u-boot-brain/drivers/power/regulator/regulator-uclass.c
Lokesh Vutla e17e0ceb83 power: regulator: Return success on attempt to disable an always-on regulator
commit 4f86a724e8 ("power: regulator: denied disable on always-on
regulator") throws an error when requested to disable an always-on
regulator. It is right that an always-on regulator should not be
attempted to be disabled. But at the same time regulator framework
should not return an error when such request is received. Instead
it should just return success without attempting to disable the
specified regulator. This is because the requesting driver will
not have the idea if the regulator is always-on or not. The
requesting driver will always try to enable/disable regulator as
per the required flow. So it is upto regulator framework to not
break such scenarios.

Fixes: 4f86a724e8 ("power: regulator: denied disable on always-on regulator")
Reported-by: Jean-Jacques Hiblot <jjhiblot@ti.com>
Reviewed-by: Faiz Abbas <faiz_abbas@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
2018-12-27 07:48:31 -05:00

377 lines
8.7 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2014-2015 Samsung Electronics
* Przemyslaw Marczak <p.marczak@samsung.com>
*/
#include <common.h>
#include <errno.h>
#include <dm.h>
#include <dm/uclass-internal.h>
#include <power/pmic.h>
#include <power/regulator.h>
int regulator_mode(struct udevice *dev, struct dm_regulator_mode **modep)
{
struct dm_regulator_uclass_platdata *uc_pdata;
*modep = NULL;
uc_pdata = dev_get_uclass_platdata(dev);
if (!uc_pdata)
return -ENXIO;
*modep = uc_pdata->mode;
return uc_pdata->mode_count;
}
int regulator_get_value(struct udevice *dev)
{
const struct dm_regulator_ops *ops = dev_get_driver_ops(dev);
if (!ops || !ops->get_value)
return -ENOSYS;
return ops->get_value(dev);
}
int regulator_set_value(struct udevice *dev, int uV)
{
const struct dm_regulator_ops *ops = dev_get_driver_ops(dev);
struct dm_regulator_uclass_platdata *uc_pdata;
uc_pdata = dev_get_uclass_platdata(dev);
if (uc_pdata->min_uV != -ENODATA && uV < uc_pdata->min_uV)
return -EINVAL;
if (uc_pdata->max_uV != -ENODATA && uV > uc_pdata->max_uV)
return -EINVAL;
if (!ops || !ops->set_value)
return -ENOSYS;
return ops->set_value(dev, uV);
}
/*
* To be called with at most caution as there is no check
* before setting the actual voltage value.
*/
int regulator_set_value_force(struct udevice *dev, int uV)
{
const struct dm_regulator_ops *ops = dev_get_driver_ops(dev);
if (!ops || !ops->set_value)
return -ENOSYS;
return ops->set_value(dev, uV);
}
int regulator_get_current(struct udevice *dev)
{
const struct dm_regulator_ops *ops = dev_get_driver_ops(dev);
if (!ops || !ops->get_current)
return -ENOSYS;
return ops->get_current(dev);
}
int regulator_set_current(struct udevice *dev, int uA)
{
const struct dm_regulator_ops *ops = dev_get_driver_ops(dev);
struct dm_regulator_uclass_platdata *uc_pdata;
uc_pdata = dev_get_uclass_platdata(dev);
if (uc_pdata->min_uA != -ENODATA && uA < uc_pdata->min_uA)
return -EINVAL;
if (uc_pdata->max_uA != -ENODATA && uA > uc_pdata->max_uA)
return -EINVAL;
if (!ops || !ops->set_current)
return -ENOSYS;
return ops->set_current(dev, uA);
}
int regulator_get_enable(struct udevice *dev)
{
const struct dm_regulator_ops *ops = dev_get_driver_ops(dev);
if (!ops || !ops->get_enable)
return -ENOSYS;
return ops->get_enable(dev);
}
int regulator_set_enable(struct udevice *dev, bool enable)
{
const struct dm_regulator_ops *ops = dev_get_driver_ops(dev);
struct dm_regulator_uclass_platdata *uc_pdata;
if (!ops || !ops->set_enable)
return -ENOSYS;
uc_pdata = dev_get_uclass_platdata(dev);
if (!enable && uc_pdata->always_on)
return 0;
return ops->set_enable(dev, enable);
}
int regulator_get_mode(struct udevice *dev)
{
const struct dm_regulator_ops *ops = dev_get_driver_ops(dev);
if (!ops || !ops->get_mode)
return -ENOSYS;
return ops->get_mode(dev);
}
int regulator_set_mode(struct udevice *dev, int mode)
{
const struct dm_regulator_ops *ops = dev_get_driver_ops(dev);
if (!ops || !ops->set_mode)
return -ENOSYS;
return ops->set_mode(dev, mode);
}
int regulator_get_by_platname(const char *plat_name, struct udevice **devp)
{
struct dm_regulator_uclass_platdata *uc_pdata;
struct udevice *dev;
int ret;
*devp = NULL;
for (ret = uclass_find_first_device(UCLASS_REGULATOR, &dev); dev;
ret = uclass_find_next_device(&dev)) {
if (ret) {
debug("regulator %s, ret=%d\n", dev->name, ret);
continue;
}
uc_pdata = dev_get_uclass_platdata(dev);
if (!uc_pdata || strcmp(plat_name, uc_pdata->name))
continue;
return uclass_get_device_tail(dev, 0, devp);
}
debug("%s: can't find: %s, ret=%d\n", __func__, plat_name, ret);
return -ENODEV;
}
int regulator_get_by_devname(const char *devname, struct udevice **devp)
{
return uclass_get_device_by_name(UCLASS_REGULATOR, devname, devp);
}
int device_get_supply_regulator(struct udevice *dev, const char *supply_name,
struct udevice **devp)
{
return uclass_get_device_by_phandle(UCLASS_REGULATOR, dev,
supply_name, devp);
}
int regulator_autoset(struct udevice *dev)
{
struct dm_regulator_uclass_platdata *uc_pdata;
int ret = 0;
uc_pdata = dev_get_uclass_platdata(dev);
if (!uc_pdata->always_on && !uc_pdata->boot_on)
return -EMEDIUMTYPE;
if (uc_pdata->flags & REGULATOR_FLAG_AUTOSET_UV)
ret = regulator_set_value(dev, uc_pdata->min_uV);
if (!ret && (uc_pdata->flags & REGULATOR_FLAG_AUTOSET_UA))
ret = regulator_set_current(dev, uc_pdata->min_uA);
if (!ret)
ret = regulator_set_enable(dev, true);
return ret;
}
static void regulator_show(struct udevice *dev, int ret)
{
struct dm_regulator_uclass_platdata *uc_pdata;
uc_pdata = dev_get_uclass_platdata(dev);
printf("%s@%s: ", dev->name, uc_pdata->name);
if (uc_pdata->flags & REGULATOR_FLAG_AUTOSET_UV)
printf("set %d uV", uc_pdata->min_uV);
if (uc_pdata->flags & REGULATOR_FLAG_AUTOSET_UA)
printf("; set %d uA", uc_pdata->min_uA);
printf("; enabling");
if (ret)
printf(" (ret: %d)", ret);
printf("\n");
}
int regulator_autoset_by_name(const char *platname, struct udevice **devp)
{
struct udevice *dev;
int ret;
ret = regulator_get_by_platname(platname, &dev);
if (devp)
*devp = dev;
if (ret) {
debug("Can get the regulator: %s (err=%d)\n", platname, ret);
return ret;
}
return regulator_autoset(dev);
}
int regulator_list_autoset(const char *list_platname[],
struct udevice *list_devp[],
bool verbose)
{
struct udevice *dev;
int error = 0, i = 0, ret;
while (list_platname[i]) {
ret = regulator_autoset_by_name(list_platname[i], &dev);
if (ret != -EMEDIUMTYPE && verbose)
regulator_show(dev, ret);
if (ret & !error)
error = ret;
if (list_devp)
list_devp[i] = dev;
i++;
}
return error;
}
static bool regulator_name_is_unique(struct udevice *check_dev,
const char *check_name)
{
struct dm_regulator_uclass_platdata *uc_pdata;
struct udevice *dev;
int check_len = strlen(check_name);
int ret;
int len;
for (ret = uclass_find_first_device(UCLASS_REGULATOR, &dev); dev;
ret = uclass_find_next_device(&dev)) {
if (ret || dev == check_dev)
continue;
uc_pdata = dev_get_uclass_platdata(dev);
len = strlen(uc_pdata->name);
if (len != check_len)
continue;
if (!strcmp(uc_pdata->name, check_name))
return false;
}
return true;
}
static int regulator_post_bind(struct udevice *dev)
{
struct dm_regulator_uclass_platdata *uc_pdata;
const char *property = "regulator-name";
uc_pdata = dev_get_uclass_platdata(dev);
/* Regulator's mandatory constraint */
uc_pdata->name = dev_read_string(dev, property);
if (!uc_pdata->name) {
debug("%s: dev '%s' has no property '%s'\n",
__func__, dev->name, property);
uc_pdata->name = dev_read_name(dev);
if (!uc_pdata->name)
return -EINVAL;
}
if (regulator_name_is_unique(dev, uc_pdata->name))
return 0;
debug("'%s' of dev: '%s', has nonunique value: '%s\n",
property, dev->name, uc_pdata->name);
return -EINVAL;
}
static int regulator_pre_probe(struct udevice *dev)
{
struct dm_regulator_uclass_platdata *uc_pdata;
uc_pdata = dev_get_uclass_platdata(dev);
if (!uc_pdata)
return -ENXIO;
/* Regulator's optional constraints */
uc_pdata->min_uV = dev_read_u32_default(dev, "regulator-min-microvolt",
-ENODATA);
uc_pdata->max_uV = dev_read_u32_default(dev, "regulator-max-microvolt",
-ENODATA);
uc_pdata->min_uA = dev_read_u32_default(dev, "regulator-min-microamp",
-ENODATA);
uc_pdata->max_uA = dev_read_u32_default(dev, "regulator-max-microamp",
-ENODATA);
uc_pdata->always_on = dev_read_bool(dev, "regulator-always-on");
uc_pdata->boot_on = dev_read_bool(dev, "regulator-boot-on");
/* Those values are optional (-ENODATA if unset) */
if ((uc_pdata->min_uV != -ENODATA) &&
(uc_pdata->max_uV != -ENODATA) &&
(uc_pdata->min_uV == uc_pdata->max_uV))
uc_pdata->flags |= REGULATOR_FLAG_AUTOSET_UV;
/* Those values are optional (-ENODATA if unset) */
if ((uc_pdata->min_uA != -ENODATA) &&
(uc_pdata->max_uA != -ENODATA) &&
(uc_pdata->min_uA == uc_pdata->max_uA))
uc_pdata->flags |= REGULATOR_FLAG_AUTOSET_UA;
return 0;
}
int regulators_enable_boot_on(bool verbose)
{
struct udevice *dev;
struct uclass *uc;
int ret;
ret = uclass_get(UCLASS_REGULATOR, &uc);
if (ret)
return ret;
for (uclass_first_device(UCLASS_REGULATOR, &dev);
dev;
uclass_next_device(&dev)) {
ret = regulator_autoset(dev);
if (ret == -EMEDIUMTYPE) {
ret = 0;
continue;
}
if (verbose)
regulator_show(dev, ret);
if (ret == -ENOSYS)
ret = 0;
}
return ret;
}
UCLASS_DRIVER(regulator) = {
.id = UCLASS_REGULATOR,
.name = "regulator",
.post_bind = regulator_post_bind,
.pre_probe = regulator_pre_probe,
.per_device_platdata_auto_alloc_size =
sizeof(struct dm_regulator_uclass_platdata),
};