u-boot-brain/arch/x86/cpu/mp_init.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

578 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015 Google, Inc
*
* Based on code from the coreboot file of the same name
*/
#include <common.h>
#include <cpu.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <qfw.h>
#include <asm/atomic.h>
#include <asm/cpu.h>
#include <asm/interrupt.h>
#include <asm/lapic.h>
#include <asm/microcode.h>
#include <asm/mp.h>
#include <asm/msr.h>
#include <asm/mtrr.h>
#include <asm/processor.h>
#include <asm/sipi.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <dm/lists.h>
#include <dm/root.h>
#include <linux/linkage.h>
DECLARE_GLOBAL_DATA_PTR;
/* Total CPUs include BSP */
static int num_cpus;
/* This also needs to match the sipi.S assembly code for saved MSR encoding */
struct saved_msr {
uint32_t index;
uint32_t lo;
uint32_t hi;
} __packed;
struct mp_flight_plan {
int num_records;
struct mp_flight_record *records;
};
static struct mp_flight_plan mp_info;
struct cpu_map {
struct udevice *dev;
int apic_id;
int err_code;
};
static inline void barrier_wait(atomic_t *b)
{
while (atomic_read(b) == 0)
asm("pause");
mfence();
}
static inline void release_barrier(atomic_t *b)
{
mfence();
atomic_set(b, 1);
}
static inline void stop_this_cpu(void)
{
/* Called by an AP when it is ready to halt and wait for a new task */
for (;;)
cpu_hlt();
}
/* Returns 1 if timeout waiting for APs. 0 if target APs found */
static int wait_for_aps(atomic_t *val, int target, int total_delay,
int delay_step)
{
int timeout = 0;
int delayed = 0;
while (atomic_read(val) != target) {
udelay(delay_step);
delayed += delay_step;
if (delayed >= total_delay) {
timeout = 1;
break;
}
}
return timeout;
}
static void ap_do_flight_plan(struct udevice *cpu)
{
int i;
for (i = 0; i < mp_info.num_records; i++) {
struct mp_flight_record *rec = &mp_info.records[i];
atomic_inc(&rec->cpus_entered);
barrier_wait(&rec->barrier);
if (rec->ap_call != NULL)
rec->ap_call(cpu, rec->ap_arg);
}
}
static int find_cpu_by_apic_id(int apic_id, struct udevice **devp)
{
struct udevice *dev;
*devp = NULL;
for (uclass_find_first_device(UCLASS_CPU, &dev);
dev;
uclass_find_next_device(&dev)) {
struct cpu_platdata *plat = dev_get_parent_platdata(dev);
if (plat->cpu_id == apic_id) {
*devp = dev;
return 0;
}
}
return -ENOENT;
}
/*
* By the time APs call ap_init() caching has been setup, and microcode has
* been loaded
*/
static void ap_init(unsigned int cpu_index)
{
struct udevice *dev;
int apic_id;
int ret;
/* Ensure the local apic is enabled */
enable_lapic();
apic_id = lapicid();
ret = find_cpu_by_apic_id(apic_id, &dev);
if (ret) {
debug("Unknown CPU apic_id %x\n", apic_id);
goto done;
}
debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
dev ? dev->name : "(apic_id not found)");
/* Walk the flight plan */
ap_do_flight_plan(dev);
/* Park the AP */
debug("parking\n");
done:
stop_this_cpu();
}
static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
};
static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
{
msr_t msr;
msr = msr_read(index);
entry->index = index;
entry->lo = msr.lo;
entry->hi = msr.hi;
/* Return the next entry */
entry++;
return entry;
}
static int save_bsp_msrs(char *start, int size)
{
int msr_count;
int num_var_mtrrs;
struct saved_msr *msr_entry;
int i;
msr_t msr;
/* Determine number of MTRRs need to be saved */
msr = msr_read(MTRR_CAP_MSR);
num_var_mtrrs = msr.lo & 0xff;
/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
if ((msr_count * sizeof(struct saved_msr)) > size) {
printf("Cannot mirror all %d msrs\n", msr_count);
return -ENOSPC;
}
msr_entry = (void *)start;
for (i = 0; i < NUM_FIXED_MTRRS; i++)
msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
for (i = 0; i < num_var_mtrrs; i++) {
msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
}
msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
return msr_count;
}
static int load_sipi_vector(atomic_t **ap_countp, int num_cpus)
{
struct sipi_params_16bit *params16;
struct sipi_params *params;
static char msr_save[512];
char *stack;
ulong addr;
int code_len;
int size;
int ret;
/* Copy in the code */
code_len = ap_start16_code_end - ap_start16;
debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
code_len);
memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);
addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
params16 = (struct sipi_params_16bit *)addr;
params16->ap_start = (uint32_t)ap_start;
params16->gdt = (uint32_t)gd->arch.gdt;
params16->gdt_limit = X86_GDT_SIZE - 1;
debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);
params = (struct sipi_params *)sipi_params;
debug("SIPI 32-bit params at %p\n", params);
params->idt_ptr = (uint32_t)x86_get_idt();
params->stack_size = CONFIG_AP_STACK_SIZE;
size = params->stack_size * num_cpus;
stack = memalign(4096, size);
if (!stack)
return -ENOMEM;
params->stack_top = (u32)(stack + size);
#if !defined(CONFIG_QEMU) && !defined(CONFIG_HAVE_FSP) && \
!defined(CONFIG_INTEL_MID)
params->microcode_ptr = ucode_base;
debug("Microcode at %x\n", params->microcode_ptr);
#endif
params->msr_table_ptr = (u32)msr_save;
ret = save_bsp_msrs(msr_save, sizeof(msr_save));
if (ret < 0)
return ret;
params->msr_count = ret;
params->c_handler = (uint32_t)&ap_init;
*ap_countp = &params->ap_count;
atomic_set(*ap_countp, 0);
debug("SIPI vector is ready\n");
return 0;
}
static int check_cpu_devices(int expected_cpus)
{
int i;
for (i = 0; i < expected_cpus; i++) {
struct udevice *dev;
int ret;
ret = uclass_find_device(UCLASS_CPU, i, &dev);
if (ret) {
debug("Cannot find CPU %d in device tree\n", i);
return ret;
}
}
return 0;
}
/* Returns 1 for timeout. 0 on success */
static int apic_wait_timeout(int total_delay, const char *msg)
{
int total = 0;
if (!(lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY))
return 0;
debug("Waiting for %s...", msg);
while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
udelay(50);
total += 50;
if (total >= total_delay) {
debug("timed out: aborting\n");
return -ETIMEDOUT;
}
}
debug("done\n");
return 0;
}
static int start_aps(int ap_count, atomic_t *num_aps)
{
int sipi_vector;
/* Max location is 4KiB below 1MiB */
const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
if (ap_count == 0)
return 0;
/* The vector is sent as a 4k aligned address in one byte */
sipi_vector = AP_DEFAULT_BASE >> 12;
if (sipi_vector > max_vector_loc) {
printf("SIPI vector too large! 0x%08x\n",
sipi_vector);
return -1;
}
debug("Attempting to start %d APs\n", ap_count);
if (apic_wait_timeout(1000, "ICR not to be busy"))
return -ETIMEDOUT;
/* Send INIT IPI to all but self */
lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_INIT);
debug("Waiting for 10ms after sending INIT\n");
mdelay(10);
/* Send 1st SIPI */
if (apic_wait_timeout(1000, "ICR not to be busy"))
return -ETIMEDOUT;
lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
if (apic_wait_timeout(10000, "first SIPI to complete"))
return -ETIMEDOUT;
/* Wait for CPUs to check in up to 200 us */
wait_for_aps(num_aps, ap_count, 200, 15);
/* Send 2nd SIPI */
if (apic_wait_timeout(1000, "ICR not to be busy"))
return -ETIMEDOUT;
lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
LAPIC_DM_STARTUP | sipi_vector);
if (apic_wait_timeout(10000, "second SIPI to complete"))
return -ETIMEDOUT;
/* Wait for CPUs to check in */
if (wait_for_aps(num_aps, ap_count, 10000, 50)) {
debug("Not all APs checked in: %d/%d\n",
atomic_read(num_aps), ap_count);
return -1;
}
return 0;
}
static int bsp_do_flight_plan(struct udevice *cpu, struct mp_params *mp_params)
{
int i;
int ret = 0;
const int timeout_us = 100000;
const int step_us = 100;
int num_aps = num_cpus - 1;
for (i = 0; i < mp_params->num_records; i++) {
struct mp_flight_record *rec = &mp_params->flight_plan[i];
/* Wait for APs if the record is not released */
if (atomic_read(&rec->barrier) == 0) {
/* Wait for the APs to check in */
if (wait_for_aps(&rec->cpus_entered, num_aps,
timeout_us, step_us)) {
debug("MP record %d timeout\n", i);
ret = -1;
}
}
if (rec->bsp_call != NULL)
rec->bsp_call(cpu, rec->bsp_arg);
release_barrier(&rec->barrier);
}
return ret;
}
static int init_bsp(struct udevice **devp)
{
char processor_name[CPU_MAX_NAME_LEN];
int apic_id;
int ret;
cpu_get_name(processor_name);
debug("CPU: %s\n", processor_name);
apic_id = lapicid();
ret = find_cpu_by_apic_id(apic_id, devp);
if (ret) {
printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
return ret;
}
return 0;
}
#ifdef CONFIG_QFW
static int qemu_cpu_fixup(void)
{
int ret;
int cpu_num;
int cpu_online;
struct udevice *dev, *pdev;
struct cpu_platdata *plat;
char *cpu;
/* first we need to find '/cpus' */
for (device_find_first_child(dm_root(), &pdev);
pdev;
device_find_next_child(&pdev)) {
if (!strcmp(pdev->name, "cpus"))
break;
}
if (!pdev) {
printf("unable to find cpus device\n");
return -ENODEV;
}
/* calculate cpus that are already bound */
cpu_num = 0;
for (uclass_find_first_device(UCLASS_CPU, &dev);
dev;
uclass_find_next_device(&dev)) {
cpu_num++;
}
/* get actual cpu number */
cpu_online = qemu_fwcfg_online_cpus();
if (cpu_online < 0) {
printf("unable to get online cpu number: %d\n", cpu_online);
return cpu_online;
}
/* bind addtional cpus */
dev = NULL;
for (; cpu_num < cpu_online; cpu_num++) {
/*
* allocate device name here as device_bind_driver() does
* not copy device name, 8 bytes are enough for
* sizeof("cpu@") + 3 digits cpu number + '\0'
*/
cpu = malloc(8);
if (!cpu) {
printf("unable to allocate device name\n");
return -ENOMEM;
}
sprintf(cpu, "cpu@%d", cpu_num);
ret = device_bind_driver(pdev, "cpu_qemu", cpu, &dev);
if (ret) {
printf("binding cpu@%d failed: %d\n", cpu_num, ret);
return ret;
}
plat = dev_get_parent_platdata(dev);
plat->cpu_id = cpu_num;
}
return 0;
}
#endif
int mp_init(struct mp_params *p)
{
int num_aps;
atomic_t *ap_count;
struct udevice *cpu;
int ret;
/* This will cause the CPUs devices to be bound */
struct uclass *uc;
ret = uclass_get(UCLASS_CPU, &uc);
if (ret)
return ret;
#ifdef CONFIG_QFW
ret = qemu_cpu_fixup();
if (ret)
return ret;
#endif
ret = init_bsp(&cpu);
if (ret) {
debug("Cannot init boot CPU: err=%d\n", ret);
return ret;
}
if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
printf("Invalid MP parameters\n");
return -1;
}
num_cpus = cpu_get_count(cpu);
if (num_cpus < 0) {
debug("Cannot get number of CPUs: err=%d\n", num_cpus);
return num_cpus;
}
if (num_cpus < 2)
debug("Warning: Only 1 CPU is detected\n");
ret = check_cpu_devices(num_cpus);
if (ret)
debug("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
/* Copy needed parameters so that APs have a reference to the plan */
mp_info.num_records = p->num_records;
mp_info.records = p->flight_plan;
/* Load the SIPI vector */
ret = load_sipi_vector(&ap_count, num_cpus);
if (ap_count == NULL)
return -1;
/*
* Make sure SIPI data hits RAM so the APs that come up will see
* the startup code even if the caches are disabled
*/
wbinvd();
/* Start the APs providing number of APs and the cpus_entered field */
num_aps = num_cpus - 1;
ret = start_aps(num_aps, ap_count);
if (ret) {
mdelay(1000);
debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
num_aps);
return ret;
}
/* Walk the flight plan for the BSP */
ret = bsp_do_flight_plan(cpu, p);
if (ret) {
debug("CPU init failed: err=%d\n", ret);
return ret;
}
return 0;
}
int mp_init_cpu(struct udevice *cpu, void *unused)
{
struct cpu_platdata *plat = dev_get_parent_platdata(cpu);
/*
* Multiple APs are brought up simultaneously and they may get the same
* seq num in the uclass_resolve_seq() during device_probe(). To avoid
* this, set req_seq to the reg number in the device tree in advance.
*/
cpu->req_seq = fdtdec_get_int(gd->fdt_blob, dev_of_offset(cpu), "reg",
-1);
plat->ucode_version = microcode_read_rev();
plat->device_id = gd->arch.x86_device;
return device_probe(cpu);
}