u-boot-brain/drivers/net/fm/t4240.c
York Sun 9e75875849 powerpc/mpc85xx: Add T4240 SoC
Add support for Freescale T4240 SoC. Feature of T4240 are
(incomplete list):

12 dual-threaded e6500 cores built on Power Architecture® technology
  Arranged as clusters of four cores sharing a 2 MB L2 cache.
  Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture
    v2.06-compliant)
  Three levels of instruction: user, supervisor, and hypervisor
1.5 MB CoreNet Platform Cache (CPC)
Hierarchical interconnect fabric
  CoreNet fabric supporting coherent and non-coherent transactions with
    prioritization and bandwidth allocation amongst CoreNet end-points
  1.6 Tbps coherent read bandwidth
  Queue Manager (QMan) fabric supporting packet-level queue management and
    quality of service scheduling
Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving
    support
  Memory prefetch engine (PMan)
Data Path Acceleration Architecture (DPAA) incorporating acceleration for
    the following functions:
  Packet parsing, classification, and distribution (Frame Manager 1.1)
  Queue management for scheduling, packet sequencing, and congestion
    management (Queue Manager 1.1)
  Hardware buffer management for buffer allocation and de-allocation
    (BMan 1.1)
  Cryptography acceleration (SEC 5.0) at up to 40 Gbps
  RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps
  Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps
  DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0)
32 SerDes lanes at up to 10.3125 GHz
Ethernet interfaces
  Up to four 10 Gbps Ethernet MACs
  Up to sixteen 1 Gbps Ethernet MACs
  Maximum configuration of 4 x 10 GE + 8 x 1 GE
High-speed peripheral interfaces
  Four PCI Express 2.0/3.0 controllers
  Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with
    Type 11 messaging and Type 9 data streaming support
  Interlaken look-aside interface for serial TCAM connection
Additional peripheral interfaces
  Two serial ATA (SATA 2.0) controllers
  Two high-speed USB 2.0 controllers with integrated PHY
  Enhanced secure digital host controller (SD/MMC/eMMC)
  Enhanced serial peripheral interface (eSPI)
  Four I2C controllers
  Four 2-pin or two 4-pin UARTs
  Integrated Flash controller supporting NAND and NOR flash
Two eight-channel DMA engines
Support for hardware virtualization and partitioning enforcement
QorIQ Platform's Trust Architecture 1.1

Signed-off-by: York Sun <yorksun@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com>
Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-22 14:31:23 -05:00

129 lines
4.2 KiB
C

/*
* Copyright 2012 Freescale Semiconductor, Inc.
* Roy Zang <tie-fei.zang@freescale.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <phy.h>
#include <fm_eth.h>
#include <asm/io.h>
#include <asm/immap_85xx.h>
#include <asm/fsl_serdes.h>
u32 port_to_devdisr[] = {
[FM1_DTSEC1] = FSL_CORENET_DEVDISR2_DTSEC1_1,
[FM1_DTSEC2] = FSL_CORENET_DEVDISR2_DTSEC1_2,
[FM1_DTSEC3] = FSL_CORENET_DEVDISR2_DTSEC1_3,
[FM1_DTSEC4] = FSL_CORENET_DEVDISR2_DTSEC1_4,
[FM1_DTSEC5] = FSL_CORENET_DEVDISR2_DTSEC1_5,
[FM1_DTSEC6] = FSL_CORENET_DEVDISR2_DTSEC1_6,
[FM1_DTSEC9] = FSL_CORENET_DEVDISR2_DTSEC1_9,
[FM1_DTSEC10] = FSL_CORENET_DEVDISR2_DTSEC1_10,
[FM1_10GEC1] = FSL_CORENET_DEVDISR2_10GEC1_1,
[FM1_10GEC2] = FSL_CORENET_DEVDISR2_10GEC1_2,
[FM2_DTSEC1] = FSL_CORENET_DEVDISR2_DTSEC2_1,
[FM2_DTSEC2] = FSL_CORENET_DEVDISR2_DTSEC2_2,
[FM2_DTSEC3] = FSL_CORENET_DEVDISR2_DTSEC2_3,
[FM2_DTSEC4] = FSL_CORENET_DEVDISR2_DTSEC2_4,
[FM2_DTSEC5] = FSL_CORENET_DEVDISR2_DTSEC2_5,
[FM2_DTSEC6] = FSL_CORENET_DEVDISR2_DTSEC2_6,
[FM2_DTSEC9] = FSL_CORENET_DEVDISR2_DTSEC2_9,
[FM2_DTSEC10] = FSL_CORENET_DEVDISR2_DTSEC2_10,
[FM2_10GEC1] = FSL_CORENET_DEVDISR2_10GEC2_1,
[FM2_10GEC2] = FSL_CORENET_DEVDISR2_10GEC2_2,
};
static int is_device_disabled(enum fm_port port)
{
ccsr_gur_t *gur = (void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
u32 devdisr2 = in_be32(&gur->devdisr2);
return port_to_devdisr[port] & devdisr2;
}
void fman_disable_port(enum fm_port port)
{
ccsr_gur_t *gur = (void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
setbits_be32(&gur->devdisr2, port_to_devdisr[port]);
}
phy_interface_t fman_port_enet_if(enum fm_port port)
{
ccsr_gur_t *gur = (void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
u32 rcwsr13 = in_be32(&gur->rcwsr[13]);
if (is_device_disabled(port))
return PHY_INTERFACE_MODE_NONE;
if ((port == FM1_10GEC1 || port == FM1_10GEC2)
&& (is_serdes_configured(XAUI_FM1)))
return PHY_INTERFACE_MODE_XGMII;
if ((port == FM2_10GEC1 || port == FM2_10GEC2)
&& (is_serdes_configured(XAUI_FM2)))
return PHY_INTERFACE_MODE_XGMII;
#define FSL_CORENET_RCWSR13_EC1 0x60000000 /* bits 417..418 */
#define FSL_CORENET_RCWSR13_EC1_FM2_DTSEC5_RGMII 0x00000000
#define FSL_CORENET_RCWSR13_EC1_FM2_GPIO 0x40000000
#define FSL_CORENET_RCWSR13_EC2 0x18000000 /* bits 419..420 */
#define FSL_CORENET_RCWSR13_EC2_FM1_DTSEC5_RGMII 0x00000000
#define FSL_CORENET_RCWSR13_EC2_FM2_DTSEC6_RGMII 0x08000000
#define FSL_CORENET_RCWSR13_EC2_FM1_GPIO 0x10000000
/* handle RGMII first */
if ((port == FM2_DTSEC5) && ((rcwsr13 & FSL_CORENET_RCWSR13_EC1) ==
FSL_CORENET_RCWSR13_EC1_FM2_DTSEC5_RGMII))
return PHY_INTERFACE_MODE_RGMII;
if ((port == FM1_DTSEC5) && ((rcwsr13 & FSL_CORENET_RCWSR13_EC2) ==
FSL_CORENET_RCWSR13_EC2_FM1_DTSEC5_RGMII))
return PHY_INTERFACE_MODE_RGMII;
if ((port == FM2_DTSEC6) && ((rcwsr13 & FSL_CORENET_RCWSR13_EC2) ==
FSL_CORENET_RCWSR13_EC2_FM2_DTSEC6_RGMII))
return PHY_INTERFACE_MODE_RGMII;
switch (port) {
case FM1_DTSEC1:
case FM1_DTSEC2:
case FM1_DTSEC3:
case FM1_DTSEC4:
case FM1_DTSEC5:
case FM1_DTSEC6:
case FM1_DTSEC9:
case FM1_DTSEC10:
if (is_serdes_configured(SGMII_FM1_DTSEC1 + port - FM1_DTSEC1))
return PHY_INTERFACE_MODE_SGMII;
break;
case FM2_DTSEC1:
case FM2_DTSEC2:
case FM2_DTSEC3:
case FM2_DTSEC4:
case FM2_DTSEC5:
case FM2_DTSEC6:
case FM2_DTSEC9:
case FM2_DTSEC10:
if (is_serdes_configured(SGMII_FM2_DTSEC1 + port - FM2_DTSEC1))
return PHY_INTERFACE_MODE_SGMII;
break;
default:
return PHY_INTERFACE_MODE_NONE;
}
return PHY_INTERFACE_MODE_NONE;
}