phase_addr = (unsigned long)xnand->nand_base |
(0x0 << CLEAR_CS_SHIFT) |
(end_cmd_valid << END_CMD_VALID_SHIFT) |
(DATA_PHASE) |
(end_cmd << END_CMD_SHIFT) |
(0x0 << ECC_LAST_SHIFT);
chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
chip->IO_ADDR_W = chip->IO_ADDR_R;
/* Command phase AXI Read & Write */
if (column != -1 && page_addr != -1) {
/* Adjust columns for 16 bit bus width */
if (chip->options & NAND_BUSWIDTH_16)
column >>= 1;
cmd_data = column;
if (mtd->writesize > ZYNQ_NAND_ECC_SIZE) {
cmd_data |= page_addr << 16;
/* Another address cycle for devices > 128MiB */
if (chip->chipsize > (128 << 20)) {
writel(cmd_data, cmd_addr);
cmd_data = (page_addr >> 16);
}
} else {
cmd_data |= page_addr << 8;
}
} else if (page_addr != -1) { /* Erase */
cmd_data = page_addr;
} else if (column != -1) { /* Change read/write column, read id etc */
/* Adjust columns for 16 bit bus width */
if ((chip->options & NAND_BUSWIDTH_16) &&
((command == NAND_CMD_READ0) ||
(command == NAND_CMD_SEQIN) ||
(command == NAND_CMD_RNDOUT) ||
(command == NAND_CMD_RNDIN)))
column >>= 1;
cmd_data = column;
}
writel(cmd_data, cmd_addr);
if (curr_cmd->end_cmd_valid) {
xnand->end_cmd = curr_cmd->end_cmd;
xnand->end_cmd_pending = 1;
}
ndelay(100);
if ((command == NAND_CMD_READ0) ||
(command == NAND_CMD_RESET) ||
(command == NAND_CMD_PARAM) ||
(command == NAND_CMD_GET_FEATURES))
/* wait until command is processed */
nand_wait_ready(mtd);
}
/*
* zynq_nand_read_buf - read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void zynq_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
/* Make sure that buf is 32 bit aligned */
if (((unsigned long)buf & 0x3) != 0) {
if (((unsigned long)buf & 0x1) != 0) {
if (len) {
*buf = readb(chip->IO_ADDR_R);
buf += 1;
len--;
}
}
if (((unsigned long)buf & 0x3) != 0) {
if (len >= 2) {
*(u16 *)buf = readw(chip->IO_ADDR_R);
buf += 2;
len -= 2;
}
}
}
/* copy aligned data */
while (len >= 4) {
*(u32 *)buf = readl(chip->IO_ADDR_R);
buf += 4;
len -= 4;
}
/* mop up any remaining bytes */
if (len) {
if (len >= 2) {
*(u16 *)buf = readw(chip->IO_ADDR_R);
buf += 2;
len -= 2;
}
if (len)
*buf = readb(chip->IO_ADDR_R);
}
}
/*
* zynq_nand_write_buf - write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*/
static void zynq_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const u32 *nand = chip->IO_ADDR_W;
/* Make sure that buf is 32 bit aligned */
if (((unsigned long)buf & 0x3) != 0) {
if (((unsigned long)buf & 0x1) != 0) {
if (len) {
writeb(*buf, nand);
buf += 1;
len--;
}
}
if (((unsigned long)buf & 0x3) != 0) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
}
}
/* copy aligned data */
while (len >= 4) {
writel(*(u32 *)buf, nand);
buf += 4;
len -= 4;
}
/* mop up any remaining bytes */
if (len) {
if (len >= 2) {
writew(*(u16 *)buf, nand);
buf += 2;
len -= 2;
}
if (len)
writeb(*buf, nand);
}
}
/*
* zynq_nand_device_ready - Check device ready/busy line
* @mtd: Pointer to the mtd_info structure
*
* returns: 0 on busy or 1 on ready state
*/
static int zynq_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct nand_drv *smc = nand_get_controller_data(nand_chip);
u32 csr_val;
csr_val = readl(&smc->reg->csr);
/* Check the raw_int_status1 bit */
if (csr_val & ZYNQ_MEMC_SR_RAW_INT_ST1) {
/* Clear the interrupt condition */
writel(ZYNQ_MEMC_SR_INT_ST1, &smc->reg->cfr);
return 1;
}
return 0;
}
static int zynq_nand_check_is_16bit_bw_flash(void)
{
int is_16bit_bw = NAND_BW_UNKNOWN;
int mio_num_8bit = 0, mio_num_16bit = 0;
mio_num_8bit = zynq_slcr_get_mio_pin_status("nand8");
if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT)
is_16bit_bw = NAND_BW_8BIT;
mio_num_16bit = zynq_slcr_get_mio_pin_status("nand16");
if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT &&
mio_num_16bit == ZYNQ_NAND_MIO_NUM_NAND_16BIT)
is_16bit_bw = NAND_BW_16BIT;
return is_16bit_bw;
}
static int zynq_nand_probe(struct udevice *dev)
{
struct zynq_nand_info *zynq = dev_get_priv(dev);
struct nand_chip *nand_chip = &zynq->nand_chip;
struct nand_drv *smc = &zynq->nand_ctrl;
struct nand_config *xnand = &smc->config;
struct mtd_info *mtd;
struct resource res;
ofnode of_nand;
unsigned long ecc_page_size;
u8 maf_id, dev_id, i;
u8 get_feature[4];
u8 set_feature[4] = {ONDIE_ECC_FEATURE_ENABLE, 0x00, 0x00, 0x00};
unsigned long ecc_cfg;
int ondie_ecc_enabled = 0;
int is_16bit_bw;
smc->reg = (struct zynq_nand_smc_regs *)dev_read_addr(dev);
of_nand = dev_read_subnode(dev, "flash@e1000000");
if (!ofnode_valid(of_nand)) {
printf("Failed to find nand node in dt\n");
return -ENODEV;
}
if (!ofnode_is_available(of_nand)) {
debug("Nand node in dt disabled\n");
return dm_scan_fdt_dev(dev);
}
if (ofnode_read_resource(of_nand, 0, &res)) {
printf("Failed to get nand resource\n");
return -ENODEV;
}
xnand->nand_base = (void __iomem *)res.start;
mtd = nand_to_mtd(nand_chip);
nand_set_controller_data(nand_chip, &zynq->nand_ctrl);
/* Set address of NAND IO lines */
nand_chip->IO_ADDR_R = xnand->nand_base;
nand_chip->IO_ADDR_W = xnand->nand_base;
/* Set the driver entry points for MTD */
nand_chip->cmdfunc = zynq_nand_cmd_function;
nand_chip->dev_ready = zynq_nand_device_ready;
nand_chip->select_chip = zynq_nand_select_chip;
/* If we don't set this delay driver sets 20us by default */
nand_chip->chip_delay = 30;
/* Buffer read/write routines */
nand_chip->read_buf = zynq_nand_read_buf;
nand_chip->write_buf = zynq_nand_write_buf;
is_16bit_bw = zynq_nand_check_is_16bit_bw_flash();
if (is_16bit_bw == NAND_BW_UNKNOWN) {
printf("%s: Unable detect NAND based on MIO settings\n",
__func__);
return -EINVAL;
}
if (is_16bit_bw == NAND_BW_16BIT)
nand_chip->options = NAND_BUSWIDTH_16;
nand_chip->bbt_options = NAND_BBT_USE_FLASH;
/* Initialize the NAND flash interface on NAND controller */
if (zynq_nand_init_nand_flash(mtd, nand_chip->options) < 0) {
printf("%s: nand flash init failed\n", __func__);
return -EINVAL;
}
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, 1, NULL)) {
printf("%s: nand_scan_ident failed\n", __func__);
return -EINVAL;
}
/* Send the command for reading device ID */
nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
maf_id = nand_chip->read_byte(mtd);
dev_id = nand_chip->read_byte(mtd);
if ((maf_id == 0x2c) && ((dev_id == 0xf1) ||
(dev_id == 0xa1) || (dev_id == 0xb1) ||
(dev_id == 0xaa) || (dev_id == 0xba) ||
(dev_id == 0xda) || (dev_id == 0xca) ||
(dev_id == 0xac) || (dev_id == 0xbc) ||
(dev_id == 0xdc) || (dev_id == 0xcc) ||
(dev_id == 0xa3) || (dev_id == 0xb3) ||
(dev_id == 0xd3) || (dev_id == 0xc3))) {
nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,
ONDIE_ECC_FEATURE_ADDR, -1);
for (i = 0; i < 4; i++)
writeb(set_feature[i], nand_chip->IO_ADDR_W);
/* Wait for 1us after writing data with SET_FEATURES command */
ndelay(1000);
nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
ONDIE_ECC_FEATURE_ADDR, -1);
nand_chip->read_buf(mtd, get_feature, 4);
if (get_feature[0] & ONDIE_ECC_FEATURE_ENABLE) {
debug("%s: OnDie ECC flash\n", __func__);
ondie_ecc_enabled = 1;
} else {
printf("%s: Unable to detect OnDie ECC\n", __func__);
}
}
if (ondie_ecc_enabled) {
/* Bypass the controller ECC block */
ecc_cfg = readl(&smc->reg->emcr);
ecc_cfg &= ~ZYNQ_MEMC_NAND_ECC_MODE_MASK;
writel(ecc_cfg, &smc->reg->emcr);
/* The software ECC routines won't work
* with the SMC controller
*/
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.strength = 1;
nand_chip->ecc.read_page = zynq_nand_read_page_raw_nooob;
nand_chip->ecc.read_subpage = zynq_nand_read_subpage_raw;
nand_chip->ecc.write_page = zynq_nand_write_page_raw;
nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
nand_chip->ecc.read_oob = zynq_nand_read_oob;
nand_chip->ecc.write_oob = zynq_nand_write_oob;
nand_chip->ecc.size = mtd->writesize;
nand_chip->ecc.bytes = 0;
/* NAND with on-die ECC supports subpage reads */
nand_chip->options |= NAND_SUBPAGE_READ;
/* On-Die ECC spare bytes offset 8 is used for ECC codes */
if (ondie_ecc_enabled) {
nand_chip->ecc.layout = &ondie_nand_oob_64;
/* Use the BBT pattern descriptors */
nand_chip->bbt_td = &bbt_main_descr;
nand_chip->bbt_md = &bbt_mirror_descr;
}
} else {
/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.strength = 1;
nand_chip->ecc.size = ZYNQ_NAND_ECC_SIZE;
nand_chip->ecc.bytes = 3;
nand_chip->ecc.calculate = zynq_nand_calculate_hwecc;
nand_chip->ecc.correct = zynq_nand_correct_data;
nand_chip->ecc.hwctl = NULL;
nand_chip->ecc.read_page = zynq_nand_read_page_hwecc;
nand_chip->ecc.write_page = zynq_nand_write_page_hwecc;
nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
nand_chip->ecc.read_oob = zynq_nand_read_oob;
nand_chip->ecc.write_oob = zynq_nand_write_oob;
switch (mtd->writesize) {
case 512:
ecc_page_size = 0x1;
/* Set the ECC memory config register */
writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
&smc->reg->emcr);
break;
case 1024:
ecc_page_size = 0x2;
/* Set the ECC memory config register */
writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
&smc->reg->emcr);
break;
case 2048:
ecc_page_size = 0x3;
/* Set the ECC memory config register */
writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
&smc->reg->emcr);
break;
default:
nand_chip->ecc.mode = NAND_ECC_SOFT;
nand_chip->ecc.calculate = nand_calculate_ecc;
nand_chip->ecc.correct = nand_correct_data;
nand_chip->ecc.read_page = zynq_nand_read_page_swecc;
nand_chip->ecc.write_page = zynq_nand_write_page_swecc;
nand_chip->ecc.size = 256;
break;
}
if (mtd->oobsize == 16)
nand_chip->ecc.layout = &nand_oob_16;
else if (mtd->oobsize == 64)
nand_chip->ecc.layout = &nand_oob_64;
else
printf("%s: No oob layout found\n", __func__);
}
/* Second phase scan */
if (nand_scan_tail(mtd)) {
printf("%s: nand_scan_tail failed\n", __func__);
return -EINVAL;
}
if (nand_register(0, mtd))
return -EINVAL;
return 0;
}
static const struct udevice_id zynq_nand_dt_ids[] = {
{.compatible = "arm,pl353-smc-r2p1",},
{ /* sentinel */ }
};
U_BOOT_DRIVER(zynq_nand) = {
.name = "zynq_nand",
.id = UCLASS_MTD,
.of_match = zynq_nand_dt_ids,
.probe = zynq_nand_probe,
.priv_auto = sizeof(struct zynq_nand_info),
};
void board_nand_init(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
DM_DRIVER_GET(zynq_nand), &dev);
if (ret && ret != -ENODEV)
pr_err("Failed to initialize %s. (error %d)\n", dev->name, ret);
}