u-boot-brain/drivers/net/e1000.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

5937 lines
170 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/**************************************************************************
Intel Pro 1000 for ppcboot/das-u-boot
Drivers are port from Intel's Linux driver e1000-4.3.15
and from Etherboot pro 1000 driver by mrakes at vivato dot net
tested on both gig copper and gig fiber boards
***************************************************************************/
/*******************************************************************************
Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* Copyright (C) Archway Digital Solutions.
*
* written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
* 2/9/2002
*
* Copyright (C) Linux Networx.
* Massive upgrade to work with the new intel gigabit NICs.
* <ebiederman at lnxi dot com>
*
* Copyright 2011 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <memalign.h>
#include <pci.h>
#include "e1000.h"
#define TOUT_LOOP 100000
#ifdef CONFIG_DM_ETH
#define virt_to_bus(devno, v) dm_pci_virt_to_mem(devno, (void *) (v))
#define bus_to_phys(devno, a) dm_pci_mem_to_phys(devno, a)
#else
#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
#endif
#define E1000_DEFAULT_PCI_PBA 0x00000030
#define E1000_DEFAULT_PCIE_PBA 0x000a0026
/* NIC specific static variables go here */
/* Intel i210 needs the DMA descriptor rings aligned to 128b */
#define E1000_BUFFER_ALIGN 128
/*
* TODO(sjg@chromium.org): Even with driver model we share these buffers.
* Concurrent receiving on multiple active Ethernet devices will not work.
* Normally U-Boot does not support this anyway. To fix it in this driver,
* move these buffers and the tx/rx pointers to struct e1000_hw.
*/
DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
static int tx_tail;
static int rx_tail, rx_last;
#ifdef CONFIG_DM_ETH
static int num_cards; /* Number of E1000 devices seen so far */
#endif
static struct pci_device_id e1000_supported[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
/* E1000 PCIe card */
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
{}
};
/* Function forward declarations */
static int e1000_setup_link(struct e1000_hw *hw);
static int e1000_setup_fiber_link(struct e1000_hw *hw);
static int e1000_setup_copper_link(struct e1000_hw *hw);
static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
static void e1000_config_collision_dist(struct e1000_hw *hw);
static int e1000_config_mac_to_phy(struct e1000_hw *hw);
static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
static int e1000_check_for_link(struct e1000_hw *hw);
static int e1000_wait_autoneg(struct e1000_hw *hw);
static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
uint16_t * duplex);
static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t * phy_data);
static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t phy_data);
static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
static int e1000_phy_reset(struct e1000_hw *hw);
static int e1000_detect_gig_phy(struct e1000_hw *hw);
static void e1000_set_media_type(struct e1000_hw *hw);
static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
#ifndef CONFIG_E1000_NO_NVM
static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
uint16_t words,
uint16_t *data);
/******************************************************************************
* Raises the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
{
/* Raise the clock input to the EEPROM (by setting the SK bit), and then
* wait 50 microseconds.
*/
*eecd = *eecd | E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
}
/******************************************************************************
* Lowers the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
{
/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
* wait 50 microseconds.
*/
*eecd = *eecd & ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
}
/******************************************************************************
* Shift data bits out to the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* data - data to send to the EEPROM
* count - number of bits to shift out
*****************************************************************************/
static void
e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
{
uint32_t eecd;
uint32_t mask;
/* We need to shift "count" bits out to the EEPROM. So, value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
*/
mask = 0x01 << (count - 1);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
do {
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
* and then raising and then lowering the clock (the SK bit controls
* the clock input to the EEPROM). A "0" is shifted out to the EEPROM
* by setting "DI" to "0" and then raising and then lowering the clock.
*/
eecd &= ~E1000_EECD_DI;
if (data & mask)
eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
e1000_raise_ee_clk(hw, &eecd);
e1000_lower_ee_clk(hw, &eecd);
mask = mask >> 1;
} while (mask);
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
}
/******************************************************************************
* Shift data bits in from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
{
uint32_t eecd;
uint32_t i;
uint16_t data;
/* In order to read a register from the EEPROM, we need to shift 'count'
* bits in from the EEPROM. Bits are "shifted in" by raising the clock
* input to the EEPROM (setting the SK bit), and then reading the
* value of the "DO" bit. During this "shifting in" process the
* "DI" bit should always be clear.
*/
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for (i = 0; i < count; i++) {
data = data << 1;
e1000_raise_ee_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DI);
if (eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_ee_clk(hw, &eecd);
}
return data;
}
/******************************************************************************
* Returns EEPROM to a "standby" state
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void e1000_standby_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
eecd = E1000_READ_REG(hw, EECD);
if (eeprom->type == e1000_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Clock high */
eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Select EEPROM */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Clock low */
eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
eecd &= ~E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
}
}
/***************************************************************************
* Description: Determines if the onboard NVM is FLASH or EEPROM.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
{
uint32_t eecd = 0;
DEBUGFUNC();
if (hw->mac_type == e1000_ich8lan)
return false;
if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
eecd = E1000_READ_REG(hw, EECD);
/* Isolate bits 15 & 16 */
eecd = ((eecd >> 15) & 0x03);
/* If both bits are set, device is Flash type */
if (eecd == 0x03)
return false;
}
return true;
}
/******************************************************************************
* Prepares EEPROM for access
*
* hw - Struct containing variables accessed by shared code
*
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
* function should be called before issuing a command to the EEPROM.
*****************************************************************************/
int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd, i = 0;
DEBUGFUNC();
if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
return -E1000_ERR_SWFW_SYNC;
eecd = E1000_READ_REG(hw, EECD);
if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
/* Request EEPROM Access */
if (hw->mac_type > e1000_82544) {
eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
eecd = E1000_READ_REG(hw, EECD);
while ((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++;
udelay(5);
eecd = E1000_READ_REG(hw, EECD);
}
if (!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n");
return -E1000_ERR_EEPROM;
}
}
}
/* Setup EEPROM for Read/Write */
if (eeprom->type == e1000_eeprom_microwire) {
/* Clear SK and DI */
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
/* Set CS */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
udelay(1);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Sets up eeprom variables in the hw struct. Must be called after mac_type
* is configured. Additionally, if this is ICH8, the flash controller GbE
* registers must be mapped, or this will crash.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
int32_t ret_val = E1000_SUCCESS;
uint16_t eeprom_size;
if (hw->mac_type == e1000_igb)
eecd = E1000_READ_REG(hw, I210_EECD);
else
eecd = E1000_READ_REG(hw, EECD);
DEBUGFUNC();
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
eeprom->type = e1000_eeprom_microwire;
eeprom->word_size = 64;
eeprom->opcode_bits = 3;
eeprom->address_bits = 6;
eeprom->delay_usec = 50;
eeprom->use_eerd = false;
eeprom->use_eewr = false;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if (eecd & E1000_EECD_SIZE) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
eeprom->use_eerd = false;
eeprom->use_eewr = false;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if (eecd & E1000_EECD_TYPE) {
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
} else {
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
}
eeprom->use_eerd = false;
eeprom->use_eewr = false;
break;
case e1000_82571:
case e1000_82572:
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
eeprom->use_eerd = false;
eeprom->use_eewr = false;
break;
case e1000_82573:
case e1000_82574:
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
if (e1000_is_onboard_nvm_eeprom(hw) == false) {
eeprom->use_eerd = true;
eeprom->use_eewr = true;
eeprom->type = e1000_eeprom_flash;
eeprom->word_size = 2048;
/* Ensure that the Autonomous FLASH update bit is cleared due to
* Flash update issue on parts which use a FLASH for NVM. */
eecd &= ~E1000_EECD_AUPDEN;
E1000_WRITE_REG(hw, EECD, eecd);
}
break;
case e1000_80003es2lan:
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
eeprom->use_eerd = true;
eeprom->use_eewr = false;
break;
case e1000_igb:
/* i210 has 4k of iNVM mapped as EEPROM */
eeprom->type = e1000_eeprom_invm;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
eeprom->page_size = 32;
eeprom->address_bits = 16;
eeprom->use_eerd = true;
eeprom->use_eewr = false;
break;
default:
break;
}
if (eeprom->type == e1000_eeprom_spi ||
eeprom->type == e1000_eeprom_invm) {
/* eeprom_size will be an enum [0..8] that maps
* to eeprom sizes 128B to
* 32KB (incremented by powers of 2).
*/
if (hw->mac_type <= e1000_82547_rev_2) {
/* Set to default value for initial eeprom read. */
eeprom->word_size = 64;
ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
&eeprom_size);
if (ret_val)
return ret_val;
eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
>> EEPROM_SIZE_SHIFT;
/* 256B eeprom size was not supported in earlier
* hardware, so we bump eeprom_size up one to
* ensure that "1" (which maps to 256B) is never
* the result used in the shifting logic below. */
if (eeprom_size)
eeprom_size++;
} else {
eeprom_size = (uint16_t)((eecd &
E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
}
eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
}
return ret_val;
}
/******************************************************************************
* Polls the status bit (bit 1) of the EERD to determine when the read is done.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
{
uint32_t attempts = 100000;
uint32_t i, reg = 0;
int32_t done = E1000_ERR_EEPROM;
for (i = 0; i < attempts; i++) {
if (eerd == E1000_EEPROM_POLL_READ) {
if (hw->mac_type == e1000_igb)
reg = E1000_READ_REG(hw, I210_EERD);
else
reg = E1000_READ_REG(hw, EERD);
} else {
if (hw->mac_type == e1000_igb)
reg = E1000_READ_REG(hw, I210_EEWR);
else
reg = E1000_READ_REG(hw, EEWR);
}
if (reg & E1000_EEPROM_RW_REG_DONE) {
done = E1000_SUCCESS;
break;
}
udelay(5);
}
return done;
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM using the EERD register.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
static int32_t
e1000_read_eeprom_eerd(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
uint16_t *data)
{
uint32_t i, eerd = 0;
int32_t error = 0;
for (i = 0; i < words; i++) {
eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
E1000_EEPROM_RW_REG_START;
if (hw->mac_type == e1000_igb)
E1000_WRITE_REG(hw, I210_EERD, eerd);
else
E1000_WRITE_REG(hw, EERD, eerd);
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
if (error)
break;
if (hw->mac_type == e1000_igb) {
data[i] = (E1000_READ_REG(hw, I210_EERD) >>
E1000_EEPROM_RW_REG_DATA);
} else {
data[i] = (E1000_READ_REG(hw, EERD) >>
E1000_EEPROM_RW_REG_DATA);
}
}
return error;
}
void e1000_release_eeprom(struct e1000_hw *hw)
{
uint32_t eecd;
DEBUGFUNC();
eecd = E1000_READ_REG(hw, EECD);
if (hw->eeprom.type == e1000_eeprom_spi) {
eecd |= E1000_EECD_CS; /* Pull CS high */
eecd &= ~E1000_EECD_SK; /* Lower SCK */
E1000_WRITE_REG(hw, EECD, eecd);
udelay(hw->eeprom.delay_usec);
} else if (hw->eeprom.type == e1000_eeprom_microwire) {
/* cleanup eeprom */
/* CS on Microwire is active-high */
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
E1000_WRITE_REG(hw, EECD, eecd);
/* Rising edge of clock */
eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
/* Falling edge of clock */
eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
}
/* Stop requesting EEPROM access */
if (hw->mac_type > e1000_82544) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t
e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
uint16_t retry_count = 0;
uint8_t spi_stat_reg;
DEBUGFUNC();
/* Read "Status Register" repeatedly until the LSB is cleared. The
* EEPROM will signal that the command has been completed by clearing
* bit 0 of the internal status register. If it's not cleared within
* 5 milliseconds, then error out.
*/
retry_count = 0;
do {
e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
hw->eeprom.opcode_bits);
spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
break;
udelay(5);
retry_count += 5;
e1000_standby_eeprom(hw);
} while (retry_count < EEPROM_MAX_RETRY_SPI);
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
* only 0-5mSec on 5V devices)
*/
if (retry_count >= EEPROM_MAX_RETRY_SPI) {
DEBUGOUT("SPI EEPROM Status error\n");
return -E1000_ERR_EEPROM;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
*****************************************************************************/
static int32_t
e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t i = 0;
DEBUGFUNC();
/* If eeprom is not yet detected, do so now */
if (eeprom->word_size == 0)
e1000_init_eeprom_params(hw);
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= eeprom->word_size) ||
(words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds."
"Words = %d, size = %d\n", offset, eeprom->word_size);
return -E1000_ERR_EEPROM;
}
/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
* directly. In this case, we need to acquire the EEPROM so that
* FW or other port software does not interrupt.
*/
if (e1000_is_onboard_nvm_eeprom(hw) == true &&
hw->eeprom.use_eerd == false) {
/* Prepare the EEPROM for bit-bang reading */
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
}
/* Eerd register EEPROM access requires no eeprom aquire/release */
if (eeprom->use_eerd == true)
return e1000_read_eeprom_eerd(hw, offset, words, data);
/* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
* acquired the EEPROM at this point, so any returns should relase it */
if (eeprom->type == e1000_eeprom_spi) {
uint16_t word_in;
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
if (e1000_spi_eeprom_ready(hw)) {
e1000_release_eeprom(hw);
return -E1000_ERR_EEPROM;
}
e1000_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in
* the opcode */
if ((eeprom->address_bits == 8) && (offset >= 128))
read_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
eeprom->address_bits);
/* Read the data. The address of the eeprom internally
* increments with each byte (spi) being read, saving on the
* overhead of eeprom setup and tear-down. The address
* counter will roll over if reading beyond the size of
* the eeprom, thus allowing the entire memory to be read
* starting from any offset. */
for (i = 0; i < words; i++) {
word_in = e1000_shift_in_ee_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
} else if (eeprom->type == e1000_eeprom_microwire) {
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw,
EEPROM_READ_OPCODE_MICROWIRE,
eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
eeprom->address_bits);
/* Read the data. For microwire, each word requires
* the overhead of eeprom setup and tear-down. */
data[i] = e1000_shift_in_ee_bits(hw, 16);
e1000_standby_eeprom(hw);
}
}
/* End this read operation */
e1000_release_eeprom(hw);
return E1000_SUCCESS;
}
#ifndef CONFIG_DM_ETH
/******************************************************************************
* e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
* @hw: pointer to the HW structure
* @offset: offset within the Shadow Ram to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the Shadow Ram
*
* Writes data to Shadow Ram at offset using EEWR register.
*
* If e1000_update_eeprom_checksum_i210 is not called after this function, the
* Shadow Ram will most likely contain an invalid checksum.
*****************************************************************************/
static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t i, k, eewr = 0;
uint32_t attempts = 100000;
int32_t ret_val = 0;
/* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if ((offset >= eeprom->word_size) ||
(words > (eeprom->word_size - offset)) || (words == 0)) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_EEPROM;
goto out;
}
for (i = 0; i < words; i++) {
eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
| (data[i] << E1000_EEPROM_RW_REG_DATA) |
E1000_EEPROM_RW_REG_START;
E1000_WRITE_REG(hw, I210_EEWR, eewr);
for (k = 0; k < attempts; k++) {
if (E1000_EEPROM_RW_REG_DONE &
E1000_READ_REG(hw, I210_EEWR)) {
ret_val = 0;
break;
}
udelay(5);
}
if (ret_val) {
DEBUGOUT("Shadow RAM write EEWR timed out\n");
break;
}
}
out:
return ret_val;
}
/******************************************************************************
* e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
* @hw: pointer to the HW structure
*
*****************************************************************************/
static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
{
int32_t ret_val = -E1000_ERR_EEPROM;
uint32_t i, reg;
for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
reg = E1000_READ_REG(hw, EECD);
if (reg & E1000_EECD_FLUDONE_I210) {
ret_val = 0;
break;
}
udelay(5);
}
return ret_val;
}
/******************************************************************************
* e1000_update_flash_i210 - Commit EEPROM to the flash
* @hw: pointer to the HW structure
*
*****************************************************************************/
static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
{
int32_t ret_val = 0;
uint32_t flup;
ret_val = e1000_pool_flash_update_done_i210(hw);
if (ret_val == -E1000_ERR_EEPROM) {
DEBUGOUT("Flash update time out\n");
goto out;
}
flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
E1000_WRITE_REG(hw, EECD, flup);
ret_val = e1000_pool_flash_update_done_i210(hw);
if (ret_val)
DEBUGOUT("Flash update time out\n");
else
DEBUGOUT("Flash update complete\n");
out:
return ret_val;
}
/******************************************************************************
* e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM. Next commit EEPROM data onto the Flash.
*****************************************************************************/
static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
{
int32_t ret_val = 0;
uint16_t checksum = 0;
uint16_t i, nvm_data;
/* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("EEPROM read failed\n");
goto out;
}
if (!(e1000_get_hw_eeprom_semaphore(hw))) {
/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
* because we do not want to take the synchronization
* semaphores twice here.
*/
for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
if (ret_val) {
e1000_put_hw_eeprom_semaphore(hw);
DEBUGOUT("EEPROM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (uint16_t)EEPROM_SUM - checksum;
ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
&checksum);
if (ret_val) {
e1000_put_hw_eeprom_semaphore(hw);
DEBUGOUT("EEPROM Write Error while updating checksum.\n");
goto out;
}
e1000_put_hw_eeprom_semaphore(hw);
ret_val = e1000_update_flash_i210(hw);
} else {
ret_val = -E1000_ERR_SWFW_SYNC;
}
out:
return ret_val;
}
#endif
/******************************************************************************
* Verifies that the EEPROM has a valid checksum
*
* hw - Struct containing variables accessed by shared code
*
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
* If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
* valid.
*****************************************************************************/
static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
uint16_t i, checksum, checksum_reg, *buf;
DEBUGFUNC();
/* Allocate a temporary buffer */
buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
if (!buf) {
E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
return -E1000_ERR_EEPROM;
}
/* Read the EEPROM */
if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
E1000_ERR(hw, "Unable to read EEPROM!\n");
return -E1000_ERR_EEPROM;
}
/* Compute the checksum */
checksum = 0;
for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
checksum += buf[i];
checksum = ((uint16_t)EEPROM_SUM) - checksum;
checksum_reg = buf[i];
/* Verify it! */
if (checksum == checksum_reg)
return 0;
/* Hrm, verification failed, print an error */
E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n",
checksum_reg, checksum);
return -E1000_ERR_EEPROM;
}
#endif /* CONFIG_E1000_NO_NVM */
/*****************************************************************************
* Set PHY to class A mode
* Assumes the following operations will follow to enable the new class mode.
* 1. Do a PHY soft reset
* 2. Restart auto-negotiation or force link.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
static int32_t
e1000_set_phy_mode(struct e1000_hw *hw)
{
#ifndef CONFIG_E1000_NO_NVM
int32_t ret_val;
uint16_t eeprom_data;
DEBUGFUNC();
if ((hw->mac_type == e1000_82545_rev_3) &&
(hw->media_type == e1000_media_type_copper)) {
ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1, &eeprom_data);
if (ret_val)
return ret_val;
if ((eeprom_data != EEPROM_RESERVED_WORD) &&
(eeprom_data & EEPROM_PHY_CLASS_A)) {
ret_val = e1000_write_phy_reg(hw,
M88E1000_PHY_PAGE_SELECT, 0x000B);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw,
M88E1000_PHY_GEN_CONTROL, 0x8104);
if (ret_val)
return ret_val;
hw->phy_reset_disable = false;
}
}
#endif
return E1000_SUCCESS;
}
#ifndef CONFIG_E1000_NO_NVM
/***************************************************************************
*
* Obtaining software semaphore bit (SMBI) before resetting PHY.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_RESET if fail to obtain semaphore.
* E1000_SUCCESS at any other case.
*
***************************************************************************/
static int32_t
e1000_get_software_semaphore(struct e1000_hw *hw)
{
int32_t timeout = hw->eeprom.word_size + 1;
uint32_t swsm;
DEBUGFUNC();
if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
return E1000_SUCCESS;
while (timeout) {
swsm = E1000_READ_REG(hw, SWSM);
/* If SMBI bit cleared, it is now set and we hold
* the semaphore */
if (!(swsm & E1000_SWSM_SMBI))
break;
mdelay(1);
timeout--;
}
if (!timeout) {
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
return -E1000_ERR_RESET;
}
return E1000_SUCCESS;
}
#endif
/***************************************************************************
* This function clears HW semaphore bits.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - None.
*
***************************************************************************/
static void
e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
{
#ifndef CONFIG_E1000_NO_NVM
uint32_t swsm;
DEBUGFUNC();
if (!hw->eeprom_semaphore_present)
return;
swsm = E1000_READ_REG(hw, SWSM);
if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
/* Release both semaphores. */
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
} else
swsm &= ~(E1000_SWSM_SWESMBI);
E1000_WRITE_REG(hw, SWSM, swsm);
#endif
}
/***************************************************************************
*
* Using the combination of SMBI and SWESMBI semaphore bits when resetting
* adapter or Eeprom access.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_EEPROM if fail to access EEPROM.
* E1000_SUCCESS at any other case.
*
***************************************************************************/
static int32_t
e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
{
#ifndef CONFIG_E1000_NO_NVM
int32_t timeout;
uint32_t swsm;
DEBUGFUNC();
if (!hw->eeprom_semaphore_present)
return E1000_SUCCESS;
if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
/* Get the SW semaphore. */
if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
}
/* Get the FW semaphore. */
timeout = hw->eeprom.word_size + 1;
while (timeout) {
swsm = E1000_READ_REG(hw, SWSM);
swsm |= E1000_SWSM_SWESMBI;
E1000_WRITE_REG(hw, SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */
swsm = E1000_READ_REG(hw, SWSM);
if (swsm & E1000_SWSM_SWESMBI)
break;
udelay(50);
timeout--;
}
if (!timeout) {
/* Release semaphores */
e1000_put_hw_eeprom_semaphore(hw);
DEBUGOUT("Driver can't access the Eeprom - "
"SWESMBI bit is set.\n");
return -E1000_ERR_EEPROM;
}
#endif
return E1000_SUCCESS;
}
/* Take ownership of the PHY */
static int32_t
e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
{
uint32_t swfw_sync = 0;
uint32_t swmask = mask;
uint32_t fwmask = mask << 16;
int32_t timeout = 200;
DEBUGFUNC();
while (timeout) {
if (e1000_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
/* firmware currently using resource (fwmask) */
/* or other software thread currently using resource (swmask) */
e1000_put_hw_eeprom_semaphore(hw);
mdelay(5);
timeout--;
}
if (!timeout) {
DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
return -E1000_ERR_SWFW_SYNC;
}
swfw_sync |= swmask;
E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
e1000_put_hw_eeprom_semaphore(hw);
return E1000_SUCCESS;
}
static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
{
uint32_t swfw_sync = 0;
DEBUGFUNC();
while (e1000_get_hw_eeprom_semaphore(hw))
; /* Empty */
swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
swfw_sync &= ~mask;
E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
e1000_put_hw_eeprom_semaphore(hw);
}
static bool e1000_is_second_port(struct e1000_hw *hw)
{
switch (hw->mac_type) {
case e1000_80003es2lan:
case e1000_82546:
case e1000_82571:
if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
return true;
/* Fallthrough */
default:
return false;
}
}
#ifndef CONFIG_E1000_NO_NVM
/******************************************************************************
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
* enetaddr - buffering where the MAC address will be stored
*****************************************************************************/
static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
unsigned char enetaddr[6])
{
uint16_t offset;
uint16_t eeprom_data;
int i;
for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
enetaddr[i] = eeprom_data & 0xff;
enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
}
return 0;
}
/******************************************************************************
* Reads the adapter's MAC address from the RAL/RAH registers
*
* hw - Struct containing variables accessed by shared code
* enetaddr - buffering where the MAC address will be stored
*****************************************************************************/
static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
unsigned char enetaddr[6])
{
uint16_t offset, tmp;
uint32_t reg_data = 0;
int i;
if (hw->mac_type != e1000_igb)
return -E1000_ERR_MAC_TYPE;
for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
if (offset == 0)
reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
else if (offset == 1)
reg_data >>= 16;
else if (offset == 2)
reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
tmp = reg_data & 0xffff;
enetaddr[i] = tmp & 0xff;
enetaddr[i + 1] = (tmp >> 8) & 0xff;
}
return 0;
}
/******************************************************************************
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
* second function of dual function devices
*
* hw - Struct containing variables accessed by shared code
* enetaddr - buffering where the MAC address will be stored
*****************************************************************************/
static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
{
int ret_val;
if (hw->mac_type == e1000_igb) {
/* i210 preloads MAC address into RAL/RAH registers */
ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
} else {
ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
}
if (ret_val)
return ret_val;
/* Invert the last bit if this is the second device */
if (e1000_is_second_port(hw))
enetaddr[5] ^= 1;
return 0;
}
#endif
/******************************************************************************
* Initializes receive address filters.
*
* hw - Struct containing variables accessed by shared code
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive addresss registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
*****************************************************************************/
static void
e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
{
uint32_t i;
uint32_t addr_low;
uint32_t addr_high;
DEBUGFUNC();
/* Setup the receive address. */
DEBUGOUT("Programming MAC Address into RAR[0]\n");
addr_low = (enetaddr[0] |
(enetaddr[1] << 8) |
(enetaddr[2] << 16) | (enetaddr[3] << 24));
addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
for (i = 1; i < E1000_RAR_ENTRIES; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
}
/******************************************************************************
* Clears the VLAN filer table
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_clear_vfta(struct e1000_hw *hw)
{
uint32_t offset;
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
}
/******************************************************************************
* Set the mac type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_set_mac_type(struct e1000_hw *hw)
{
DEBUGFUNC();
switch (hw->device_id) {
case E1000_DEV_ID_82542:
switch (hw->revision_id) {
case E1000_82542_2_0_REV_ID:
hw->mac_type = e1000_82542_rev2_0;
break;
case E1000_82542_2_1_REV_ID:
hw->mac_type = e1000_82542_rev2_1;
break;
default:
/* Invalid 82542 revision ID */
return -E1000_ERR_MAC_TYPE;
}
break;
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
hw->mac_type = e1000_82543;
break;
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
hw->mac_type = e1000_82544;
break;
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
case E1000_DEV_ID_82540EP:
case E1000_DEV_ID_82540EP_LOM:
case E1000_DEV_ID_82540EP_LP:
hw->mac_type = e1000_82540;
break;
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
hw->mac_type = e1000_82545;
break;
case E1000_DEV_ID_82545GM_COPPER:
case E1000_DEV_ID_82545GM_FIBER:
case E1000_DEV_ID_82545GM_SERDES:
hw->mac_type = e1000_82545_rev_3;
break;
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
hw->mac_type = e1000_82546;
break;
case E1000_DEV_ID_82546GB_COPPER:
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82546GB_PCIE:
case E1000_DEV_ID_82546GB_QUAD_COPPER:
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
hw->mac_type = e1000_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
case E1000_DEV_ID_82541ER_LOM:
hw->mac_type = e1000_82541;
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_LF:
case E1000_DEV_ID_82541GI_MOBILE:
hw->mac_type = e1000_82541_rev_2;
break;
case E1000_DEV_ID_82547EI:
case E1000_DEV_ID_82547EI_MOBILE:
hw->mac_type = e1000_82547;
break;
case E1000_DEV_ID_82547GI:
hw->mac_type = e1000_82547_rev_2;
break;
case E1000_DEV_ID_82571EB_COPPER:
case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
case E1000_DEV_ID_82571EB_QUAD_COPPER:
case E1000_DEV_ID_82571PT_QUAD_COPPER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
hw->mac_type = e1000_82571;
break;
case E1000_DEV_ID_82572EI_COPPER:
case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_82572EI:
hw->mac_type = e1000_82572;
break;
case E1000_DEV_ID_82573E:
case E1000_DEV_ID_82573E_IAMT:
case E1000_DEV_ID_82573L:
hw->mac_type = e1000_82573;
break;
case E1000_DEV_ID_82574L:
hw->mac_type = e1000_82574;
break;
case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->mac_type = e1000_80003es2lan;
break;
case E1000_DEV_ID_ICH8_IGP_M_AMT:
case E1000_DEV_ID_ICH8_IGP_AMT:
case E1000_DEV_ID_ICH8_IGP_C:
case E1000_DEV_ID_ICH8_IFE:
case E1000_DEV_ID_ICH8_IFE_GT:
case E1000_DEV_ID_ICH8_IFE_G:
case E1000_DEV_ID_ICH8_IGP_M:
hw->mac_type = e1000_ich8lan;
break;
case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
case PCI_DEVICE_ID_INTEL_I210_COPPER:
case PCI_DEVICE_ID_INTEL_I211_COPPER:
case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
case PCI_DEVICE_ID_INTEL_I210_SERDES:
case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
hw->mac_type = e1000_igb;
break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
e1000_reset_hw(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t ctrl_ext;
uint32_t manc;
uint32_t pba = 0;
uint32_t reg;
DEBUGFUNC();
/* get the correct pba value for both PCI and PCIe*/
if (hw->mac_type < e1000_82571)
pba = E1000_DEFAULT_PCI_PBA;
else
pba = E1000_DEFAULT_PCIE_PBA;
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
if (hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
#ifdef CONFIG_DM_ETH
dm_pci_write_config16(hw->pdev, PCI_COMMAND,
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
#else
pci_write_config_word(hw->pdev, PCI_COMMAND,
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
#endif
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
if (hw->mac_type == e1000_igb)
E1000_WRITE_REG(hw, I210_IAM, 0);
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC with
* the global reset.
*/
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
E1000_WRITE_FLUSH(hw);
/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
hw->tbi_compatibility_on = false;
/* Delay to allow any outstanding PCI transactions to complete before
* resetting the device
*/
mdelay(10);
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
DEBUGOUT("Issuing a global reset to MAC\n");
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
/* Force a reload from the EEPROM if necessary */
if (hw->mac_type == e1000_igb) {
mdelay(20);
reg = E1000_READ_REG(hw, STATUS);
if (reg & E1000_STATUS_PF_RST_DONE)
DEBUGOUT("PF OK\n");
reg = E1000_READ_REG(hw, I210_EECD);
if (reg & E1000_EECD_AUTO_RD)
DEBUGOUT("EEC OK\n");
} else if (hw->mac_type < e1000_82540) {
/* Wait for reset to complete */
udelay(10);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
/* Wait for EEPROM reload */
mdelay(2);
} else {
/* Wait for EEPROM reload (it happens automatically) */
mdelay(4);
/* Dissable HW ARPs on ASF enabled adapters */
manc = E1000_READ_REG(hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc);
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
if (hw->mac_type == e1000_igb)
E1000_WRITE_REG(hw, I210_IAM, 0);
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Clear any pending interrupt events. */
E1000_READ_REG(hw, ICR);
/* If MWI was previously enabled, reenable it. */
if (hw->mac_type == e1000_82542_rev2_0) {
#ifdef CONFIG_DM_ETH
dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
#else
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
#endif
}
if (hw->mac_type != e1000_igb)
E1000_WRITE_REG(hw, PBA, pba);
}
/******************************************************************************
*
* Initialize a number of hardware-dependent bits
*
* hw: Struct containing variables accessed by shared code
*
* This function contains hardware limitation workarounds for PCI-E adapters
*
*****************************************************************************/
static void
e1000_initialize_hardware_bits(struct e1000_hw *hw)
{
if ((hw->mac_type >= e1000_82571) &&
(!hw->initialize_hw_bits_disable)) {
/* Settings common to all PCI-express silicon */
uint32_t reg_ctrl, reg_ctrl_ext;
uint32_t reg_tarc0, reg_tarc1;
uint32_t reg_tctl;
uint32_t reg_txdctl, reg_txdctl1;
/* link autonegotiation/sync workarounds */
reg_tarc0 = E1000_READ_REG(hw, TARC0);
reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
/* Enable not-done TX descriptor counting */
reg_txdctl = E1000_READ_REG(hw, TXDCTL);
reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
switch (hw->mac_type) {
case e1000_igb: /* IGB is cool */
return;
case e1000_82571:
case e1000_82572:
/* Clear PHY TX compatible mode bits */
reg_tarc1 = E1000_READ_REG(hw, TARC1);
reg_tarc1 &= ~((1 << 30)|(1 << 29));
/* link autonegotiation/sync workarounds */
reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
/* TX ring control fixes */
reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
/* Multiple read bit is reversed polarity */
reg_tctl = E1000_READ_REG(hw, TCTL);
if (reg_tctl & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
E1000_WRITE_REG(hw, TARC1, reg_tarc1);
break;
case e1000_82573:
case e1000_82574:
reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
reg_ctrl_ext &= ~(1 << 23);
reg_ctrl_ext |= (1 << 22);
/* TX byte count fix */
reg_ctrl = E1000_READ_REG(hw, CTRL);
reg_ctrl &= ~(1 << 29);
E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
E1000_WRITE_REG(hw, CTRL, reg_ctrl);
break;
case e1000_80003es2lan:
/* improve small packet performace for fiber/serdes */
if ((hw->media_type == e1000_media_type_fiber)
|| (hw->media_type ==
e1000_media_type_internal_serdes)) {
reg_tarc0 &= ~(1 << 20);
}
/* Multiple read bit is reversed polarity */
reg_tctl = E1000_READ_REG(hw, TCTL);
reg_tarc1 = E1000_READ_REG(hw, TARC1);
if (reg_tctl & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
E1000_WRITE_REG(hw, TARC1, reg_tarc1);
break;
case e1000_ich8lan:
/* Reduce concurrent DMA requests to 3 from 4 */
if ((hw->revision_id < 3) ||
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
reg_tarc0 |= ((1 << 29)|(1 << 28));
reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
reg_ctrl_ext |= (1 << 22);
E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
/* workaround TX hang with TSO=on */
reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
/* Multiple read bit is reversed polarity */
reg_tctl = E1000_READ_REG(hw, TCTL);
reg_tarc1 = E1000_READ_REG(hw, TARC1);
if (reg_tctl & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
/* workaround TX hang with TSO=on */
reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
E1000_WRITE_REG(hw, TARC1, reg_tarc1);
break;
default:
break;
}
E1000_WRITE_REG(hw, TARC0, reg_tarc0);
}
}
/******************************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
*
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes the receive address registers,
* multicast table, and VLAN filter table. Calls routines to setup link
* configuration and flow control settings. Clears all on-chip counters. Leaves
* the transmit and receive units disabled and uninitialized.
*****************************************************************************/
static int
e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
{
uint32_t ctrl;
uint32_t i;
int32_t ret_val;
uint16_t pcix_cmd_word;
uint16_t pcix_stat_hi_word;
uint16_t cmd_mmrbc;
uint16_t stat_mmrbc;
uint32_t mta_size;
uint32_t reg_data;
uint32_t ctrl_ext;
DEBUGFUNC();
/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
if ((hw->mac_type == e1000_ich8lan) &&
((hw->revision_id < 3) ||
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
reg_data = E1000_READ_REG(hw, STATUS);
reg_data &= ~0x80000000;
E1000_WRITE_REG(hw, STATUS, reg_data);
}
/* Do not need initialize Identification LED */
/* Set the media type and TBI compatibility */
e1000_set_media_type(hw);
/* Must be called after e1000_set_media_type
* because media_type is used */
e1000_initialize_hardware_bits(hw);
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
if (hw->mac_type != e1000_ich8lan) {
if (hw->mac_type < e1000_82545_rev_3)
E1000_WRITE_REG(hw, VET, 0);
e1000_clear_vfta(hw);
}
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
if (hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
#ifdef CONFIG_DM_ETH
dm_pci_write_config16(hw->pdev, PCI_COMMAND,
hw->
pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
#else
pci_write_config_word(hw->pdev, PCI_COMMAND,
hw->
pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
#endif
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
E1000_WRITE_FLUSH(hw);
mdelay(5);
}
/* Setup the receive address. This involves initializing all of the Receive
* Address Registers (RARs 0 - 15).
*/
e1000_init_rx_addrs(hw, enetaddr);
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
if (hw->mac_type == e1000_82542_rev2_0) {
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_FLUSH(hw);
mdelay(1);
#ifdef CONFIG_DM_ETH
dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
#else
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
#endif
}
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
mta_size = E1000_MC_TBL_SIZE;
if (hw->mac_type == e1000_ich8lan)
mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
for (i = 0; i < mta_size; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* use write flush to prevent Memory Write Block (MWB) from
* occuring when accessing our register space */
E1000_WRITE_FLUSH(hw);
}
switch (hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
case e1000_igb:
break;
default:
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
if (hw->bus_type == e1000_bus_type_pcix) {
#ifdef CONFIG_DM_ETH
dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
&pcix_cmd_word);
dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
&pcix_stat_hi_word);
#else
pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
&pcix_cmd_word);
pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
&pcix_stat_hi_word);
#endif
cmd_mmrbc =
(pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc =
(pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
PCIX_STATUS_HI_MMRBC_SHIFT;
if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
if (cmd_mmrbc > stat_mmrbc) {
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
#ifdef CONFIG_DM_ETH
dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
pcix_cmd_word);
#else
pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
pcix_cmd_word);
#endif
}
}
break;
}
/* More time needed for PHY to initialize */
if (hw->mac_type == e1000_ich8lan)
mdelay(15);
if (hw->mac_type == e1000_igb)
mdelay(15);
/* Call a subroutine to configure the link and setup flow control. */
ret_val = e1000_setup_link(hw);
/* Set the transmit descriptor write-back policy */
if (hw->mac_type > e1000_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl =
(ctrl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
E1000_WRITE_REG(hw, TXDCTL, ctrl);
}
/* Set the receive descriptor write back policy */
if (hw->mac_type >= e1000_82571) {
ctrl = E1000_READ_REG(hw, RXDCTL);
ctrl =
(ctrl & ~E1000_RXDCTL_WTHRESH) |
E1000_RXDCTL_FULL_RX_DESC_WB;
E1000_WRITE_REG(hw, RXDCTL, ctrl);
}
switch (hw->mac_type) {
default:
break;
case e1000_80003es2lan:
/* Enable retransmit on late collisions */
reg_data = E1000_READ_REG(hw, TCTL);
reg_data |= E1000_TCTL_RTLC;
E1000_WRITE_REG(hw, TCTL, reg_data);
/* Configure Gigabit Carry Extend Padding */
reg_data = E1000_READ_REG(hw, TCTL_EXT);
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
/* Configure Transmit Inter-Packet Gap */
reg_data = E1000_READ_REG(hw, TIPG);
reg_data &= ~E1000_TIPG_IPGT_MASK;
reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
E1000_WRITE_REG(hw, TIPG, reg_data);
reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
reg_data &= ~0x00100000;
E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
/* Fall through */
case e1000_82571:
case e1000_82572:
case e1000_ich8lan:
ctrl = E1000_READ_REG(hw, TXDCTL1);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
| E1000_TXDCTL_FULL_TX_DESC_WB;
E1000_WRITE_REG(hw, TXDCTL1, ctrl);
break;
case e1000_82573:
case e1000_82574:
reg_data = E1000_READ_REG(hw, GCR);
reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
E1000_WRITE_REG(hw, GCR, reg_data);
case e1000_igb:
break;
}
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
/* Relaxed ordering must be disabled to avoid a parity
* error crash in a PCI slot. */
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
}
return ret_val;
}
/******************************************************************************
* Configures flow control and link settings.
*
* hw - Struct containing variables accessed by shared code
*
* Determines which flow control settings to use. Calls the apropriate media-
* specific link configuration function. Configures the flow control settings.
* Assuming the adapter has a valid link partner, a valid link should be
* established. Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
*****************************************************************************/
static int
e1000_setup_link(struct e1000_hw *hw)
{
int32_t ret_val;
#ifndef CONFIG_E1000_NO_NVM
uint32_t ctrl_ext;
uint16_t eeprom_data;
#endif
DEBUGFUNC();
/* In the case of the phy reset being blocked, we already have a link.
* We do not have to set it up again. */
if (e1000_check_phy_reset_block(hw))
return E1000_SUCCESS;
#ifndef CONFIG_E1000_NO_NVM
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
&eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
#endif
if (hw->fc == e1000_fc_default) {
switch (hw->mac_type) {
case e1000_ich8lan:
case e1000_82573:
case e1000_82574:
case e1000_igb:
hw->fc = e1000_fc_full;
break;
default:
#ifndef CONFIG_E1000_NO_NVM
ret_val = e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
if (ret_val) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
hw->fc = e1000_fc_none;
else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
EEPROM_WORD0F_ASM_DIR)
hw->fc = e1000_fc_tx_pause;
else
#endif
hw->fc = e1000_fc_full;
break;
}
}
/* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
if (hw->mac_type == e1000_82542_rev2_0)
hw->fc &= (~e1000_fc_tx_pause);
if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
hw->fc &= (~e1000_fc_rx_pause);
hw->original_fc = hw->fc;
DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
#ifndef CONFIG_E1000_NO_NVM
/* Take the 4 bits from EEPROM word 0x0F that determine the initial
* polarity value for the SW controlled pins, and setup the
* Extended Device Control reg with that info.
* This is needed because one of the SW controlled pins is used for
* signal detection. So this should be done before e1000_setup_pcs_link()
* or e1000_phy_setup() is called.
*/
if (hw->mac_type == e1000_82543) {
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
}
#endif
/* Call the necessary subroutine to configure the link. */
ret_val = (hw->media_type == e1000_media_type_fiber) ?
e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
if (ret_val < 0) {
return ret_val;
}
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
DEBUGOUT("Initializing the Flow Control address, type"
"and timer regs\n");
/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
if (hw->mac_type != e1000_ich8lan) {
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
}
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
if (!(hw->fc & e1000_fc_tx_pause)) {
E1000_WRITE_REG(hw, FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
if (hw->fc_send_xon) {
E1000_WRITE_REG(hw, FCRTL,
(hw->fc_low_water | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
} else {
E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
}
}
return ret_val;
}
/******************************************************************************
* Sets up link for a fiber based adapter
*
* hw - Struct containing variables accessed by shared code
*
* Manipulates Physical Coding Sublayer functions in order to configure
* link. Assumes the hardware has been previously reset and the transmitter
* and receiver are not enabled.
*****************************************************************************/
static int
e1000_setup_fiber_link(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t status;
uint32_t txcw = 0;
uint32_t i;
uint32_t signal;
int32_t ret_val;
DEBUGFUNC();
/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal
*/
ctrl = E1000_READ_REG(hw, CTRL);
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
signal = E1000_CTRL_SWDPIN1;
else
signal = 0;
printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
ctrl);
/* Take the link out of reset */
ctrl &= ~(E1000_CTRL_LRST);
e1000_config_collision_dist(hw);
/* Check for a software override of the flow control settings, and setup
* the device accordingly. If auto-negotiation is enabled, then software
* will have to set the "PAUSE" bits to the correct value in the Tranmsit
* Config Word Register (TXCW) and re-start auto-negotiation. However, if
* auto-negotiation is disabled, then software will have to manually
* configure the two flow control enable bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames, but
* not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we do
* not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
*/
switch (hw->fc) {
case e1000_fc_none:
/* Flow control is completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case e1000_fc_rx_pause:
/* RX Flow control is enabled and TX Flow control is disabled by a
* software over-ride. Since there really isn't a way to advertise
* that we are capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case e1000_fc_tx_pause:
/* TX Flow control is enabled, and RX Flow control is disabled, by a
* software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case e1000_fc_full:
/* Flow control (both RX and TX) is enabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
break;
}
/* Since auto-negotiation is enabled, take the link out of reset (the link
* will be in reset, because we previously reset the chip). This will
* restart auto-negotiation. If auto-neogtiation is successful then the
* link-up status bit will be set and the flow control enable bits (RFCE
* and TFCE) will be set according to their negotiated value.
*/
DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
E1000_WRITE_REG(hw, TXCW, txcw);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
hw->txcw = txcw;
mdelay(1);
/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
* indication in the Device Status Register. Time-out if a link isn't
* seen in 500 milliseconds seconds (Auto-negotiation should complete in
* less than 500 milliseconds even if the other end is doing it in SW).
*/
if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
DEBUGOUT("Looking for Link\n");
for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
mdelay(10);
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_LU)
break;
}
if (i == (LINK_UP_TIMEOUT / 10)) {
/* AutoNeg failed to achieve a link, so we'll call
* e1000_check_for_link. This routine will force the link up if we
* detect a signal. This will allow us to communicate with
* non-autonegotiating link partners.
*/
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
ret_val = e1000_check_for_link(hw);
if (ret_val < 0) {
DEBUGOUT("Error while checking for link\n");
return ret_val;
}
hw->autoneg_failed = 0;
} else {
hw->autoneg_failed = 0;
DEBUGOUT("Valid Link Found\n");
}
} else {
DEBUGOUT("No Signal Detected\n");
return -E1000_ERR_NOLINK;
}
return 0;
}
/******************************************************************************
* Make sure we have a valid PHY and change PHY mode before link setup.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_preconfig(struct e1000_hw *hw)
{
uint32_t ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
ctrl = E1000_READ_REG(hw, CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to what
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
*/
if (hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, CTRL, ctrl);
} else {
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
| E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl);
ret_val = e1000_phy_hw_reset(hw);
if (ret_val)
return ret_val;
}
/* Make sure we have a valid PHY */
ret_val = e1000_detect_gig_phy(hw);
if (ret_val) {
DEBUGOUT("Error, did not detect valid phy.\n");
return ret_val;
}
DEBUGOUT("Phy ID = %x\n", hw->phy_id);
/* Set PHY to class A mode (if necessary) */
ret_val = e1000_set_phy_mode(hw);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82545_rev_3) ||
(hw->mac_type == e1000_82546_rev_3)) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
&phy_data);
phy_data |= 0x00000008;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
phy_data);
}
if (hw->mac_type <= e1000_82543 ||
hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
hw->mac_type == e1000_82541_rev_2
|| hw->mac_type == e1000_82547_rev_2)
hw->phy_reset_disable = false;
return E1000_SUCCESS;
}
/*****************************************************************************
*
* This function sets the lplu state according to the active flag. When
* activating lplu this function also disables smart speed and vise versa.
* lplu will not be activated unless the device autonegotiation advertisment
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
* hw: Struct containing variables accessed by shared code
* active - true to enable lplu false to disable lplu.
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
****************************************************************************/
static int32_t
e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
&& hw->phy_type != e1000_phy_igp_3)
return E1000_SUCCESS;
/* During driver activity LPLU should not be used or it will attain link
* from the lowest speeds starting from 10Mbps. The capability is used
* for Dx transitions and states */
if (hw->mac_type == e1000_82541_rev_2
|| hw->mac_type == e1000_82547_rev_2) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
&phy_data);
if (ret_val)
return ret_val;
} else if (hw->mac_type == e1000_ich8lan) {
/* MAC writes into PHY register based on the state transition
* and start auto-negotiation. SW driver can overwrite the
* settings in CSR PHY power control E1000_PHY_CTRL register. */
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
&phy_data);
if (ret_val)
return ret_val;
}
if (!active) {
if (hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
phy_data);
if (ret_val)
return ret_val;
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else {
phy_data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
}
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
* driver activity we should enable SmartSpeed, so performance is
* maintained. */
if (hw->smart_speed == e1000_smart_speed_on) {
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
}
} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
if (hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data |= IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_GMII_FIFO, phy_data);
if (ret_val)
return ret_val;
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else {
phy_data |= IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
}
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/*****************************************************************************
*
* This function sets the lplu d0 state according to the active flag. When
* activating lplu this function also disables smart speed and vise versa.
* lplu will not be activated unless the device autonegotiation advertisment
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
* hw: Struct containing variables accessed by shared code
* active - true to enable lplu false to disable lplu.
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
****************************************************************************/
static int32_t
e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->mac_type <= e1000_82547_rev_2)
return E1000_SUCCESS;
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else if (hw->mac_type == e1000_igb) {
phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
&phy_data);
if (ret_val)
return ret_val;
}
if (!active) {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else if (hw->mac_type == e1000_igb) {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
} else {
phy_data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
if (hw->mac_type == e1000_igb)
return E1000_SUCCESS;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
* driver activity we should enable SmartSpeed, so performance is
* maintained. */
if (hw->smart_speed == e1000_smart_speed_on) {
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
}
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
} else if (hw->mac_type == e1000_igb) {
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
} else {
phy_data |= IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
if (hw->mac_type == e1000_igb)
return E1000_SUCCESS;
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_igp series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_igp_setup(struct e1000_hw *hw)
{
uint32_t led_ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->phy_reset_disable)
return E1000_SUCCESS;
ret_val = e1000_phy_reset(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
/* Wait 15ms for MAC to configure PHY from eeprom settings */
mdelay(15);
if (hw->mac_type != e1000_ich8lan) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
}
/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
if (hw->phy_type == e1000_phy_igp) {
/* disable lplu d3 during driver init */
ret_val = e1000_set_d3_lplu_state(hw, false);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D3\n");
return ret_val;
}
}
/* disable lplu d0 during driver init */
ret_val = e1000_set_d0_lplu_state(hw, false);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D0\n");
return ret_val;
}
/* Configure mdi-mdix settings */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
hw->dsp_config_state = e1000_dsp_config_disabled;
/* Force MDI for earlier revs of the IGP PHY */
phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
| IGP01E1000_PSCR_FORCE_MDI_MDIX);
hw->mdix = 1;
} else {
hw->dsp_config_state = e1000_dsp_config_enabled;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
switch (hw->mdix) {
case 1:
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 2:
phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 0:
default:
phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
break;
}
}
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
return ret_val;
/* set auto-master slave resolution settings */
if (hw->autoneg) {
e1000_ms_type phy_ms_setting = hw->master_slave;
if (hw->ffe_config_state == e1000_ffe_config_active)
hw->ffe_config_state = e1000_ffe_config_enabled;
if (hw->dsp_config_state == e1000_dsp_config_activated)
hw->dsp_config_state = e1000_dsp_config_enabled;
/* when autonegotiation advertisment is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default. */
if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~CR_1000T_MS_ENABLE;
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
phy_data);
if (ret_val)
return ret_val;
}
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* load defaults for future use */
hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
((phy_data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) :
e1000_ms_auto;
switch (phy_ms_setting) {
case e1000_ms_force_master:
phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
phy_data |= CR_1000T_MS_ENABLE;
phy_data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
phy_data &= ~CR_1000T_MS_ENABLE;
default:
break;
}
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/*****************************************************************************
* This function checks the mode of the firmware.
*
* returns - true when the mode is IAMT or false.
****************************************************************************/
bool
e1000_check_mng_mode(struct e1000_hw *hw)
{
uint32_t fwsm;
DEBUGFUNC();
fwsm = E1000_READ_REG(hw, FWSM);
if (hw->mac_type == e1000_ich8lan) {
if ((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return true;
} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return true;
return false;
}
static int32_t
e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
{
uint16_t swfw = E1000_SWFW_PHY0_SM;
uint32_t reg_val;
DEBUGFUNC();
if (e1000_is_second_port(hw))
swfw = E1000_SWFW_PHY1_SM;
if (e1000_swfw_sync_acquire(hw, swfw))
return -E1000_ERR_SWFW_SYNC;
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
& E1000_KUMCTRLSTA_OFFSET) | data;
E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
udelay(2);
return E1000_SUCCESS;
}
static int32_t
e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
{
uint16_t swfw = E1000_SWFW_PHY0_SM;
uint32_t reg_val;
DEBUGFUNC();
if (e1000_is_second_port(hw))
swfw = E1000_SWFW_PHY1_SM;
if (e1000_swfw_sync_acquire(hw, swfw)) {
debug("%s[%i]\n", __func__, __LINE__);
return -E1000_ERR_SWFW_SYNC;
}
/* Write register address */
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
udelay(2);
/* Read the data returned */
reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
*data = (uint16_t)reg_val;
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_gg82563 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_ggp_setup(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
uint32_t reg_data;
DEBUGFUNC();
if (!hw->phy_reset_disable) {
/* Enable CRS on TX for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_MAC_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
switch (hw->mdix) {
case 1:
phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
break;
case 2:
phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
break;
case 0:
default:
phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
} /* phy_reset_disable */
if (hw->mac_type == e1000_80003es2lan) {
/* Bypass RX and TX FIFO's */
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_SPEC_CTRL_2, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_SPEC_CTRL_2, phy_data);
if (ret_val)
return ret_val;
reg_data = E1000_READ_REG(hw, CTRL_EXT);
reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* Do not init these registers when the HW is in IAMT mode, since the
* firmware will have already initialized them. We only initialize
* them if the HW is not in IAMT mode.
*/
if (e1000_check_mng_mode(hw) == false) {
/* Enable Electrical Idle on the PHY */
phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_PWR_MGMT_CTRL, phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_KMRN_MODE_CTRL, phy_data);
if (ret_val)
return ret_val;
}
/* Workaround: Disable padding in Kumeran interface in the MAC
* and in the PHY to avoid CRC errors.
*/
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_INBAND_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= GG82563_ICR_DIS_PADDING;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_INBAND_CTRL, phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_m88 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_mgp_setup(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->phy_reset_disable)
return E1000_SUCCESS;
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (hw->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
if (hw->phy_revision < M88E1011_I_REV_4) {
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = e1000_read_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if ((hw->phy_revision == E1000_REVISION_2) &&
(hw->phy_id == M88E1111_I_PHY_ID)) {
/* Vidalia Phy, set the downshift counter to 5x */
phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
}
}
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Setup auto-negotiation and flow control advertisements,
* and then perform auto-negotiation.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
/* Perform some bounds checking on the hw->autoneg_advertised
* parameter. If this variable is zero, then set it to the default.
*/
hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* IFE phy only supports 10/100 */
if (hw->phy_type == e1000_phy_ife)
hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if (ret_val) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
DEBUGOUT("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret_val)
return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
/* If we do not wait for autonegtation to complete I
* do not see a valid link status.
* wait_autoneg_complete = 1 .
*/
if (hw->wait_autoneg_complete) {
ret_val = e1000_wait_autoneg(hw);
if (ret_val) {
DEBUGOUT("Error while waiting for autoneg"
"to complete\n");
return ret_val;
}
}
hw->get_link_status = true;
return E1000_SUCCESS;
}
/******************************************************************************
* Config the MAC and the PHY after link is up.
* 1) Set up the MAC to the current PHY speed/duplex
* if we are on 82543. If we
* are on newer silicon, we only need to configure
* collision distance in the Transmit Control Register.
* 2) Set up flow control on the MAC to that established with
* the link partner.
* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_postconfig(struct e1000_hw *hw)
{
int32_t ret_val;
DEBUGFUNC();
if (hw->mac_type >= e1000_82544) {
e1000_config_collision_dist(hw);
} else {
ret_val = e1000_config_mac_to_phy(hw);
if (ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val) {
DEBUGOUT("Error Configuring Flow Control\n");
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Detects which PHY is present and setup the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_setup_copper_link(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t i;
uint16_t phy_data;
uint16_t reg_data;
DEBUGFUNC();
switch (hw->mac_type) {
case e1000_80003es2lan:
case e1000_ich8lan:
/* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps. */
ret_val = e1000_write_kmrn_reg(hw,
GG82563_REG(0x34, 4), 0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg(hw,
GG82563_REG(0x34, 9), &reg_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000_write_kmrn_reg(hw,
GG82563_REG(0x34, 9), reg_data);
if (ret_val)
return ret_val;
default:
break;
}
/* Check if it is a valid PHY and set PHY mode if necessary. */
ret_val = e1000_copper_link_preconfig(hw);
if (ret_val)
return ret_val;
switch (hw->mac_type) {
case e1000_80003es2lan:
/* Kumeran registers are written-only */
reg_data =
E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
if (ret_val)
return ret_val;
break;
default:
break;
}
if (hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_copper_link_igp_setup(hw);
if (ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_m88 ||
hw->phy_type == e1000_phy_igb) {
ret_val = e1000_copper_link_mgp_setup(hw);
if (ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_gg82563) {
ret_val = e1000_copper_link_ggp_setup(hw);
if (ret_val)
return ret_val;
}
/* always auto */
/* Setup autoneg and flow control advertisement
* and perform autonegotiation */
ret_val = e1000_copper_link_autoneg(hw);
if (ret_val)
return ret_val;
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
for (i = 0; i < 10; i++) {
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
if (phy_data & MII_SR_LINK_STATUS) {
/* Config the MAC and PHY after link is up */
ret_val = e1000_copper_link_postconfig(hw);
if (ret_val)
return ret_val;
DEBUGOUT("Valid link established!!!\n");
return E1000_SUCCESS;
}
udelay(10);
}
DEBUGOUT("Unable to establish link!!!\n");
return E1000_SUCCESS;
}
/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_autoneg_adv_reg;
uint16_t mii_1000t_ctrl_reg;
DEBUGFUNC();
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (hw->phy_type != e1000_phy_ife) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
&mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
} else
mii_1000t_ctrl_reg = 0;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
DEBUGOUT
("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc) {
case e1000_fc_none: /* 0 */
/* Flow control (RX & TX) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause: /* 1 */
/* RX Flow control is enabled, and TX Flow control is
* disabled, by a software over-ride.
*/
/* Since there really isn't a way to advertise that we are
* capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later
* (in e1000_config_fc_after_link_up) we will disable the
*hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause: /* 2 */
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full: /* 3 */
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (hw->phy_type != e1000_phy_ife) {
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
static void
e1000_config_collision_dist(struct e1000_hw *hw)
{
uint32_t tctl, coll_dist;
DEBUGFUNC();
if (hw->mac_type < e1000_82543)
coll_dist = E1000_COLLISION_DISTANCE_82542;
else
coll_dist = E1000_COLLISION_DISTANCE;
tctl = E1000_READ_REG(hw, TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= coll_dist << E1000_COLD_SHIFT;
E1000_WRITE_REG(hw, TCTL, tctl);
E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int
e1000_config_mac_to_phy(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t phy_data;
DEBUGFUNC();
/* Read the Device Control Register and set the bits to Force Speed
* and Duplex.
*/
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_ILOS);
ctrl |= (E1000_CTRL_SPD_SEL);
/* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
else
ctrl &= ~E1000_CTRL_FD;
e1000_config_collision_dist(hw);
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG(hw, CTRL, ctrl);
return 0;
}
/******************************************************************************
* Forces the MAC's flow control settings.
*
* hw - Struct containing variables accessed by shared code
*
* Sets the TFCE and RFCE bits in the device control register to reflect
* the adapter settings. TFCE and RFCE need to be explicitly set by
* software when a Copper PHY is used because autonegotiation is managed
* by the PHY rather than the MAC. Software must also configure these
* bits when link is forced on a fiber connection.
*****************************************************************************/
static int
e1000_force_mac_fc(struct e1000_hw *hw)
{
uint32_t ctrl;
DEBUGFUNC();
/* Get the current configuration of the Device Control Register */
ctrl = E1000_READ_REG(hw, CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
switch (hw->fc) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
if (hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
E1000_WRITE_REG(hw, CTRL, ctrl);
return 0;
}
/******************************************************************************
* Configures flow control settings after link is established
*
* hw - Struct containing variables accessed by shared code
*
* Should be called immediately after a valid link has been established.
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
* and autonegotiation is enabled, the MAC flow control settings will be set
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
* and RFCE bits will be automaticaly set to the negotiated flow control mode.
*****************************************************************************/
static int32_t
e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_status_reg;
uint16_t mii_nway_adv_reg;
uint16_t mii_nway_lp_ability_reg;
uint16_t speed;
uint16_t duplex;
DEBUGFUNC();
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
|| ((hw->media_type == e1000_media_type_internal_serdes)
&& (hw->autoneg_failed))
|| ((hw->media_type == e1000_media_type_copper)
&& (!hw->autoneg))) {
ret_val = e1000_force_mac_fc(hw);
if (ret_val < 0) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if (hw->media_type == e1000_media_type_copper) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page Ability
* Register (Address 5) to determine how flow control was
* negotiated.
*/
if (e1000_read_phy_reg
(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg
(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
/* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | e1000_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->original_fc == e1000_fc_full) {
hw->fc = e1000_fc_full;
DEBUGOUT("Flow Control = FULL.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT
("Flow Control = RX PAUSE frames only.\r\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
{
hw->fc = e1000_fc_tx_pause;
DEBUGOUT
("Flow Control = TX PAUSE frames only.\r\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
{
hw->fc = e1000_fc_rx_pause;
DEBUGOUT
("Flow Control = RX PAUSE frames only.\r\n");
}
/* Per the IEEE spec, at this point flow control should be
* disabled. However, we want to consider that we could
* be connected to a legacy switch that doesn't advertise
* desired flow control, but can be forced on the link
* partner. So if we advertised no flow control, that is
* what we will resolve to. If we advertised some kind of
* receive capability (Rx Pause Only or Full Flow Control)
* and the link partner advertised none, we will configure
* ourselves to enable Rx Flow Control only. We can do
* this safely for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx, no
* harm done since we won't be receiving any PAUSE frames
* anyway. If the intent on the link partner was to have
* flow control enabled, then by us enabling RX only, we
* can at least receive pause frames and process them.
* This is a good idea because in most cases, since we are
* predominantly a server NIC, more times than not we will
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
else if (hw->original_fc == e1000_fc_none ||
hw->original_fc == e1000_fc_tx_pause) {
hw->fc = e1000_fc_none;
DEBUGOUT("Flow Control = NONE.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT
("Flow Control = RX PAUSE frames only.\r\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
e1000_get_speed_and_duplex(hw, &speed, &duplex);
if (duplex == HALF_DUPLEX)
hw->fc = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000_force_mac_fc(hw);
if (ret_val < 0) {
DEBUGOUT
("Error forcing flow control settings\n");
return ret_val;
}
} else {
DEBUGOUT
("Copper PHY and Auto Neg has not completed.\r\n");
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Checks to see if the link status of the hardware has changed.
*
* hw - Struct containing variables accessed by shared code
*
* Called by any function that needs to check the link status of the adapter.
*****************************************************************************/
static int
e1000_check_for_link(struct e1000_hw *hw)
{
uint32_t rxcw;
uint32_t ctrl;
uint32_t status;
uint32_t rctl;
uint32_t signal;
int32_t ret_val;
uint16_t phy_data;
uint16_t lp_capability;
DEBUGFUNC();
/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal
*/
ctrl = E1000_READ_REG(hw, CTRL);
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
signal = E1000_CTRL_SWDPIN1;
else
signal = 0;
status = E1000_READ_REG(hw, STATUS);
rxcw = E1000_READ_REG(hw, RXCW);
DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
/* If we have a copper PHY then we only want to go out to the PHY
* registers to see if Auto-Neg has completed and/or if our link
* status has changed. The get_link_status flag will be set if we
* receive a Link Status Change interrupt or we have Rx Sequence
* Errors.
*/
if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
* Read the register twice since the link bit is sticky.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & MII_SR_LINK_STATUS) {
hw->get_link_status = false;
} else {
/* No link detected */
return -E1000_ERR_NOLINK;
}
/* We have a M88E1000 PHY and Auto-Neg is enabled. If we
* have Si on board that is 82544 or newer, Auto
* Speed Detection takes care of MAC speed/duplex
* configuration. So we only need to configure Collision
* Distance in the MAC. Otherwise, we need to force
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
if (hw->mac_type >= e1000_82544)
e1000_config_collision_dist(hw);
else {
ret_val = e1000_config_mac_to_phy(hw);
if (ret_val < 0) {
DEBUGOUT
("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
/* Configure Flow Control now that Auto-Neg has completed. First, we
* need to restore the desired flow control settings because we may
* have had to re-autoneg with a different link partner.
*/
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val < 0) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
/* At this point we know that we are on copper and we have
* auto-negotiated link. These are conditions for checking the link
* parter capability register. We use the link partner capability to
* determine if TBI Compatibility needs to be turned on or off. If
* the link partner advertises any speed in addition to Gigabit, then
* we assume that they are GMII-based, and TBI compatibility is not
* needed. If no other speeds are advertised, we assume the link
* partner is TBI-based, and we turn on TBI Compatibility.
*/
if (hw->tbi_compatibility_en) {
if (e1000_read_phy_reg
(hw, PHY_LP_ABILITY, &lp_capability) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
NWAY_LPAR_10T_FD_CAPS |
NWAY_LPAR_100TX_HD_CAPS |
NWAY_LPAR_100TX_FD_CAPS |
NWAY_LPAR_100T4_CAPS)) {
/* If our link partner advertises anything in addition to
* gigabit, we do not need to enable TBI compatibility.
*/
if (hw->tbi_compatibility_on) {
/* If we previously were in the mode, turn it off. */
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
hw->tbi_compatibility_on = false;
}
} else {
/* If TBI compatibility is was previously off, turn it on. For
* compatibility with a TBI link partner, we will store bad
* packets. Some frames have an additional byte on the end and
* will look like CRC errors to to the hardware.
*/
if (!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = true;
rctl = E1000_READ_REG(hw, RCTL);
rctl |= E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
}
}
}
}
/* If we don't have link (auto-negotiation failed or link partner cannot
* auto-negotiate), the cable is plugged in (we have signal), and our
* link partner is not trying to auto-negotiate with us (we are receiving
* idles or data), we need to force link up. We also need to give
* auto-negotiation time to complete, in case the cable was just plugged
* in. The autoneg_failed flag does this.
*/
else if ((hw->media_type == e1000_media_type_fiber) &&
(!(status & E1000_STATUS_LU)) &&
((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
(!(rxcw & E1000_RXCW_C))) {
if (hw->autoneg_failed == 0) {
hw->autoneg_failed = 1;
return 0;
}
DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
/* Disable auto-negotiation in the TXCW register */
E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
E1000_WRITE_REG(hw, CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val < 0) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
}
/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
* auto-negotiation in the TXCW register and disable forced link in the
* Device Control register in an attempt to auto-negotiate with our link
* partner.
*/
else if ((hw->media_type == e1000_media_type_fiber) &&
(ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
DEBUGOUT
("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
E1000_WRITE_REG(hw, TXCW, hw->txcw);
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
}
return 0;
}
/******************************************************************************
* Configure the MAC-to-PHY interface for 10/100Mbps
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
{
int32_t ret_val = E1000_SUCCESS;
uint32_t tipg;
uint16_t reg_data;
DEBUGFUNC();
reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = E1000_READ_REG(hw, TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
E1000_WRITE_REG(hw, TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
if (ret_val)
return ret_val;
if (duplex == HALF_DUPLEX)
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
static int32_t
e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
{
int32_t ret_val = E1000_SUCCESS;
uint16_t reg_data;
uint32_t tipg;
DEBUGFUNC();
reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = E1000_READ_REG(hw, TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
E1000_WRITE_REG(hw, TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
if (ret_val)
return ret_val;
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
/******************************************************************************
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*****************************************************************************/
static int
e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
uint16_t *duplex)
{
uint32_t status;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
} else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
}
if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\r\n");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT(" Half Duplex\r\n");
}
} else {
DEBUGOUT("1000 Mbs, Full Duplex\r\n");
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
}
/* IGP01 PHY may advertise full duplex operation after speed downgrade
* even if it is operating at half duplex. Here we set the duplex
* settings to match the duplex in the link partner's capabilities.
*/
if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
*duplex = HALF_DUPLEX;
else {
ret_val = e1000_read_phy_reg(hw,
PHY_LP_ABILITY, &phy_data);
if (ret_val)
return ret_val;
if ((*speed == SPEED_100 &&
!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
|| (*speed == SPEED_10
&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
*duplex = HALF_DUPLEX;
}
}
if ((hw->mac_type == e1000_80003es2lan) &&
(hw->media_type == e1000_media_type_copper)) {
if (*speed == SPEED_1000)
ret_val = e1000_configure_kmrn_for_1000(hw);
else
ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_wait_autoneg(struct e1000_hw *hw)
{
uint16_t i;
uint16_t phy_data;
DEBUGFUNC();
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or timeout to expire. */
for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & MII_SR_AUTONEG_COMPLETE) {
DEBUGOUT("Auto-Neg complete.\n");
return 0;
}
mdelay(100);
}
DEBUGOUT("Auto-Neg timedout.\n");
return -E1000_ERR_TIMEOUT;
}
/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
/* Raise the clock input to the Management Data Clock (by setting the MDC
* bit), and then delay 2 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(2);
}
/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
/* Lower the clock input to the Management Data Clock (by clearing the MDC
* bit), and then delay 2 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(2);
}
/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
{
uint32_t ctrl;
uint32_t mask;
/* We need to shift "count" number of bits out to the PHY. So, the value
* in the "data" parameter will be shifted out to the PHY one bit at a
* time. In order to do this, "data" must be broken down into bits.
*/
mask = 0x01;
mask <<= (count - 1);
ctrl = E1000_READ_REG(hw, CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
while (mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
* then raising and lowering the Management Data Clock. A "0" is
* shifted out to the PHY by setting the MDIO bit to "0" and then
* raising and lowering the clock.
*/
if (data & mask)
ctrl |= E1000_CTRL_MDIO;
else
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
udelay(2);
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
mask = mask >> 1;
}
}
/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t data = 0;
uint8_t i;
/* In order to read a register from the PHY, we need to shift in a total
* of 18 bits from the PHY. The first two bit (turnaround) times are used
* to avoid contention on the MDIO pin when a read operation is performed.
* These two bits are ignored by us and thrown away. Bits are "shifted in"
* by raising the input to the Management Data Clock (setting the MDC bit),
* and then reading the value of the MDIO bit.
*/
ctrl = E1000_READ_REG(hw, CTRL);
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
/* Raise and Lower the clock before reading in the data. This accounts for
* the turnaround bits. The first clock occurred when we clocked out the
* last bit of the Register Address.
*/
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
for (data = 0, i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl);
ctrl = E1000_READ_REG(hw, CTRL);
/* Check to see if we shifted in a "1". */
if (ctrl & E1000_CTRL_MDIO)
data |= 1;
e1000_lower_mdi_clk(hw, &ctrl);
}
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
return data;
}
/*****************************************************************************
* Reads the value from a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
static int
e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
mdic = E1000_READ_REG(hw, MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
*phy_data = (uint16_t) mdic;
} else {
/* We must first send a preamble through the MDIO pin to signal the
* beginning of an MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the next few fields that are required for a read
* operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine five different times. The format of
* a MII read instruction consists of a shift out of 14 bits and is
* defined as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
* followed by a shift in of 18 bits. This first two bits shifted in
* are TurnAround bits used to avoid contention on the MDIO pin when a
* READ operation is performed. These two bits are thrown away
* followed by a shift in of 16 bits which contains the desired data.
*/
mdic = ((reg_addr) | (phy_addr << 5) |
(PHY_OP_READ << 10) | (PHY_SOF << 12));
e1000_shift_out_mdi_bits(hw, mdic, 14);
/* Now that we've shifted out the read command to the MII, we need to
* "shift in" the 16-bit value (18 total bits) of the requested PHY
* register address.
*/
*phy_data = e1000_shift_in_mdi_bits(hw);
}
return 0;
}
/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
static int
e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, register address, and data intended
* for the PHY register in the MDI Control register. The MAC will take
* care of interfacing with the PHY to send the desired data.
*/
mdic = (((uint32_t) phy_data) |
(reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
mdic = E1000_READ_REG(hw, MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
} else {
/* We'll need to use the SW defined pins to shift the write command
* out to the PHY. We first send a preamble to the PHY to signal the
* beginning of the MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the remaining required fields that will indicate a
* write operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine for each field in the command. The
* format of a MII write instruction is as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
*/
mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
mdic <<= 16;
mdic |= (uint32_t) phy_data;
e1000_shift_out_mdi_bits(hw, mdic, 32);
}
return 0;
}
/******************************************************************************
* Checks if PHY reset is blocked due to SOL/IDER session, for example.
* Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
* the caller to figure out how to deal with it.
*
* hw - Struct containing variables accessed by shared code
*
* returns: - E1000_BLK_PHY_RESET
* E1000_SUCCESS
*
*****************************************************************************/
int32_t
e1000_check_phy_reset_block(struct e1000_hw *hw)
{
uint32_t manc = 0;
uint32_t fwsm = 0;
if (hw->mac_type == e1000_ich8lan) {
fwsm = E1000_READ_REG(hw, FWSM);
return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
: E1000_BLK_PHY_RESET;
}
if (hw->mac_type > e1000_82547_rev_2)
manc = E1000_READ_REG(hw, MANC);
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
E1000_BLK_PHY_RESET : E1000_SUCCESS;
}
/***************************************************************************
* Checks if the PHY configuration is done
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_RESET if fail to reset MAC
* E1000_SUCCESS at any other case.
*
***************************************************************************/
static int32_t
e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
int32_t timeout = PHY_CFG_TIMEOUT;
uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
DEBUGFUNC();
switch (hw->mac_type) {
default:
mdelay(10);
break;
case e1000_80003es2lan:
/* Separate *_CFG_DONE_* bit for each port */
if (e1000_is_second_port(hw))
cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
/* Fall Through */
case e1000_82571:
case e1000_82572:
case e1000_igb:
while (timeout) {
if (hw->mac_type == e1000_igb) {
if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
break;
} else {
if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
break;
}
mdelay(1);
timeout--;
}
if (!timeout) {
DEBUGOUT("MNG configuration cycle has not "
"completed.\n");
return -E1000_ERR_RESET;
}
break;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_hw_reset(struct e1000_hw *hw)
{
uint16_t swfw = E1000_SWFW_PHY0_SM;
uint32_t ctrl, ctrl_ext;
uint32_t led_ctrl;
int32_t ret_val;
DEBUGFUNC();
/* In the case of the phy reset being blocked, it's not an error, we
* simply return success without performing the reset. */
ret_val = e1000_check_phy_reset_block(hw);
if (ret_val)
return E1000_SUCCESS;
DEBUGOUT("Resetting Phy...\n");
if (hw->mac_type > e1000_82543) {
if (e1000_is_second_port(hw))
swfw = E1000_SWFW_PHY1_SM;
if (e1000_swfw_sync_acquire(hw, swfw)) {
DEBUGOUT("Unable to acquire swfw sync\n");
return -E1000_ERR_SWFW_SYNC;
}
/* Read the device control register and assert the E1000_CTRL_PHY_RST
* bit. Then, take it out of reset.
*/
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH(hw);
if (hw->mac_type < e1000_82571)
udelay(10);
else
udelay(100);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
if (hw->mac_type >= e1000_82571)
mdelay(10);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset. Then, take it out of reset.
*/
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
mdelay(10);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
}
udelay(150);
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
}
e1000_swfw_sync_release(hw, swfw);
/* Wait for FW to finish PHY configuration. */
ret_val = e1000_get_phy_cfg_done(hw);
if (ret_val != E1000_SUCCESS)
return ret_val;
return ret_val;
}
/******************************************************************************
* IGP phy init script - initializes the GbE PHY
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_phy_init_script(struct e1000_hw *hw)
{
uint32_t ret_val;
uint16_t phy_saved_data;
DEBUGFUNC();
if (hw->phy_init_script) {
mdelay(20);
/* Save off the current value of register 0x2F5B to be
* restored at the end of this routine. */
ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
/* Disabled the PHY transmitter */
e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
mdelay(20);
e1000_write_phy_reg(hw, 0x0000, 0x0140);
mdelay(5);
switch (hw->mac_type) {
case e1000_82541:
case e1000_82547:
e1000_write_phy_reg(hw, 0x1F95, 0x0001);
e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
e1000_write_phy_reg(hw, 0x1F79, 0x0018);
e1000_write_phy_reg(hw, 0x1F30, 0x1600);
e1000_write_phy_reg(hw, 0x1F31, 0x0014);
e1000_write_phy_reg(hw, 0x1F32, 0x161C);
e1000_write_phy_reg(hw, 0x1F94, 0x0003);
e1000_write_phy_reg(hw, 0x1F96, 0x003F);
e1000_write_phy_reg(hw, 0x2010, 0x0008);
break;
case e1000_82541_rev_2:
case e1000_82547_rev_2:
e1000_write_phy_reg(hw, 0x1F73, 0x0099);
break;
default:
break;
}
e1000_write_phy_reg(hw, 0x0000, 0x3300);
mdelay(20);
/* Now enable the transmitter */
if (!ret_val)
e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
if (hw->mac_type == e1000_82547) {
uint16_t fused, fine, coarse;
/* Move to analog registers page */
e1000_read_phy_reg(hw,
IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
e1000_read_phy_reg(hw,
IGP01E1000_ANALOG_FUSE_STATUS, &fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse = fused
& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
if (coarse >
IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -=
IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
} else if (coarse
== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused = (fused
& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
(fine
& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
(coarse
& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
e1000_write_phy_reg(hw,
IGP01E1000_ANALOG_FUSE_CONTROL, fused);
e1000_write_phy_reg(hw,
IGP01E1000_ANALOG_FUSE_BYPASS,
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
}
}
}
}
/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control register
******************************************************************************/
int32_t
e1000_phy_reset(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
/* In the case of the phy reset being blocked, it's not an error, we
* simply return success without performing the reset. */
ret_val = e1000_check_phy_reset_block(hw);
if (ret_val)
return E1000_SUCCESS;
switch (hw->phy_type) {
case e1000_phy_igp:
case e1000_phy_igp_2:
case e1000_phy_igp_3:
case e1000_phy_ife:
case e1000_phy_igb:
ret_val = e1000_phy_hw_reset(hw);
if (ret_val)
return ret_val;
break;
default:
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= MII_CR_RESET;
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret_val)
return ret_val;
udelay(1);
break;
}
if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
e1000_phy_init_script(hw);
return E1000_SUCCESS;
}
static int e1000_set_phy_type (struct e1000_hw *hw)
{
DEBUGFUNC ();
if (hw->mac_type == e1000_undefined)
return -E1000_ERR_PHY_TYPE;
switch (hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
case M88E1111_I_PHY_ID:
hw->phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
if (hw->mac_type == e1000_82541 ||
hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547 ||
hw->mac_type == e1000_82547_rev_2) {
hw->phy_type = e1000_phy_igp;
break;
}
case IGP03E1000_E_PHY_ID:
hw->phy_type = e1000_phy_igp_3;
break;
case IFE_E_PHY_ID:
case IFE_PLUS_E_PHY_ID:
case IFE_C_E_PHY_ID:
hw->phy_type = e1000_phy_ife;
break;
case GG82563_E_PHY_ID:
if (hw->mac_type == e1000_80003es2lan) {
hw->phy_type = e1000_phy_gg82563;
break;
}
case BME1000_E_PHY_ID:
hw->phy_type = e1000_phy_bm;
break;
case I210_I_PHY_ID:
hw->phy_type = e1000_phy_igb;
break;
/* Fall Through */
default:
/* Should never have loaded on this device */
hw->phy_type = e1000_phy_undefined;
return -E1000_ERR_PHY_TYPE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_detect_gig_phy(struct e1000_hw *hw)
{
int32_t phy_init_status, ret_val;
uint16_t phy_id_high, phy_id_low;
bool match = false;
DEBUGFUNC();
/* The 82571 firmware may still be configuring the PHY. In this
* case, we cannot access the PHY until the configuration is done. So
* we explicitly set the PHY values. */
if (hw->mac_type == e1000_82571 ||
hw->mac_type == e1000_82572) {
hw->phy_id = IGP01E1000_I_PHY_ID;
hw->phy_type = e1000_phy_igp_2;
return E1000_SUCCESS;
}
/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
* work- around that forces PHY page 0 to be set or the reads fail.
* The rest of the code in this routine uses e1000_read_phy_reg to
* read the PHY ID. So for ESB-2 we need to have this set so our
* reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
* the routines below will figure this out as well. */
if (hw->mac_type == e1000_80003es2lan)
hw->phy_type = e1000_phy_gg82563;
/* Read the PHY ID Registers to identify which PHY is onboard. */
ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
if (ret_val)
return ret_val;
hw->phy_id = (uint32_t) (phy_id_high << 16);
udelay(20);
ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
if (ret_val)
return ret_val;
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
switch (hw->mac_type) {
case e1000_82543:
if (hw->phy_id == M88E1000_E_PHY_ID)
match = true;
break;
case e1000_82544:
if (hw->phy_id == M88E1000_I_PHY_ID)
match = true;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
if (hw->phy_id == M88E1011_I_PHY_ID)
match = true;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if(hw->phy_id == IGP01E1000_I_PHY_ID)
match = true;
break;
case e1000_82573:
if (hw->phy_id == M88E1111_I_PHY_ID)
match = true;
break;
case e1000_82574:
if (hw->phy_id == BME1000_E_PHY_ID)
match = true;
break;
case e1000_80003es2lan:
if (hw->phy_id == GG82563_E_PHY_ID)
match = true;
break;
case e1000_ich8lan:
if (hw->phy_id == IGP03E1000_E_PHY_ID)
match = true;
if (hw->phy_id == IFE_E_PHY_ID)
match = true;
if (hw->phy_id == IFE_PLUS_E_PHY_ID)
match = true;
if (hw->phy_id == IFE_C_E_PHY_ID)
match = true;
break;
case e1000_igb:
if (hw->phy_id == I210_I_PHY_ID)
match = true;
break;
default:
DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
}
phy_init_status = e1000_set_phy_type(hw);
if ((match) && (phy_init_status == E1000_SUCCESS)) {
DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
return 0;
}
DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
return -E1000_ERR_PHY;
}
/*****************************************************************************
* Set media type and TBI compatibility.
*
* hw - Struct containing variables accessed by shared code
* **************************************************************************/
void
e1000_set_media_type(struct e1000_hw *hw)
{
uint32_t status;
DEBUGFUNC();
if (hw->mac_type != e1000_82543) {
/* tbi_compatibility is only valid on 82543 */
hw->tbi_compatibility_en = false;
}
switch (hw->device_id) {
case E1000_DEV_ID_82545GM_SERDES:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->media_type = e1000_media_type_internal_serdes;
break;
default:
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
hw->media_type = e1000_media_type_fiber;
break;
case e1000_ich8lan:
case e1000_82573:
case e1000_82574:
case e1000_igb:
/* The STATUS_TBIMODE bit is reserved or reused
* for the this device.
*/
hw->media_type = e1000_media_type_copper;
break;
default:
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_TBIMODE) {
hw->media_type = e1000_media_type_fiber;
/* tbi_compatibility not valid on fiber */
hw->tbi_compatibility_en = false;
} else {
hw->media_type = e1000_media_type_copper;
}
break;
}
}
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
*
* e1000_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int
e1000_sw_init(struct e1000_hw *hw)
{
int result;
/* PCI config space info */
#ifdef CONFIG_DM_ETH
dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
&hw->subsystem_vendor_id);
dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
#else
pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
&hw->subsystem_vendor_id);
pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
#endif
/* identify the MAC */
result = e1000_set_mac_type(hw);
if (result) {
E1000_ERR(hw, "Unknown MAC Type\n");
return result;
}
switch (hw->mac_type) {
default:
break;
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
hw->phy_init_script = 1;
break;
}
/* flow control settings */
hw->fc_high_water = E1000_FC_HIGH_THRESH;
hw->fc_low_water = E1000_FC_LOW_THRESH;
hw->fc_pause_time = E1000_FC_PAUSE_TIME;
hw->fc_send_xon = 1;
/* Media type - copper or fiber */
hw->tbi_compatibility_en = true;
e1000_set_media_type(hw);
if (hw->mac_type >= e1000_82543) {
uint32_t status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_TBIMODE) {
DEBUGOUT("fiber interface\n");
hw->media_type = e1000_media_type_fiber;
} else {
DEBUGOUT("copper interface\n");
hw->media_type = e1000_media_type_copper;
}
} else {
hw->media_type = e1000_media_type_fiber;
}
hw->wait_autoneg_complete = true;
if (hw->mac_type < e1000_82543)
hw->report_tx_early = 0;
else
hw->report_tx_early = 1;
return E1000_SUCCESS;
}
void
fill_rx(struct e1000_hw *hw)
{
struct e1000_rx_desc *rd;
unsigned long flush_start, flush_end;
rx_last = rx_tail;
rd = rx_base + rx_tail;
rx_tail = (rx_tail + 1) % 8;
memset(rd, 0, 16);
rd->buffer_addr = cpu_to_le64((unsigned long)packet);
/*
* Make sure there are no stale data in WB over this area, which
* might get written into the memory while the e1000 also writes
* into the same memory area.
*/
invalidate_dcache_range((unsigned long)packet,
(unsigned long)packet + 4096);
/* Dump the DMA descriptor into RAM. */
flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
flush_dcache_range(flush_start, flush_end);
E1000_WRITE_REG(hw, RDT, rx_tail);
}
/**
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void
e1000_configure_tx(struct e1000_hw *hw)
{
unsigned long tctl;
unsigned long tipg, tarc;
uint32_t ipgr1, ipgr2;
E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
E1000_WRITE_REG(hw, TDLEN, 128);
/* Setup the HW Tx Head and Tail descriptor pointers */
E1000_WRITE_REG(hw, TDH, 0);
E1000_WRITE_REG(hw, TDT, 0);
tx_tail = 0;
/* Set the default values for the Tx Inter Packet Gap timer */
if (hw->mac_type <= e1000_82547_rev_2 &&
(hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes))
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
/* Set the default values for the Tx Inter Packet Gap timer */
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
tipg = DEFAULT_82542_TIPG_IPGT;
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
break;
case e1000_80003es2lan:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
break;
default:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
break;
}
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
E1000_WRITE_REG(hw, TIPG, tipg);
/* Program the Transmit Control Register */
tctl = E1000_READ_REG(hw, TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
tarc = E1000_READ_REG(hw, TARC0);
/* set the speed mode bit, we'll clear it if we're not at
* gigabit link later */
/* git bit can be set to 1*/
} else if (hw->mac_type == e1000_80003es2lan) {
tarc = E1000_READ_REG(hw, TARC0);
tarc |= 1;
E1000_WRITE_REG(hw, TARC0, tarc);
tarc = E1000_READ_REG(hw, TARC1);
tarc |= 1;
E1000_WRITE_REG(hw, TARC1, tarc);
}
e1000_config_collision_dist(hw);
/* Setup Transmit Descriptor Settings for eop descriptor */
hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
/* Need to set up RS bit */
if (hw->mac_type < e1000_82543)
hw->txd_cmd |= E1000_TXD_CMD_RPS;
else
hw->txd_cmd |= E1000_TXD_CMD_RS;
if (hw->mac_type == e1000_igb) {
E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
reg_txdctl |= 1 << 25;
E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
mdelay(20);
}
E1000_WRITE_REG(hw, TCTL, tctl);
}
/**
* e1000_setup_rctl - configure the receive control register
* @adapter: Board private structure
**/
static void
e1000_setup_rctl(struct e1000_hw *hw)
{
uint32_t rctl;
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF; /* |
(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
if (hw->tbi_compatibility_on == 1)
rctl |= E1000_RCTL_SBP;
else
rctl &= ~E1000_RCTL_SBP;
rctl &= ~(E1000_RCTL_SZ_4096);
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
E1000_WRITE_REG(hw, RCTL, rctl);
}
/**
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void
e1000_configure_rx(struct e1000_hw *hw)
{
unsigned long rctl, ctrl_ext;
rx_tail = 0;
/* make sure receives are disabled while setting up the descriptors */
rctl = E1000_READ_REG(hw, RCTL);
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
if (hw->mac_type >= e1000_82540) {
/* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
#define MAX_INTS_PER_SEC 8000
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
}
if (hw->mac_type >= e1000_82571) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
/* Reset delay timers after every interrupt */
ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
}
/* Setup the Base and Length of the Rx Descriptor Ring */
E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
E1000_WRITE_REG(hw, RDLEN, 128);
/* Setup the HW Rx Head and Tail Descriptor Pointers */
E1000_WRITE_REG(hw, RDH, 0);
E1000_WRITE_REG(hw, RDT, 0);
/* Enable Receives */
if (hw->mac_type == e1000_igb) {
uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
reg_rxdctl |= 1 << 25;
E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
mdelay(20);
}
E1000_WRITE_REG(hw, RCTL, rctl);
fill_rx(hw);
}
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int
_e1000_poll(struct e1000_hw *hw)
{
struct e1000_rx_desc *rd;
unsigned long inval_start, inval_end;
uint32_t len;
/* return true if there's an ethernet packet ready to read */
rd = rx_base + rx_last;
/* Re-load the descriptor from RAM. */
inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
invalidate_dcache_range(inval_start, inval_end);
if (!(rd->status & E1000_RXD_STAT_DD))
return 0;
/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
/* Packet received, make sure the data are re-loaded from RAM. */
len = le16_to_cpu(rd->length);
invalidate_dcache_range((unsigned long)packet,
(unsigned long)packet +
roundup(len, ARCH_DMA_MINALIGN));
return len;
}
static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
{
void *nv_packet = (void *)txpacket;
struct e1000_tx_desc *txp;
int i = 0;
unsigned long flush_start, flush_end;
txp = tx_base + tx_tail;
tx_tail = (tx_tail + 1) % 8;
txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
txp->upper.data = 0;
/* Dump the packet into RAM so e1000 can pick them. */
flush_dcache_range((unsigned long)nv_packet,
(unsigned long)nv_packet +
roundup(length, ARCH_DMA_MINALIGN));
/* Dump the descriptor into RAM as well. */
flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
flush_dcache_range(flush_start, flush_end);
E1000_WRITE_REG(hw, TDT, tx_tail);
E1000_WRITE_FLUSH(hw);
while (1) {
invalidate_dcache_range(flush_start, flush_end);
if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
break;
if (i++ > TOUT_LOOP) {
DEBUGOUT("e1000: tx timeout\n");
return 0;
}
udelay(10); /* give the nic a chance to write to the register */
}
return 1;
}
static void
_e1000_disable(struct e1000_hw *hw)
{
/* Turn off the ethernet interface */
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_REG(hw, TCTL, 0);
/* Clear the transmit ring */
E1000_WRITE_REG(hw, TDH, 0);
E1000_WRITE_REG(hw, TDT, 0);
/* Clear the receive ring */
E1000_WRITE_REG(hw, RDH, 0);
E1000_WRITE_REG(hw, RDT, 0);
mdelay(10);
}
/*reset function*/
static inline int
e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
{
e1000_reset_hw(hw);
if (hw->mac_type >= e1000_82544)
E1000_WRITE_REG(hw, WUC, 0);
return e1000_init_hw(hw, enetaddr);
}
static int
_e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
{
int ret_val = 0;
ret_val = e1000_reset(hw, enetaddr);
if (ret_val < 0) {
if ((ret_val == -E1000_ERR_NOLINK) ||
(ret_val == -E1000_ERR_TIMEOUT)) {
E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
} else {
E1000_ERR(hw, "Hardware Initialization Failed\n");
}
return ret_val;
}
e1000_configure_tx(hw);
e1000_setup_rctl(hw);
e1000_configure_rx(hw);
return 0;
}
/******************************************************************************
* Gets the current PCI bus type of hardware
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void e1000_get_bus_type(struct e1000_hw *hw)
{
uint32_t status;
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
hw->bus_type = e1000_bus_type_pci;
break;
case e1000_82571:
case e1000_82572:
case e1000_82573:
case e1000_82574:
case e1000_80003es2lan:
case e1000_ich8lan:
case e1000_igb:
hw->bus_type = e1000_bus_type_pci_express;
break;
default:
status = E1000_READ_REG(hw, STATUS);
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
e1000_bus_type_pcix : e1000_bus_type_pci;
break;
}
}
#ifndef CONFIG_DM_ETH
/* A list of all registered e1000 devices */
static LIST_HEAD(e1000_hw_list);
#endif
#ifdef CONFIG_DM_ETH
static int e1000_init_one(struct e1000_hw *hw, int cardnum,
struct udevice *devno, unsigned char enetaddr[6])
#else
static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
unsigned char enetaddr[6])
#endif
{
u32 val;
/* Assign the passed-in values */
#ifdef CONFIG_DM_ETH
hw->pdev = devno;
#else
hw->pdev = devno;
#endif
hw->cardnum = cardnum;
/* Print a debug message with the IO base address */
#ifdef CONFIG_DM_ETH
dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
#else
pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
#endif
E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
/* Try to enable I/O accesses and bus-mastering */
val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
#ifdef CONFIG_DM_ETH
dm_pci_write_config32(devno, PCI_COMMAND, val);
#else
pci_write_config_dword(devno, PCI_COMMAND, val);
#endif
/* Make sure it worked */
#ifdef CONFIG_DM_ETH
dm_pci_read_config32(devno, PCI_COMMAND, &val);
#else
pci_read_config_dword(devno, PCI_COMMAND, &val);
#endif
if (!(val & PCI_COMMAND_MEMORY)) {
E1000_ERR(hw, "Can't enable I/O memory\n");
return -ENOSPC;
}
if (!(val & PCI_COMMAND_MASTER)) {
E1000_ERR(hw, "Can't enable bus-mastering\n");
return -EPERM;
}
/* Are these variables needed? */
hw->fc = e1000_fc_default;
hw->original_fc = e1000_fc_default;
hw->autoneg_failed = 0;
hw->autoneg = 1;
hw->get_link_status = true;
#ifndef CONFIG_E1000_NO_NVM
hw->eeprom_semaphore_present = true;
#endif
#ifdef CONFIG_DM_ETH
hw->hw_addr = dm_pci_map_bar(devno, PCI_BASE_ADDRESS_0,
PCI_REGION_MEM);
#else
hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
PCI_REGION_MEM);
#endif
hw->mac_type = e1000_undefined;
/* MAC and Phy settings */
if (e1000_sw_init(hw) < 0) {
E1000_ERR(hw, "Software init failed\n");
return -EIO;
}
if (e1000_check_phy_reset_block(hw))
E1000_ERR(hw, "PHY Reset is blocked!\n");
/* Basic init was OK, reset the hardware and allow SPI access */
e1000_reset_hw(hw);
#ifndef CONFIG_E1000_NO_NVM
/* Validate the EEPROM and get chipset information */
if (e1000_init_eeprom_params(hw)) {
E1000_ERR(hw, "EEPROM is invalid!\n");
return -EINVAL;
}
if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
e1000_validate_eeprom_checksum(hw))
return -ENXIO;
e1000_read_mac_addr(hw, enetaddr);
#endif
e1000_get_bus_type(hw);
#ifndef CONFIG_E1000_NO_NVM
printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
enetaddr[0], enetaddr[1], enetaddr[2],
enetaddr[3], enetaddr[4], enetaddr[5]);
#else
memset(enetaddr, 0, 6);
printf("e1000: no NVM\n");
#endif
return 0;
}
/* Put the name of a device in a string */
static void e1000_name(char *str, int cardnum)
{
sprintf(str, "e1000#%u", cardnum);
}
#ifndef CONFIG_DM_ETH
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
{
struct e1000_hw *hw = nic->priv;
return _e1000_transmit(hw, txpacket, length);
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void
e1000_disable(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
_e1000_disable(hw);
}
/**************************************************************************
INIT - set up ethernet interface(s)
***************************************************************************/
static int
e1000_init(struct eth_device *nic, bd_t *bis)
{
struct e1000_hw *hw = nic->priv;
return _e1000_init(hw, nic->enetaddr);
}
static int
e1000_poll(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
int len;
len = _e1000_poll(hw);
if (len) {
net_process_received_packet((uchar *)packet, len);
fill_rx(hw);
}
return len ? 1 : 0;
}
static int e1000_write_hwaddr(struct eth_device *dev)
{
#ifndef CONFIG_E1000_NO_NVM
unsigned char *mac = dev->enetaddr;
unsigned char current_mac[6];
struct e1000_hw *hw = dev->priv;
uint16_t data[3];
int ret_val, i;
DEBUGOUT("%s: mac=%pM\n", __func__, mac);
memset(current_mac, 0, 6);
/* Read from EEPROM, not from registers, to make sure
* the address is persistently configured
*/
ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
/* Only write to EEPROM if the given address is different or
* reading the current address failed
*/
if (!ret_val && memcmp(current_mac, mac, 6) == 0)
return 0;
for (i = 0; i < 3; ++i)
data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
if (!ret_val)
ret_val = e1000_update_eeprom_checksum_i210(hw);
return ret_val;
#else
return 0;
#endif
}
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
You should omit the last argument struct pci_device * for a non-PCI NIC
***************************************************************************/
int
e1000_initialize(bd_t * bis)
{
unsigned int i;
pci_dev_t devno;
int ret;
DEBUGFUNC();
/* Find and probe all the matching PCI devices */
for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
/*
* These will never get freed due to errors, this allows us to
* perform SPI EEPROM programming from U-Boot, for example.
*/
struct eth_device *nic = malloc(sizeof(*nic));
struct e1000_hw *hw = malloc(sizeof(*hw));
if (!nic || !hw) {
printf("e1000#%u: Out of Memory!\n", i);
free(nic);
free(hw);
continue;
}
/* Make sure all of the fields are initially zeroed */
memset(nic, 0, sizeof(*nic));
memset(hw, 0, sizeof(*hw));
nic->priv = hw;
/* Generate a card name */
e1000_name(nic->name, i);
hw->name = nic->name;
ret = e1000_init_one(hw, i, devno, nic->enetaddr);
if (ret)
continue;
list_add_tail(&hw->list_node, &e1000_hw_list);
hw->nic = nic;
/* Set up the function pointers and register the device */
nic->init = e1000_init;
nic->recv = e1000_poll;
nic->send = e1000_transmit;
nic->halt = e1000_disable;
nic->write_hwaddr = e1000_write_hwaddr;
eth_register(nic);
}
return i;
}
struct e1000_hw *e1000_find_card(unsigned int cardnum)
{
struct e1000_hw *hw;
list_for_each_entry(hw, &e1000_hw_list, list_node)
if (hw->cardnum == cardnum)
return hw;
return NULL;
}
#endif /* !CONFIG_DM_ETH */
#ifdef CONFIG_CMD_E1000
static int do_e1000(cmd_tbl_t *cmdtp, int flag,
int argc, char * const argv[])
{
unsigned char *mac = NULL;
#ifdef CONFIG_DM_ETH
struct eth_pdata *plat;
struct udevice *dev;
char name[30];
int ret;
#endif
#if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
struct e1000_hw *hw;
#endif
int cardnum;
if (argc < 3) {
cmd_usage(cmdtp);
return 1;
}
/* Make sure we can find the requested e1000 card */
cardnum = simple_strtoul(argv[1], NULL, 10);
#ifdef CONFIG_DM_ETH
e1000_name(name, cardnum);
ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
if (!ret) {
plat = dev_get_platdata(dev);
mac = plat->enetaddr;
}
#else
hw = e1000_find_card(cardnum);
if (hw)
mac = hw->nic->enetaddr;
#endif
if (!mac) {
printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
return 1;
}
if (!strcmp(argv[2], "print-mac-address")) {
printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return 0;
}
#ifdef CONFIG_E1000_SPI
#ifdef CONFIG_DM_ETH
hw = dev_get_priv(dev);
#endif
/* Handle the "SPI" subcommand */
if (!strcmp(argv[2], "spi"))
return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
#endif
cmd_usage(cmdtp);
return 1;
}
U_BOOT_CMD(
e1000, 7, 0, do_e1000,
"Intel e1000 controller management",
/* */"<card#> print-mac-address\n"
#ifdef CONFIG_E1000_SPI
"e1000 <card#> spi show [<offset> [<length>]]\n"
"e1000 <card#> spi dump <addr> <offset> <length>\n"
"e1000 <card#> spi program <addr> <offset> <length>\n"
"e1000 <card#> spi checksum [update]\n"
#endif
" - Manage the Intel E1000 PCI device"
);
#endif /* not CONFIG_CMD_E1000 */
#ifdef CONFIG_DM_ETH
static int e1000_eth_start(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct e1000_hw *hw = dev_get_priv(dev);
return _e1000_init(hw, plat->enetaddr);
}
static void e1000_eth_stop(struct udevice *dev)
{
struct e1000_hw *hw = dev_get_priv(dev);
_e1000_disable(hw);
}
static int e1000_eth_send(struct udevice *dev, void *packet, int length)
{
struct e1000_hw *hw = dev_get_priv(dev);
int ret;
ret = _e1000_transmit(hw, packet, length);
return ret ? 0 : -ETIMEDOUT;
}
static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct e1000_hw *hw = dev_get_priv(dev);
int len;
len = _e1000_poll(hw);
if (len)
*packetp = packet;
return len ? len : -EAGAIN;
}
static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct e1000_hw *hw = dev_get_priv(dev);
fill_rx(hw);
return 0;
}
static int e1000_eth_probe(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct e1000_hw *hw = dev_get_priv(dev);
int ret;
hw->name = dev->name;
ret = e1000_init_one(hw, trailing_strtol(dev->name),
dev, plat->enetaddr);
if (ret < 0) {
printf(pr_fmt("failed to initialize card: %d\n"), ret);
return ret;
}
return 0;
}
static int e1000_eth_bind(struct udevice *dev)
{
char name[20];
/*
* A simple way to number the devices. When device tree is used this
* is unnecessary, but when the device is just discovered on the PCI
* bus we need a name. We could instead have the uclass figure out
* which devices are different and number them.
*/
e1000_name(name, num_cards++);
return device_set_name(dev, name);
}
static const struct eth_ops e1000_eth_ops = {
.start = e1000_eth_start,
.send = e1000_eth_send,
.recv = e1000_eth_recv,
.stop = e1000_eth_stop,
.free_pkt = e1000_free_pkt,
};
static const struct udevice_id e1000_eth_ids[] = {
{ .compatible = "intel,e1000" },
{ }
};
U_BOOT_DRIVER(eth_e1000) = {
.name = "eth_e1000",
.id = UCLASS_ETH,
.of_match = e1000_eth_ids,
.bind = e1000_eth_bind,
.probe = e1000_eth_probe,
.ops = &e1000_eth_ops,
.priv_auto_alloc_size = sizeof(struct e1000_hw),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};
U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
#endif