u-boot-brain/common/hash.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

469 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2012 The Chromium OS Authors.
*
* (C) Copyright 2011
* Joe Hershberger, National Instruments, joe.hershberger@ni.com
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <command.h>
#include <malloc.h>
#include <mapmem.h>
#include <hw_sha.h>
#include <asm/io.h>
#include <linux/errno.h>
#else
#include "mkimage.h"
#include <time.h>
#include <image.h>
#endif /* !USE_HOSTCC*/
#include <hash.h>
#include <u-boot/crc.h>
#include <u-boot/sha1.h>
#include <u-boot/sha256.h>
#include <u-boot/md5.h>
#if defined(CONFIG_SHA1) && !defined(CONFIG_SHA_PROG_HW_ACCEL)
static int hash_init_sha1(struct hash_algo *algo, void **ctxp)
{
sha1_context *ctx = malloc(sizeof(sha1_context));
sha1_starts(ctx);
*ctxp = ctx;
return 0;
}
static int hash_update_sha1(struct hash_algo *algo, void *ctx, const void *buf,
unsigned int size, int is_last)
{
sha1_update((sha1_context *)ctx, buf, size);
return 0;
}
static int hash_finish_sha1(struct hash_algo *algo, void *ctx, void *dest_buf,
int size)
{
if (size < algo->digest_size)
return -1;
sha1_finish((sha1_context *)ctx, dest_buf);
free(ctx);
return 0;
}
#endif
#if defined(CONFIG_SHA256) && !defined(CONFIG_SHA_PROG_HW_ACCEL)
static int hash_init_sha256(struct hash_algo *algo, void **ctxp)
{
sha256_context *ctx = malloc(sizeof(sha256_context));
sha256_starts(ctx);
*ctxp = ctx;
return 0;
}
static int hash_update_sha256(struct hash_algo *algo, void *ctx,
const void *buf, unsigned int size, int is_last)
{
sha256_update((sha256_context *)ctx, buf, size);
return 0;
}
static int hash_finish_sha256(struct hash_algo *algo, void *ctx, void
*dest_buf, int size)
{
if (size < algo->digest_size)
return -1;
sha256_finish((sha256_context *)ctx, dest_buf);
free(ctx);
return 0;
}
#endif
static int hash_init_crc32(struct hash_algo *algo, void **ctxp)
{
uint32_t *ctx = malloc(sizeof(uint32_t));
*ctx = 0;
*ctxp = ctx;
return 0;
}
static int hash_update_crc32(struct hash_algo *algo, void *ctx,
const void *buf, unsigned int size, int is_last)
{
*((uint32_t *)ctx) = crc32(*((uint32_t *)ctx), buf, size);
return 0;
}
static int hash_finish_crc32(struct hash_algo *algo, void *ctx, void *dest_buf,
int size)
{
if (size < algo->digest_size)
return -1;
*((uint32_t *)dest_buf) = *((uint32_t *)ctx);
free(ctx);
return 0;
}
/*
* These are the hash algorithms we support. If we have hardware acceleration
* is enable we will use that, otherwise a software version of the algorithm.
* Note that algorithm names must be in lower case.
*/
static struct hash_algo hash_algo[] = {
#ifdef CONFIG_SHA1
{
.name = "sha1",
.digest_size = SHA1_SUM_LEN,
.chunk_size = CHUNKSZ_SHA1,
#ifdef CONFIG_SHA_HW_ACCEL
.hash_func_ws = hw_sha1,
#else
.hash_func_ws = sha1_csum_wd,
#endif
#ifdef CONFIG_SHA_PROG_HW_ACCEL
.hash_init = hw_sha_init,
.hash_update = hw_sha_update,
.hash_finish = hw_sha_finish,
#else
.hash_init = hash_init_sha1,
.hash_update = hash_update_sha1,
.hash_finish = hash_finish_sha1,
#endif
},
#endif
#ifdef CONFIG_SHA256
{
.name = "sha256",
.digest_size = SHA256_SUM_LEN,
.chunk_size = CHUNKSZ_SHA256,
#ifdef CONFIG_SHA_HW_ACCEL
.hash_func_ws = hw_sha256,
#else
.hash_func_ws = sha256_csum_wd,
#endif
#ifdef CONFIG_SHA_PROG_HW_ACCEL
.hash_init = hw_sha_init,
.hash_update = hw_sha_update,
.hash_finish = hw_sha_finish,
#else
.hash_init = hash_init_sha256,
.hash_update = hash_update_sha256,
.hash_finish = hash_finish_sha256,
#endif
},
#endif
{
.name = "crc32",
.digest_size = 4,
.chunk_size = CHUNKSZ_CRC32,
.hash_func_ws = crc32_wd_buf,
.hash_init = hash_init_crc32,
.hash_update = hash_update_crc32,
.hash_finish = hash_finish_crc32,
},
};
/* Try to minimize code size for boards that don't want much hashing */
#if defined(CONFIG_SHA256) || defined(CONFIG_CMD_SHA1SUM) || \
defined(CONFIG_CRC32_VERIFY) || defined(CONFIG_CMD_HASH)
#define multi_hash() 1
#else
#define multi_hash() 0
#endif
int hash_lookup_algo(const char *algo_name, struct hash_algo **algop)
{
int i;
for (i = 0; i < ARRAY_SIZE(hash_algo); i++) {
if (!strcmp(algo_name, hash_algo[i].name)) {
*algop = &hash_algo[i];
return 0;
}
}
debug("Unknown hash algorithm '%s'\n", algo_name);
return -EPROTONOSUPPORT;
}
int hash_progressive_lookup_algo(const char *algo_name,
struct hash_algo **algop)
{
int i;
for (i = 0; i < ARRAY_SIZE(hash_algo); i++) {
if (!strcmp(algo_name, hash_algo[i].name)) {
if (hash_algo[i].hash_init) {
*algop = &hash_algo[i];
return 0;
}
}
}
debug("Unknown hash algorithm '%s'\n", algo_name);
return -EPROTONOSUPPORT;
}
#ifndef USE_HOSTCC
int hash_parse_string(const char *algo_name, const char *str, uint8_t *result)
{
struct hash_algo *algo;
int ret;
int i;
ret = hash_lookup_algo(algo_name, &algo);
if (ret)
return ret;
for (i = 0; i < algo->digest_size; i++) {
char chr[3];
strncpy(chr, &str[i * 2], 2);
result[i] = simple_strtoul(chr, NULL, 16);
}
return 0;
}
int hash_block(const char *algo_name, const void *data, unsigned int len,
uint8_t *output, int *output_size)
{
struct hash_algo *algo;
int ret;
ret = hash_lookup_algo(algo_name, &algo);
if (ret)
return ret;
if (output_size && *output_size < algo->digest_size) {
debug("Output buffer size %d too small (need %d bytes)",
*output_size, algo->digest_size);
return -ENOSPC;
}
if (output_size)
*output_size = algo->digest_size;
algo->hash_func_ws(data, len, output, algo->chunk_size);
return 0;
}
#if defined(CONFIG_CMD_HASH) || defined(CONFIG_CMD_SHA1SUM) || defined(CONFIG_CMD_CRC32)
/**
* store_result: Store the resulting sum to an address or variable
*
* @algo: Hash algorithm being used
* @sum: Hash digest (algo->digest_size bytes)
* @dest: Destination, interpreted as a hex address if it starts
* with * (or allow_env_vars is 0) or otherwise as an
* environment variable.
* @allow_env_vars: non-zero to permit storing the result to an
* variable environment
*/
static void store_result(struct hash_algo *algo, const uint8_t *sum,
const char *dest, int allow_env_vars)
{
unsigned int i;
int env_var = 0;
/*
* If environment variables are allowed, then we assume that 'dest'
* is an environment variable, unless it starts with *, in which
* case we assume it is an address. If not allowed, it is always an
* address. This is to support the crc32 command.
*/
if (allow_env_vars) {
if (*dest == '*')
dest++;
else
env_var = 1;
}
if (env_var) {
char str_output[HASH_MAX_DIGEST_SIZE * 2 + 1];
char *str_ptr = str_output;
for (i = 0; i < algo->digest_size; i++) {
sprintf(str_ptr, "%02x", sum[i]);
str_ptr += 2;
}
*str_ptr = '\0';
env_set(dest, str_output);
} else {
ulong addr;
void *buf;
addr = simple_strtoul(dest, NULL, 16);
buf = map_sysmem(addr, algo->digest_size);
memcpy(buf, sum, algo->digest_size);
unmap_sysmem(buf);
}
}
/**
* parse_verify_sum: Parse a hash verification parameter
*
* @algo: Hash algorithm being used
* @verify_str: Argument to parse. If it starts with * then it is
* interpreted as a hex address containing the hash.
* If the length is exactly the right number of hex digits
* for the digest size, then we assume it is a hex digest.
* Otherwise we assume it is an environment variable, and
* look up its value (it must contain a hex digest).
* @vsum: Returns binary digest value (algo->digest_size bytes)
* @allow_env_vars: non-zero to permit storing the result to an environment
* variable. If 0 then verify_str is assumed to be an
* address, and the * prefix is not expected.
* @return 0 if ok, non-zero on error
*/
static int parse_verify_sum(struct hash_algo *algo, char *verify_str,
uint8_t *vsum, int allow_env_vars)
{
int env_var = 0;
/* See comment above in store_result() */
if (allow_env_vars) {
if (*verify_str == '*')
verify_str++;
else
env_var = 1;
}
if (!env_var) {
ulong addr;
void *buf;
addr = simple_strtoul(verify_str, NULL, 16);
buf = map_sysmem(addr, algo->digest_size);
memcpy(vsum, buf, algo->digest_size);
} else {
char *vsum_str;
int digits = algo->digest_size * 2;
/*
* As with the original code from sha1sum.c, we assume that a
* string which matches the digest size exactly is a hex
* string and not an environment variable.
*/
if (strlen(verify_str) == digits)
vsum_str = verify_str;
else {
vsum_str = env_get(verify_str);
if (vsum_str == NULL || strlen(vsum_str) != digits) {
printf("Expected %d hex digits in env var\n",
digits);
return 1;
}
}
hash_parse_string(algo->name, vsum_str, vsum);
}
return 0;
}
static void hash_show(struct hash_algo *algo, ulong addr, ulong len, uint8_t *output)
{
int i;
printf("%s for %08lx ... %08lx ==> ", algo->name, addr, addr + len - 1);
for (i = 0; i < algo->digest_size; i++)
printf("%02x", output[i]);
}
int hash_command(const char *algo_name, int flags, cmd_tbl_t *cmdtp, int flag,
int argc, char * const argv[])
{
ulong addr, len;
if ((argc < 2) || ((flags & HASH_FLAG_VERIFY) && (argc < 3)))
return CMD_RET_USAGE;
addr = simple_strtoul(*argv++, NULL, 16);
len = simple_strtoul(*argv++, NULL, 16);
if (multi_hash()) {
struct hash_algo *algo;
u8 *output;
uint8_t vsum[HASH_MAX_DIGEST_SIZE];
void *buf;
if (hash_lookup_algo(algo_name, &algo)) {
printf("Unknown hash algorithm '%s'\n", algo_name);
return CMD_RET_USAGE;
}
argc -= 2;
if (algo->digest_size > HASH_MAX_DIGEST_SIZE) {
puts("HASH_MAX_DIGEST_SIZE exceeded\n");
return 1;
}
output = memalign(ARCH_DMA_MINALIGN,
sizeof(uint32_t) * HASH_MAX_DIGEST_SIZE);
buf = map_sysmem(addr, len);
algo->hash_func_ws(buf, len, output, algo->chunk_size);
unmap_sysmem(buf);
/* Try to avoid code bloat when verify is not needed */
#if defined(CONFIG_CRC32_VERIFY) || defined(CONFIG_SHA1SUM_VERIFY) || \
defined(CONFIG_HASH_VERIFY)
if (flags & HASH_FLAG_VERIFY) {
#else
if (0) {
#endif
if (parse_verify_sum(algo, *argv, vsum,
flags & HASH_FLAG_ENV)) {
printf("ERROR: %s does not contain a valid "
"%s sum\n", *argv, algo->name);
return 1;
}
if (memcmp(output, vsum, algo->digest_size) != 0) {
int i;
hash_show(algo, addr, len, output);
printf(" != ");
for (i = 0; i < algo->digest_size; i++)
printf("%02x", vsum[i]);
puts(" ** ERROR **\n");
return 1;
}
} else {
hash_show(algo, addr, len, output);
printf("\n");
if (argc) {
store_result(algo, output, *argv,
flags & HASH_FLAG_ENV);
}
unmap_sysmem(output);
}
/* Horrible code size hack for boards that just want crc32 */
} else {
ulong crc;
ulong *ptr;
crc = crc32_wd(0, (const uchar *)addr, len, CHUNKSZ_CRC32);
printf("CRC32 for %08lx ... %08lx ==> %08lx\n",
addr, addr + len - 1, crc);
if (argc >= 3) {
ptr = (ulong *)simple_strtoul(argv[0], NULL, 16);
*ptr = crc;
}
}
return 0;
}
#endif /* CONFIG_CMD_HASH || CONFIG_CMD_SHA1SUM || CONFIG_CMD_CRC32) */
#endif /* !USE_HOSTCC */