u-boot-brain/drivers/ddr/altera/sdram_soc64.c
Simon Glass db41d65a97 common: Move hang() to the same header as panic()
At present panic() is in the vsprintf.h header file. That does not seem
like an obvious choice for hang(), even though it relates to panic(). So
let's put hang() in its own header.

Signed-off-by: Simon Glass <sjg@chromium.org>
[trini: Migrate a few more files]
Signed-off-by: Tom Rini <trini@konsulko.com>
2020-01-17 17:53:40 -05:00

307 lines
7.1 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2019 Intel Corporation <www.intel.com>
*
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <errno.h>
#include <div64.h>
#include <fdtdec.h>
#include <hang.h>
#include <ram.h>
#include <reset.h>
#include "sdram_soc64.h"
#include <wait_bit.h>
#include <asm/arch/firewall.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/io.h>
#include <linux/sizes.h>
#define PGTABLE_OFF 0x4000
u32 hmc_readl(struct altera_sdram_platdata *plat, u32 reg)
{
return readl(plat->iomhc + reg);
}
u32 hmc_ecc_readl(struct altera_sdram_platdata *plat, u32 reg)
{
return readl(plat->hmc + reg);
}
u32 hmc_ecc_writel(struct altera_sdram_platdata *plat,
u32 data, u32 reg)
{
return writel(data, plat->hmc + reg);
}
u32 ddr_sch_writel(struct altera_sdram_platdata *plat, u32 data,
u32 reg)
{
return writel(data, plat->ddr_sch + reg);
}
int emif_clear(struct altera_sdram_platdata *plat)
{
hmc_ecc_writel(plat, 0, RSTHANDSHAKECTRL);
return wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_RSTHANDSHAKE_MASK,
false, 1000, false);
}
int emif_reset(struct altera_sdram_platdata *plat)
{
u32 c2s, s2c, ret;
c2s = hmc_ecc_readl(plat, RSTHANDSHAKECTRL) & DDR_HMC_RSTHANDSHAKE_MASK;
s2c = hmc_ecc_readl(plat, RSTHANDSHAKESTAT) & DDR_HMC_RSTHANDSHAKE_MASK;
debug("DDR: c2s=%08x s2c=%08x nr0=%08x nr1=%08x nr2=%08x dst=%08x\n",
c2s, s2c, hmc_readl(plat, NIOSRESERVED0),
hmc_readl(plat, NIOSRESERVED1), hmc_readl(plat, NIOSRESERVED2),
hmc_readl(plat, DRAMSTS));
if (s2c && emif_clear(plat)) {
printf("DDR: emif_clear() failed\n");
return -1;
}
debug("DDR: Triggerring emif reset\n");
hmc_ecc_writel(plat, DDR_HMC_CORE2SEQ_INT_REQ, RSTHANDSHAKECTRL);
/* if seq2core[3] = 0, we are good */
ret = wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_SEQ2CORE_INT_RESP_MASK,
false, 1000, false);
if (ret) {
printf("DDR: failed to get ack from EMIF\n");
return ret;
}
ret = emif_clear(plat);
if (ret) {
printf("DDR: emif_clear() failed\n");
return ret;
}
debug("DDR: %s triggered successly\n", __func__);
return 0;
}
int poll_hmc_clock_status(void)
{
return wait_for_bit_le32((const void *)(socfpga_get_sysmgr_addr() +
SYSMGR_SOC64_HMC_CLK),
SYSMGR_HMC_CLK_STATUS_MSK, true, 1000, false);
}
void sdram_clear_mem(phys_addr_t addr, phys_size_t size)
{
phys_size_t i;
if (addr % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: address 0x%llx is not cacheline size aligned.\n",
addr);
hang();
}
if (size % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: size 0x%llx is not multiple of cacheline size\n",
size);
hang();
}
/* Use DC ZVA instruction to clear memory to zeros by a cache line */
for (i = 0; i < size; i = i + CONFIG_SYS_CACHELINE_SIZE) {
asm volatile("dc zva, %0"
:
: "r"(addr)
: "memory");
addr += CONFIG_SYS_CACHELINE_SIZE;
}
}
void sdram_init_ecc_bits(bd_t *bd)
{
phys_size_t size, size_init;
phys_addr_t start_addr;
int bank = 0;
unsigned int start = get_timer(0);
icache_enable();
start_addr = bd->bi_dram[0].start;
size = bd->bi_dram[0].size;
/* Initialize small block for page table */
memset((void *)start_addr, 0, PGTABLE_SIZE + PGTABLE_OFF);
gd->arch.tlb_addr = start_addr + PGTABLE_OFF;
gd->arch.tlb_size = PGTABLE_SIZE;
start_addr += PGTABLE_SIZE + PGTABLE_OFF;
size -= (PGTABLE_OFF + PGTABLE_SIZE);
dcache_enable();
while (1) {
while (size) {
size_init = min((phys_addr_t)SZ_1G, (phys_addr_t)size);
sdram_clear_mem(start_addr, size_init);
size -= size_init;
start_addr += size_init;
WATCHDOG_RESET();
}
bank++;
if (bank >= CONFIG_NR_DRAM_BANKS)
break;
start_addr = bd->bi_dram[bank].start;
size = bd->bi_dram[bank].size;
}
dcache_disable();
icache_disable();
printf("SDRAM-ECC: Initialized success with %d ms\n",
(unsigned int)get_timer(start));
}
void sdram_size_check(bd_t *bd)
{
phys_size_t total_ram_check = 0;
phys_size_t ram_check = 0;
phys_addr_t start = 0;
int bank;
/* Sanity check ensure correct SDRAM size specified */
debug("DDR: Running SDRAM size sanity check\n");
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
start = bd->bi_dram[bank].start;
while (ram_check < bd->bi_dram[bank].size) {
ram_check += get_ram_size((void *)(start + ram_check),
(phys_size_t)SZ_1G);
}
total_ram_check += ram_check;
ram_check = 0;
}
/* If the ram_size is 2GB smaller, we can assume the IO space is
* not mapped in. gd->ram_size is the actual size of the dram
* not the accessible size.
*/
if (total_ram_check != gd->ram_size) {
puts("DDR: SDRAM size check failed!\n");
hang();
}
debug("DDR: SDRAM size check passed!\n");
}
/**
* sdram_calculate_size() - Calculate SDRAM size
*
* Calculate SDRAM device size based on SDRAM controller parameters.
* Size is specified in bytes.
*/
phys_size_t sdram_calculate_size(struct altera_sdram_platdata *plat)
{
u32 dramaddrw = hmc_readl(plat, DRAMADDRW);
phys_size_t size = 1 << (DRAMADDRW_CFG_CS_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw));
size *= (2 << (hmc_ecc_readl(plat, DDRIOCTRL) &
DDR_HMC_DDRIOCTRL_IOSIZE_MSK));
return size;
}
static int altera_sdram_ofdata_to_platdata(struct udevice *dev)
{
struct altera_sdram_platdata *plat = dev->platdata;
fdt_addr_t addr;
addr = dev_read_addr_index(dev, 0);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->ddr_sch = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 1);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->iomhc = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 2);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->hmc = (void __iomem *)addr;
return 0;
}
static int altera_sdram_probe(struct udevice *dev)
{
int ret;
struct altera_sdram_priv *priv = dev_get_priv(dev);
ret = reset_get_bulk(dev, &priv->resets);
if (ret) {
dev_err(dev, "Can't get reset: %d\n", ret);
return -ENODEV;
}
reset_deassert_bulk(&priv->resets);
if (sdram_mmr_init_full(dev) != 0) {
puts("SDRAM init failed.\n");
goto failed;
}
return 0;
failed:
reset_release_bulk(&priv->resets);
return -ENODEV;
}
static int altera_sdram_get_info(struct udevice *dev,
struct ram_info *info)
{
struct altera_sdram_priv *priv = dev_get_priv(dev);
info->base = priv->info.base;
info->size = priv->info.size;
return 0;
}
static struct ram_ops altera_sdram_ops = {
.get_info = altera_sdram_get_info,
};
static const struct udevice_id altera_sdram_ids[] = {
{ .compatible = "altr,sdr-ctl-s10" },
{ .compatible = "intel,sdr-ctl-agilex" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(altera_sdram) = {
.name = "altr_sdr_ctl",
.id = UCLASS_RAM,
.of_match = altera_sdram_ids,
.ops = &altera_sdram_ops,
.ofdata_to_platdata = altera_sdram_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct altera_sdram_platdata),
.probe = altera_sdram_probe,
.priv_auto_alloc_size = sizeof(struct altera_sdram_priv),
};