u-boot-brain/drivers/mtd/nand/raw/tegra_nand.c
Simon Glass 65e25bea59 dm: Rename DM_GET_DRIVER() to DM_DRIVER_GET()
In the spirit of using the same base name for all of these related macros,
rename this to have the operation at the end. This is not widely used so
the impact is fairly small.

Signed-off-by: Simon Glass <sjg@chromium.org>
2021-01-05 12:26:35 -07:00

1007 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2011 The Chromium OS Authors.
* (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
* (C) Copyright 2006 Detlev Zundel, dzu@denx.de
* (C) Copyright 2006 DENX Software Engineering
*/
#include <common.h>
#include <log.h>
#include <asm/io.h>
#include <memalign.h>
#include <nand.h>
#include <asm/arch/clock.h>
#include <asm/arch/funcmux.h>
#include <asm/arch-tegra/clk_rst.h>
#include <dm/device_compat.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <asm/gpio.h>
#include <fdtdec.h>
#include <bouncebuf.h>
#include <dm.h>
#include "tegra_nand.h"
DECLARE_GLOBAL_DATA_PTR;
#define NAND_CMD_TIMEOUT_MS 10
#define SKIPPED_SPARE_BYTES 4
/* ECC bytes to be generated for tag data */
#define TAG_ECC_BYTES 4
static const struct udevice_id tegra_nand_dt_ids[] = {
{
.compatible = "nvidia,tegra20-nand",
},
{ /* sentinel */ }
};
/* 64 byte oob block info for large page (== 2KB) device
*
* OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC:
* Skipped bytes(4)
* Main area Ecc(36)
* Tag data(20)
* Tag data Ecc(4)
*
* Yaffs2 will use 16 tag bytes.
*/
static struct nand_ecclayout eccoob = {
.eccbytes = 36,
.eccpos = {
4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39,
},
.oobavail = 20,
.oobfree = {
{
.offset = 40,
.length = 20,
},
}
};
enum {
ECC_OK,
ECC_TAG_ERROR = 1 << 0,
ECC_DATA_ERROR = 1 << 1
};
/* Timing parameters */
enum {
FDT_NAND_MAX_TRP_TREA,
FDT_NAND_TWB,
FDT_NAND_MAX_TCR_TAR_TRR,
FDT_NAND_TWHR,
FDT_NAND_MAX_TCS_TCH_TALS_TALH,
FDT_NAND_TWH,
FDT_NAND_TWP,
FDT_NAND_TRH,
FDT_NAND_TADL,
FDT_NAND_TIMING_COUNT
};
/* Information about an attached NAND chip */
struct fdt_nand {
struct nand_ctlr *reg;
int enabled; /* 1 to enable, 0 to disable */
struct gpio_desc wp_gpio; /* write-protect GPIO */
s32 width; /* bit width, normally 8 */
u32 timing[FDT_NAND_TIMING_COUNT];
};
struct nand_drv {
struct nand_ctlr *reg;
struct fdt_nand config;
};
struct tegra_nand_info {
struct udevice *dev;
struct nand_drv nand_ctrl;
struct nand_chip nand_chip;
};
/**
* Wait for command completion
*
* @param reg nand_ctlr structure
* @return
* 1 - Command completed
* 0 - Timeout
*/
static int nand_waitfor_cmd_completion(struct nand_ctlr *reg)
{
u32 reg_val;
int running;
int i;
for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) {
if ((readl(&reg->command) & CMD_GO) ||
!(readl(&reg->status) & STATUS_RBSY0) ||
!(readl(&reg->isr) & ISR_IS_CMD_DONE)) {
udelay(1);
continue;
}
reg_val = readl(&reg->dma_mst_ctrl);
/*
* If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE
* is set, that means DMA engine is running.
*
* Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE
* is cleared, indicating DMA transfer completion.
*/
running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE |
DMA_MST_CTRL_EN_B_ENABLE);
if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE))
return 1;
udelay(1);
}
return 0;
}
/**
* Read one byte from the chip
*
* @param mtd MTD device structure
* @return data byte
*
* Read function for 8bit bus-width
*/
static uint8_t read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info;
info = (struct nand_drv *)nand_get_controller_data(chip);
writel(CMD_GO | CMD_PIO | CMD_RX | CMD_CE0 | CMD_A_VALID,
&info->reg->command);
if (!nand_waitfor_cmd_completion(info->reg))
printf("Command timeout\n");
return (uint8_t)readl(&info->reg->resp);
}
/**
* Read len bytes from the chip into a buffer
*
* @param mtd MTD device structure
* @param buf buffer to store data to
* @param len number of bytes to read
*
* Read function for 8bit bus-width
*/
static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i, s;
unsigned int reg;
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info = (struct nand_drv *)nand_get_controller_data(chip);
for (i = 0; i < len; i += 4) {
s = (len - i) > 4 ? 4 : len - i;
writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 |
((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO,
&info->reg->command);
if (!nand_waitfor_cmd_completion(info->reg))
puts("Command timeout during read_buf\n");
reg = readl(&info->reg->resp);
memcpy(buf + i, &reg, s);
}
}
/**
* Check NAND status to see if it is ready or not
*
* @param mtd MTD device structure
* @return
* 1 - ready
* 0 - not ready
*/
static int nand_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int reg_val;
struct nand_drv *info;
info = (struct nand_drv *)nand_get_controller_data(chip);
reg_val = readl(&info->reg->status);
if (reg_val & STATUS_RBSY0)
return 1;
else
return 0;
}
/* Dummy implementation: we don't support multiple chips */
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
{
switch (chipnr) {
case -1:
case 0:
break;
default:
BUG();
}
}
/**
* Clear all interrupt status bits
*
* @param reg nand_ctlr structure
*/
static void nand_clear_interrupt_status(struct nand_ctlr *reg)
{
u32 reg_val;
/* Clear interrupt status */
reg_val = readl(&reg->isr);
writel(reg_val, &reg->isr);
}
/**
* Send command to NAND device
*
* @param mtd MTD device structure
* @param command the command to be sent
* @param column the column address for this command, -1 if none
* @param page_addr the page address for this command, -1 if none
*/
static void nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info;
info = (struct nand_drv *)nand_get_controller_data(chip);
/*
* Write out the command to the device.
*
* Only command NAND_CMD_RESET or NAND_CMD_READID will come
* here before mtd->writesize is initialized.
*/
/* Emulate NAND_CMD_READOOB */
if (command == NAND_CMD_READOOB) {
assert(mtd->writesize != 0);
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* Adjust columns for 16 bit bus-width */
if (column != -1 && (chip->options & NAND_BUSWIDTH_16))
column >>= 1;
nand_clear_interrupt_status(info->reg);
/* Stop DMA engine, clear DMA completion status */
writel(DMA_MST_CTRL_EN_A_DISABLE
| DMA_MST_CTRL_EN_B_DISABLE
| DMA_MST_CTRL_IS_DMA_DONE,
&info->reg->dma_mst_ctrl);
/*
* Program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_READID:
writel(NAND_CMD_READID, &info->reg->cmd_reg1);
writel(column & 0xFF, &info->reg->addr_reg1);
writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
&info->reg->command);
break;
case NAND_CMD_PARAM:
writel(NAND_CMD_PARAM, &info->reg->cmd_reg1);
writel(column & 0xFF, &info->reg->addr_reg1);
writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
&info->reg->command);
break;
case NAND_CMD_READ0:
writel(NAND_CMD_READ0, &info->reg->cmd_reg1);
writel(NAND_CMD_READSTART, &info->reg->cmd_reg2);
writel((page_addr << 16) | (column & 0xFFFF),
&info->reg->addr_reg1);
writel(page_addr >> 16, &info->reg->addr_reg2);
return;
case NAND_CMD_SEQIN:
writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1);
writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2);
writel((page_addr << 16) | (column & 0xFFFF),
&info->reg->addr_reg1);
writel(page_addr >> 16,
&info->reg->addr_reg2);
return;
case NAND_CMD_PAGEPROG:
return;
case NAND_CMD_ERASE1:
writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1);
writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2);
writel(page_addr, &info->reg->addr_reg1);
writel(CMD_GO | CMD_CLE | CMD_ALE |
CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3,
&info->reg->command);
break;
case NAND_CMD_ERASE2:
return;
case NAND_CMD_STATUS:
writel(NAND_CMD_STATUS, &info->reg->cmd_reg1);
writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX
| ((1 - 0) << CMD_TRANS_SIZE_SHIFT)
| CMD_CE0,
&info->reg->command);
break;
case NAND_CMD_RESET:
writel(NAND_CMD_RESET, &info->reg->cmd_reg1);
writel(CMD_GO | CMD_CLE | CMD_CE0,
&info->reg->command);
break;
case NAND_CMD_RNDOUT:
default:
printf("%s: Unsupported command %d\n", __func__, command);
return;
}
if (!nand_waitfor_cmd_completion(info->reg))
printf("Command 0x%02X timeout\n", command);
}
/**
* Check whether the pointed buffer are all 0xff (blank).
*
* @param buf data buffer for blank check
* @param len length of the buffer in byte
* @return
* 1 - blank
* 0 - non-blank
*/
static int blank_check(u8 *buf, int len)
{
int i;
for (i = 0; i < len; i++)
if (buf[i] != 0xFF)
return 0;
return 1;
}
/**
* After a DMA transfer for read, we call this function to see whether there
* is any uncorrectable error on the pointed data buffer or oob buffer.
*
* @param reg nand_ctlr structure
* @param databuf data buffer
* @param a_len data buffer length
* @param oobbuf oob buffer
* @param b_len oob buffer length
* @return
* ECC_OK - no ECC error or correctable ECC error
* ECC_TAG_ERROR - uncorrectable tag ECC error
* ECC_DATA_ERROR - uncorrectable data ECC error
* ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error
*/
static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf,
int a_len, u8 *oobbuf, int b_len)
{
int return_val = ECC_OK;
u32 reg_val;
if (!(readl(&reg->isr) & ISR_IS_ECC_ERR))
return ECC_OK;
/*
* Area A is used for the data block (databuf). Area B is used for
* the spare block (oobbuf)
*/
reg_val = readl(&reg->dec_status);
if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) {
reg_val = readl(&reg->bch_dec_status_buf);
/*
* If uncorrectable error occurs on data area, then see whether
* they are all FF. If all are FF, it's a blank page.
* Not error.
*/
if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) &&
!blank_check(databuf, a_len))
return_val |= ECC_DATA_ERROR;
}
if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) {
reg_val = readl(&reg->bch_dec_status_buf);
/*
* If uncorrectable error occurs on tag area, then see whether
* they are all FF. If all are FF, it's a blank page.
* Not error.
*/
if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) &&
!blank_check(oobbuf, b_len))
return_val |= ECC_TAG_ERROR;
}
return return_val;
}
/**
* Set GO bit to send command to device
*
* @param reg nand_ctlr structure
*/
static void start_command(struct nand_ctlr *reg)
{
u32 reg_val;
reg_val = readl(&reg->command);
reg_val |= CMD_GO;
writel(reg_val, &reg->command);
}
/**
* Clear command GO bit, DMA GO bit, and DMA completion status
*
* @param reg nand_ctlr structure
*/
static void stop_command(struct nand_ctlr *reg)
{
/* Stop command */
writel(0, &reg->command);
/* Stop DMA engine and clear DMA completion status */
writel(DMA_MST_CTRL_GO_DISABLE
| DMA_MST_CTRL_IS_DMA_DONE,
&reg->dma_mst_ctrl);
}
/**
* Set up NAND bus width and page size
*
* @param info nand_info structure
* @param *reg_val address of reg_val
* @return 0 if ok, -1 on error
*/
static int set_bus_width_page_size(struct mtd_info *our_mtd,
struct fdt_nand *config, u32 *reg_val)
{
if (config->width == 8)
*reg_val = CFG_BUS_WIDTH_8BIT;
else if (config->width == 16)
*reg_val = CFG_BUS_WIDTH_16BIT;
else {
debug("%s: Unsupported bus width %d\n", __func__,
config->width);
return -1;
}
if (our_mtd->writesize == 512)
*reg_val |= CFG_PAGE_SIZE_512;
else if (our_mtd->writesize == 2048)
*reg_val |= CFG_PAGE_SIZE_2048;
else if (our_mtd->writesize == 4096)
*reg_val |= CFG_PAGE_SIZE_4096;
else {
debug("%s: Unsupported page size %d\n", __func__,
our_mtd->writesize);
return -1;
}
return 0;
}
/**
* Page read/write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf data buffer
* @param page page number
* @param with_ecc 1 to enable ECC, 0 to disable ECC
* @param is_writing 0 for read, 1 for write
* @return 0 when successfully completed
* -EIO when command timeout
*/
static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page, int with_ecc, int is_writing)
{
u32 reg_val;
int tag_size;
struct nand_oobfree *free = chip->ecc.layout->oobfree;
/* 4*128=512 (byte) is the value that our HW can support. */
ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128);
char *tag_ptr;
struct nand_drv *info;
struct fdt_nand *config;
unsigned int bbflags;
struct bounce_buffer bbstate, bbstate_oob;
if ((uintptr_t)buf & 0x03) {
printf("buf %p has to be 4-byte aligned\n", buf);
return -EINVAL;
}
info = (struct nand_drv *)nand_get_controller_data(chip);
config = &info->config;
if (set_bus_width_page_size(mtd, config, &reg_val))
return -EINVAL;
/* Need to be 4-byte aligned */
tag_ptr = (char *)tag_buf;
stop_command(info->reg);
if (is_writing)
bbflags = GEN_BB_READ;
else
bbflags = GEN_BB_WRITE;
bounce_buffer_start(&bbstate, (void *)buf, 1 << chip->page_shift,
bbflags);
writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a);
writel(virt_to_phys(bbstate.bounce_buffer), &info->reg->data_block_ptr);
/* Set ECC selection, configure ECC settings */
if (with_ecc) {
if (is_writing)
memcpy(tag_ptr, chip->oob_poi + free->offset,
chip->ecc.layout->oobavail + TAG_ECC_BYTES);
tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES;
reg_val |= (CFG_SKIP_SPARE_SEL_4
| CFG_SKIP_SPARE_ENABLE
| CFG_HW_ECC_CORRECTION_ENABLE
| CFG_ECC_EN_TAG_DISABLE
| CFG_HW_ECC_SEL_RS
| CFG_HW_ECC_ENABLE
| CFG_TVAL4
| (tag_size - 1));
if (!is_writing)
tag_size += SKIPPED_SPARE_BYTES;
bounce_buffer_start(&bbstate_oob, (void *)tag_ptr, tag_size,
bbflags);
} else {
tag_size = mtd->oobsize;
reg_val |= (CFG_SKIP_SPARE_DISABLE
| CFG_HW_ECC_CORRECTION_DISABLE
| CFG_ECC_EN_TAG_DISABLE
| CFG_HW_ECC_DISABLE
| (tag_size - 1));
bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi,
tag_size, bbflags);
}
writel(reg_val, &info->reg->config);
writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
writel(tag_size - 1, &info->reg->dma_cfg_b);
nand_clear_interrupt_status(info->reg);
reg_val = CMD_CLE | CMD_ALE
| CMD_SEC_CMD
| (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
| CMD_A_VALID
| CMD_B_VALID
| (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT)
| CMD_CE0;
if (!is_writing)
reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
else
reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
writel(reg_val, &info->reg->command);
/* Setup DMA engine */
reg_val = DMA_MST_CTRL_GO_ENABLE
| DMA_MST_CTRL_BURST_8WORDS
| DMA_MST_CTRL_EN_A_ENABLE
| DMA_MST_CTRL_EN_B_ENABLE;
if (!is_writing)
reg_val |= DMA_MST_CTRL_DIR_READ;
else
reg_val |= DMA_MST_CTRL_DIR_WRITE;
writel(reg_val, &info->reg->dma_mst_ctrl);
start_command(info->reg);
if (!nand_waitfor_cmd_completion(info->reg)) {
if (!is_writing)
printf("Read Page 0x%X timeout ", page);
else
printf("Write Page 0x%X timeout ", page);
if (with_ecc)
printf("with ECC");
else
printf("without ECC");
printf("\n");
return -EIO;
}
bounce_buffer_stop(&bbstate_oob);
bounce_buffer_stop(&bbstate);
if (with_ecc && !is_writing) {
memcpy(chip->oob_poi, tag_ptr,
SKIPPED_SPARE_BYTES);
memcpy(chip->oob_poi + free->offset,
tag_ptr + SKIPPED_SPARE_BYTES,
chip->ecc.layout->oobavail);
reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf,
1 << chip->page_shift,
(u8 *)(tag_ptr + SKIPPED_SPARE_BYTES),
chip->ecc.layout->oobavail);
if (reg_val & ECC_TAG_ERROR)
printf("Read Page 0x%X tag ECC error\n", page);
if (reg_val & ECC_DATA_ERROR)
printf("Read Page 0x%X data ECC error\n",
page);
if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR))
return -EIO;
}
return 0;
}
/**
* Hardware ecc based page read function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf buffer to store read data
* @param page page number to read
* @return 0 when successfully completed
* -EIO when command timeout
*/
static int nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
return nand_rw_page(mtd, chip, buf, page, 1, 0);
}
/**
* Hardware ecc based page write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf data buffer
*/
static int nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int oob_required,
int page)
{
nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
return 0;
}
/**
* Read raw page data without ecc
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf buffer to store read data
* @param page page number to read
* @return 0 when successfully completed
* -EINVAL when chip->oob_poi is not double-word aligned
* -EIO when command timeout
*/
static int nand_read_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
return nand_rw_page(mtd, chip, buf, page, 0, 0);
}
/**
* Raw page write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf data buffer
*/
static int nand_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1);
return 0;
}
/**
* OOB data read/write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param page page number to read
* @param with_ecc 1 to enable ECC, 0 to disable ECC
* @param is_writing 0 for read, 1 for write
* @return 0 when successfully completed
* -EINVAL when chip->oob_poi is not double-word aligned
* -EIO when command timeout
*/
static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int with_ecc, int is_writing)
{
u32 reg_val;
int tag_size;
struct nand_oobfree *free = chip->ecc.layout->oobfree;
struct nand_drv *info;
unsigned int bbflags;
struct bounce_buffer bbstate_oob;
if (((int)chip->oob_poi) & 0x03)
return -EINVAL;
info = (struct nand_drv *)nand_get_controller_data(chip);
if (set_bus_width_page_size(mtd, &info->config, &reg_val))
return -EINVAL;
stop_command(info->reg);
/* Set ECC selection */
tag_size = mtd->oobsize;
if (with_ecc)
reg_val |= CFG_ECC_EN_TAG_ENABLE;
else
reg_val |= (CFG_ECC_EN_TAG_DISABLE);
reg_val |= ((tag_size - 1) |
CFG_SKIP_SPARE_DISABLE |
CFG_HW_ECC_CORRECTION_DISABLE |
CFG_HW_ECC_DISABLE);
writel(reg_val, &info->reg->config);
if (is_writing && with_ecc)
tag_size -= TAG_ECC_BYTES;
if (is_writing)
bbflags = GEN_BB_READ;
else
bbflags = GEN_BB_WRITE;
bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi, tag_size,
bbflags);
writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
writel(tag_size - 1, &info->reg->dma_cfg_b);
nand_clear_interrupt_status(info->reg);
reg_val = CMD_CLE | CMD_ALE
| CMD_SEC_CMD
| (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
| CMD_B_VALID
| CMD_CE0;
if (!is_writing)
reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
else
reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
writel(reg_val, &info->reg->command);
/* Setup DMA engine */
reg_val = DMA_MST_CTRL_GO_ENABLE
| DMA_MST_CTRL_BURST_8WORDS
| DMA_MST_CTRL_EN_B_ENABLE;
if (!is_writing)
reg_val |= DMA_MST_CTRL_DIR_READ;
else
reg_val |= DMA_MST_CTRL_DIR_WRITE;
writel(reg_val, &info->reg->dma_mst_ctrl);
start_command(info->reg);
if (!nand_waitfor_cmd_completion(info->reg)) {
if (!is_writing)
printf("Read OOB of Page 0x%X timeout\n", page);
else
printf("Write OOB of Page 0x%X timeout\n", page);
return -EIO;
}
bounce_buffer_stop(&bbstate_oob);
if (with_ecc && !is_writing) {
reg_val = (u32)check_ecc_error(info->reg, 0, 0,
(u8 *)(chip->oob_poi + free->offset),
chip->ecc.layout->oobavail);
if (reg_val & ECC_TAG_ERROR)
printf("Read OOB of Page 0x%X tag ECC error\n", page);
}
return 0;
}
/**
* OOB data read function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param page page number to read
*/
static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
nand_rw_oob(mtd, chip, page, 0, 0);
return 0;
}
/**
* OOB data write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param page page number to write
* @return 0 when successfully completed
* -EINVAL when chip->oob_poi is not double-word aligned
* -EIO when command timeout
*/
static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
return nand_rw_oob(mtd, chip, page, 0, 1);
}
/**
* Set up NAND memory timings according to the provided parameters
*
* @param timing Timing parameters
* @param reg NAND controller register address
*/
static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],
struct nand_ctlr *reg)
{
u32 reg_val, clk_rate, clk_period, time_val;
clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH,
CLOCK_ID_PERIPH) / 1000000;
clk_period = 1000 / clk_rate;
reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK;
reg_val |= ((timing[FDT_NAND_TWB] / clk_period) <<
TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK;
time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period;
if (time_val > 2)
reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) &
TIMING_TCR_TAR_TRR_CNT_MASK;
reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) <<
TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK;
time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period;
if (time_val > 1)
reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) &
TIMING_TCS_CNT_MASK;
reg_val |= ((timing[FDT_NAND_TWH] / clk_period) <<
TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK;
reg_val |= ((timing[FDT_NAND_TWP] / clk_period) <<
TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK;
reg_val |= ((timing[FDT_NAND_TRH] / clk_period) <<
TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK;
reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK;
writel(reg_val, &reg->timing);
reg_val = 0;
time_val = timing[FDT_NAND_TADL] / clk_period;
if (time_val > 2)
reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK;
writel(reg_val, &reg->timing2);
}
/**
* Decode NAND parameters from the device tree
*
* @param dev Driver model device
* @param config Device tree NAND configuration
* @return 0 if ok, -ve on error (FDT_ERR_...)
*/
static int fdt_decode_nand(struct udevice *dev, struct fdt_nand *config)
{
int err;
config->reg = (struct nand_ctlr *)dev_read_addr(dev);
config->enabled = dev_read_enabled(dev);
config->width = dev_read_u32_default(dev, "nvidia,nand-width", 8);
err = gpio_request_by_name(dev, "nvidia,wp-gpios", 0, &config->wp_gpio,
GPIOD_IS_OUT);
if (err)
return err;
err = dev_read_u32_array(dev, "nvidia,timing", config->timing,
FDT_NAND_TIMING_COUNT);
if (err < 0)
return err;
return 0;
}
static int tegra_probe(struct udevice *dev)
{
struct tegra_nand_info *tegra = dev_get_priv(dev);
struct nand_chip *nand = &tegra->nand_chip;
struct nand_drv *info = &tegra->nand_ctrl;
struct fdt_nand *config = &info->config;
struct mtd_info *our_mtd;
int ret;
if (fdt_decode_nand(dev, config)) {
printf("Could not decode nand-flash in device tree\n");
return -1;
}
if (!config->enabled)
return -1;
info->reg = config->reg;
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = &eccoob;
nand->options = LP_OPTIONS;
nand->cmdfunc = nand_command;
nand->read_byte = read_byte;
nand->read_buf = read_buf;
nand->ecc.read_page = nand_read_page_hwecc;
nand->ecc.write_page = nand_write_page_hwecc;
nand->ecc.read_page_raw = nand_read_page_raw;
nand->ecc.write_page_raw = nand_write_page_raw;
nand->ecc.read_oob = nand_read_oob;
nand->ecc.write_oob = nand_write_oob;
nand->ecc.strength = 1;
nand->select_chip = nand_select_chip;
nand->dev_ready = nand_dev_ready;
nand_set_controller_data(nand, &tegra->nand_ctrl);
/* Disable subpage writes as we do not provide ecc->hwctl */
nand->options |= NAND_NO_SUBPAGE_WRITE;
/* Adjust controller clock rate */
clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000);
/* Adjust timing for NAND device */
setup_timing(config->timing, info->reg);
dm_gpio_set_value(&config->wp_gpio, 1);
our_mtd = nand_to_mtd(nand);
ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
if (ret)
return ret;
nand->ecc.size = our_mtd->writesize;
nand->ecc.bytes = our_mtd->oobsize;
ret = nand_scan_tail(our_mtd);
if (ret)
return ret;
ret = nand_register(0, our_mtd);
if (ret) {
dev_err(dev, "Failed to register MTD: %d\n", ret);
return ret;
}
return 0;
}
U_BOOT_DRIVER(tegra_nand) = {
.name = "tegra-nand",
.id = UCLASS_MTD,
.of_match = tegra_nand_dt_ids,
.probe = tegra_probe,
.priv_auto = sizeof(struct tegra_nand_info),
};
void board_nand_init(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
DM_DRIVER_GET(tegra_nand), &dev);
if (ret && ret != -ENODEV)
pr_err("Failed to initialize %s. (error %d)\n", dev->name,
ret);
}