u-boot-brain/arch/arc/include/asm/io.h
Alexey Brodkin 5bea2becf3 arc: Update data accessors with use of memory barriers
Memory barriers are proven to be a requirement for both compiler and
real hardware to properly serialize access to critical data.

For example if CPU or data bus it uses may do reordering of data
accesses absence of memory barriers might easily lead to very subtle and
hard to debug data corruptions.

This implementation was heavily borrowed from up to date Linux kernel.

Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
2016-06-13 14:38:05 +02:00

311 lines
8.7 KiB
C

/*
* Copyright (C) 2013-2014 Synopsys, Inc. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef __ASM_ARC_IO_H
#define __ASM_ARC_IO_H
#include <linux/types.h>
#include <asm/byteorder.h>
#ifdef CONFIG_ISA_ARCV2
/*
* ARCv2 based HS38 cores are in-order issue, but still weakly ordered
* due to micro-arch buffering/queuing of load/store, cache hit vs. miss ...
*
* Explicit barrier provided by DMB instruction
* - Operand supports fine grained load/store/load+store semantics
* - Ensures that selected memory operation issued before it will complete
* before any subsequent memory operation of same type
* - DMB guarantees SMP as well as local barrier semantics
* (asm-generic/barrier.h ensures sane smp_*mb if not defined here, i.e.
* UP: barrier(), SMP: smp_*mb == *mb)
* - DSYNC provides DMB+completion_of_cache_bpu_maintenance_ops hence not needed
* in the general case. Plus it only provides full barrier.
*/
#define mb() asm volatile("dmb 3\n" : : : "memory")
#define rmb() asm volatile("dmb 1\n" : : : "memory")
#define wmb() asm volatile("dmb 2\n" : : : "memory")
#else
/*
* ARCompact based cores (ARC700) only have SYNC instruction which is super
* heavy weight as it flushes the pipeline as well.
* There are no real SMP implementations of such cores.
*/
#define mb() asm volatile("sync\n" : : : "memory")
#endif
#ifdef CONFIG_ISA_ARCV2
#define __iormb() rmb()
#define __iowmb() wmb()
#else
#define __iormb() do { } while (0)
#define __iowmb() do { } while (0)
#endif
/*
* Given a physical address and a length, return a virtual address
* that can be used to access the memory range with the caching
* properties specified by "flags".
*/
#define MAP_NOCACHE (0)
#define MAP_WRCOMBINE (0)
#define MAP_WRBACK (0)
#define MAP_WRTHROUGH (0)
static inline void *
map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags)
{
return (void *)((unsigned long)paddr);
}
/*
* Take down a mapping set up by map_physmem().
*/
static inline void unmap_physmem(void *vaddr, unsigned long flags)
{
}
static inline void sync(void)
{
/* Not yet implemented */
}
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
u8 b;
__asm__ __volatile__("ldb%U1 %0, %1\n"
: "=r" (b)
: "m" (*(volatile u8 __force *)addr)
: "memory");
return b;
}
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
u16 s;
__asm__ __volatile__("ldw%U1 %0, %1\n"
: "=r" (s)
: "m" (*(volatile u16 __force *)addr)
: "memory");
return s;
}
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
u32 w;
__asm__ __volatile__("ld%U1 %0, %1\n"
: "=r" (w)
: "m" (*(volatile u32 __force *)addr)
: "memory");
return w;
}
static inline void __raw_writeb(u8 b, volatile void __iomem *addr)
{
__asm__ __volatile__("stb%U1 %0, %1\n"
:
: "r" (b), "m" (*(volatile u8 __force *)addr)
: "memory");
}
static inline void __raw_writew(u16 s, volatile void __iomem *addr)
{
__asm__ __volatile__("stw%U1 %0, %1\n"
:
: "r" (s), "m" (*(volatile u16 __force *)addr)
: "memory");
}
static inline void __raw_writel(u32 w, volatile void __iomem *addr)
{
__asm__ __volatile__("st%U1 %0, %1\n"
:
: "r" (w), "m" (*(volatile u32 __force *)addr)
: "memory");
}
static inline int __raw_readsb(unsigned int addr, void *data, int bytelen)
{
__asm__ __volatile__ ("1:ld.di r8, [r0]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"stb.ab r8, [r1, 1]\n"
:
: "r" (addr), "r" (data), "r" (bytelen)
: "r8");
return bytelen;
}
static inline int __raw_readsw(unsigned int addr, void *data, int wordlen)
{
__asm__ __volatile__ ("1:ld.di r8, [r0]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"stw.ab r8, [r1, 2]\n"
:
: "r" (addr), "r" (data), "r" (wordlen)
: "r8");
return wordlen;
}
static inline int __raw_readsl(unsigned int addr, void *data, int longlen)
{
__asm__ __volatile__ ("1:ld.di r8, [r0]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"st.ab r8, [r1, 4]\n"
:
: "r" (addr), "r" (data), "r" (longlen)
: "r8");
return longlen;
}
static inline int __raw_writesb(unsigned int addr, void *data, int bytelen)
{
__asm__ __volatile__ ("1:ldb.ab r8, [r1, 1]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"st.di r8, [r0, 0]\n"
:
: "r" (addr), "r" (data), "r" (bytelen)
: "r8");
return bytelen;
}
static inline int __raw_writesw(unsigned int addr, void *data, int wordlen)
{
__asm__ __volatile__ ("1:ldw.ab r8, [r1, 2]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"st.ab.di r8, [r0, 0]\n"
:
: "r" (addr), "r" (data), "r" (wordlen)
: "r8");
return wordlen;
}
static inline int __raw_writesl(unsigned int addr, void *data, int longlen)
{
__asm__ __volatile__ ("1:ld.ab r8, [r1, 4]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"st.ab.di r8, [r0, 0]\n"
:
: "r" (addr), "r" (data), "r" (longlen)
: "r8");
return longlen;
}
/*
* MMIO can also get buffered/optimized in micro-arch, so barriers needed
* Based on ARM model for the typical use case
*
* <ST [DMA buffer]>
* <writel MMIO "go" reg>
* or:
* <readl MMIO "status" reg>
* <LD [DMA buffer]>
*
* http://lkml.kernel.org/r/20150622133656.GG1583@arm.com
*/
#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
/*
* Relaxed API for drivers which can handle barrier ordering themselves
*
* Also these are defined to perform little endian accesses.
* To provide the typical device register semantics of fixed endian,
* swap the byte order for Big Endian
*
* http://lkml.kernel.org/r/201603100845.30602.arnd@arndb.de
*/
#define readb_relaxed(c) __raw_readb(c)
#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
__raw_readw(c)); __r; })
#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
__raw_readl(c)); __r; })
#define writeb_relaxed(v,c) __raw_writeb(v,c)
#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
#define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a)
#define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a))
#define out_le32(a, v) out_arch(l, le32, a, v)
#define out_le16(a, v) out_arch(w, le16, a, v)
#define in_le32(a) in_arch(l, le32, a)
#define in_le16(a) in_arch(w, le16, a)
#define out_be32(a, v) out_arch(l, be32, a, v)
#define out_be16(a, v) out_arch(w, be16, a, v)
#define in_be32(a) in_arch(l, be32, a)
#define in_be16(a) in_arch(w, be16, a)
#define out_8(a, v) __raw_writeb(v, a)
#define in_8(a) __raw_readb(a)
/*
* Clear and set bits in one shot. These macros can be used to clear and
* set multiple bits in a register using a single call. These macros can
* also be used to set a multiple-bit bit pattern using a mask, by
* specifying the mask in the 'clear' parameter and the new bit pattern
* in the 'set' parameter.
*/
#define clrbits(type, addr, clear) \
out_##type((addr), in_##type(addr) & ~(clear))
#define setbits(type, addr, set) \
out_##type((addr), in_##type(addr) | (set))
#define clrsetbits(type, addr, clear, set) \
out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
#define clrbits_be32(addr, clear) clrbits(be32, addr, clear)
#define setbits_be32(addr, set) setbits(be32, addr, set)
#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
#define clrbits_le32(addr, clear) clrbits(le32, addr, clear)
#define setbits_le32(addr, set) setbits(le32, addr, set)
#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
#define clrbits_be16(addr, clear) clrbits(be16, addr, clear)
#define setbits_be16(addr, set) setbits(be16, addr, set)
#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
#define clrbits_le16(addr, clear) clrbits(le16, addr, clear)
#define setbits_le16(addr, set) setbits(le16, addr, set)
#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
#define clrbits_8(addr, clear) clrbits(8, addr, clear)
#define setbits_8(addr, set) setbits(8, addr, set)
#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
static inline phys_addr_t virt_to_phys(void *vaddr)
{
return (phys_addr_t)((unsigned long)vaddr);
}
#endif /* __ASM_ARC_IO_H */